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INTRODUCTION: Within each animal species,
embryonic development is highly reproduci-
ble, ensuring the faithful production of a com-
plex organism with precisely arranged and
shaped organs. In most animal embryos, re-
producibility is found at the tissue scale, the
behaviors of individual cells being stochastic
beyond the first cell divisions. Ascidians, a
group of marine invertebrate chordates, show
an extreme form of embryonic reproducibility:
Homologous cells can be found across individ-
ual embryos, and early embryonic cell lineages
are considered invariant. Embryonic geome-
tries are even conserved between species, which
diverged 400 million years ago and have very
dissimilar genomes. Because of their evolution-
ary conservation of early embryonic development

and ability to buffer genetic divergence, ascid-
ians constitute attractive model systems to study
the mechanisms driving cellular reproducibility.

RATIONALE: To quantify embryonic reproduc-
ibility in the ascidian Phallusia mammillata,
we first built a high-resolution atlas of em-
bryonic cell lineages, cell shapes, and cell in-
teractions. We imaged 10 live embryos every
2 min up to the end of the neurula stages
using multiview light-sheet microscopy. To
systematically measure the developmental
variability of a range of temporal and spatial
cellular features, we developed a robust and
scalable adaptive segmentation and tracking
of embryonic cellsprocedure (ASTEC) compatible
with high-throughput multiview light-sheet

imaging datasets. We related these features to
cell fate specification, which in ascidians is
mainly controlled by differential sister cell in-
ductions. Inspired by previouswork indicating
that the area of contact to signaling cells con-
trols ascidian neural induction, we integrated
our geometric descriptionwith a signaling gene
expression atlas. This integration allowed us to
test, through computational and experimental
approaches, the hypothesis that contact area–
dependent cell communication imposes con-
straints on embryonic geometries.

RESULTS: We found that, up to the neurula
stages, Phallusia embryos developwithout cell
growth, programmed cell death, or cell neigh-
bor exchanges. Beyond cell position, cell cycle
duration, and cell lineages, we observed a

high reproducibility of
cell arrangements: 75% of
cells shared at least 80%
of their neighbors in all 10
embryos studied. Further-
more, the areas of contact
between homologous cells

variedby less than20%across embryos.Mechani-
stically, we uncovered a tight link between the
control of cell arrangements andasymmetric cell
divisions, which give rise to sister cells of distinct
fates. We then combined computational and
experimental approaches to reveal that areas of
cell contact between signaling and responding
cells have sufficient encoding potential to explain
all known early embryonic inductions, without
the need to invoke gradients of ligand concen-
tration. Finally, using geometrical perturbations
of embryonicdevelopmentwedemonstrated that
precise areas of cell-cell contact were important
for mesendodermal and neural fate specification.

CONCLUSION: Our work establishes the highly
reproducible ascidian embryo as a framework
to bridge cell behaviors, morphogenesis, and
the underlying regulatory program. The ASTEC
pipeline allows systematic automated whole-
cell segmentation and tracking across whole
embryos in high-throughput light-sheet data-
sets. Second, we establish the geometric con-
trol of embryonic inductions as an alternative
to classical morphogen gradients and suggest
that the range of cell signaling events sets the
scale at which embryonic reproducibility is ob-
served. Finally, our study suggests that the high
level of reproducibility of ascidian embryonic
geometries may paradoxically lift constraints
on the evolution of ascidian genomes, thereby
contributing to rapid molecular evolution. ▪
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Reconstruction and modeling of Phallusia embryogenesis. (Left) Quantitative analysis of Phallusia embryogen-
esis. We combined live light-sheet imaging of cell membranes (left images) with automated cell segmentation and
tracking with color-coded cell fates (center images) to extract quantitative cell morphological properties (right
images, color-coded by cell compactness). From top to bottom: embryo at the 64-cell, mid-gastrula, and late
gastrula stages. (Right) Cell signaling model. We first made simplifying assumptions concerning the distribution
and diffusion of signaling pathway components (top) and then integrated cell contact geometry with gene expression
profiles to predict pathway activation levels in single cells (center) and binarized induction status (bottom).
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Marine invertebrate ascidians display embryonic reproducibility: Their early embryonic cell lineages are
considered invariant and are conserved between distantly related species, despite rapid genomic
divergence. Here, we address the drivers of this reproducibility. We used light-sheet imaging and
automated cell segmentation and tracking procedures to systematically quantify the behavior of individual
cells every 2 minutes during Phallusia mammillata embryogenesis. Interindividual reproducibility was
observed down to the area of individual cell contacts. We found tight links between the reproducibility
of embryonic geometries and asymmetric cell divisions, controlled by differential sister cell inductions. We
combined modeling and experimental manipulations to show that the area of contact between signaling
and responding cells is a key determinant of cell communication. Our work establishes the geometric
control of embryonic inductions as an alternative to classical morphogen gradients and suggests that the
range of cell signaling sets the scale at which embryonic reproducibility is observed.

T
he development of each animal species
is highly reproducible, ensuring the faith-
ful replication of a complex organism in
which organs are precisely shaped, sized,
and positioned. This fidelity of embryo-

genesis despite genetic polymorphism and fluc-
tuating environmental conditions is critical
for the perpetuation of species.
Reproducibility can be observed at different

scales. Many vertebrate and invertebrate em-
bryos initially display a stereotyped pattern of
orientation and geometry of individual cell
divisions, which can be explained by simple
self-organizingmechanical rules (1). This initial
cellular reproducibility is usually lost during
early cleavage stages, as the number of cells
increases. It is, however, maintained during

later developmental stages in nematodes (2)
and in ascidians (3), a group of marine in-
vertebrates closely related to vertebrates (4).
Unlike those of nematodes (5), ascidian embryo
geometries have even remained essentially un-
changed since the emergence of the group,
around 400 million years ago (3, 6), despite
extensive genomic divergence and gene reg-
ulatory network rewiring (7). Because of the
distinctive evolutionary conservation of their
early embryonic development and because of
their notable ability to buffer genetic diver-
gence, ascidians constitute an attractivemodel

system to study the mechanisms driving and
maintaining cellular reproducibility.
Development of ascidians and nematodes is

characterized by lower cell number and earlier
fate restriction than most animal embryos.
Ninety four of the 110 early gastrula cells in
the ascidian Halocynthia roretzi are fate re-
stricted, each contributing to a single larval tis-
sue type (8). Most mesendodermal tissues are
generated by a very small, and specific, number
of fate-restricted early gastrula progenitors:
six for the notochord, four for themesenchyme,
and two for the heart or trunk lateral cells (8).
Although reduced cellular complexity alone
cannot explain invariance (9), the precision of
the mechanisms needed to specify a small, spe-
cific number of fate-restricted progenitors of
each tissue may impose constraints favoring
developmental invariance.
Short-range cell communication plays a cru-

cial role in the specification of most of the
ascidian mesendodermal and neural lineages
(10, 11). Previous work on the induction at the
32-cell stage of ascidian neural progenitors by
fibroblast growth factor (FGF) revealed that
this induction only occurs in the four ectodermal
cells whose area of contact to FGF-emitting
cells exceeds a threshold value (12). This con-
tact area–dependent induction exemplifies how
the specification of a precise number of tissue
precursors can rely on the precise spatial ar-
rangement of individual embryonic cells.
In this work, we tested the hypothesis that

complex feedback between fate specification
and morphogenetic processes, whose strength
is amplified by the reduced cell number, pro-
motes developmental invariance. We first devel-
oped methods to quantitatively study cellular
variability in the ascidian Phallusiamammillata.
We then used these methods in the chordate
embryo to explore the relationships between
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Movie 1. Digitized P. mammillata embryo. Vegetal view (left) and side view through a sagittal section (right)
of the ASTEC-Pm1 segmented and fate-colored P. mammillata embryo. Anterior is to the top. The tissue
fate color code is shown on the left-hand side.
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the reproducibility of cell arrangements, the
precision of fate specification processes, and
the range of embryonic inductions.

A high-resolution geometric atlas of
embryonic cell shapes and interactions

Using confocal multiview light-sheet micros-
copy (13), we imaged the development of 10
optically transparent P. mammillata embryos
with fluorescently labeled plasma membranes,
every 2 min from cleavage to neurula stages
(Fig. 1A, figs. S1 to S4, table S1, and movies S1
and S2). Systematic segmentation and long-

term tracking of all membrane-labeled cells
of a developing embryo remain challenging
(14), despite recent advances (15–19). Analysis
of the limitations of our previous two-pass mul-
tiangle image acquisition, three-dimensional
reconstruction and cell segmentation–automated
lineage tracking (MARS-ALT) pipeline (20)
(figs. S5 to S8) guided the development of an
algorithm adapted to high-throughput light-
sheet datasets called ASTEC, for adaptive seg-
mentation and tracking of embryonic cells
(Fig. 1, B and C). ASTEC is a single-pass algo-
rithm that simultaneously segments and tracks

whole cells by iteratively projecting segmenta-
tions from one time point onto the next (figs.
S9 to S14). ASTEC produces a digitized version
of each embryo: a segmentation of all embryo-
nic cells existing at each time point, inte-
grated into global cell lineages, to which we
associated their known larval tissue fates and
from which quantitative geometrical param-
eters can be extracted (Fig. 1D, figs. S15 to
S17, Movie 1, and movie S3). The 10 digitized
P. mammillata embryos, ASTEC-Pm1 to ASTEC-
Pm10, constitute a quantitative and dynamic
atlas of cell positions, geometries, and ancestry
over a large fraction of a metazoan develop-
mental program (Movie 2 andmovie S4), which
can be interactively explored through the
MorphoNet onlinemorphological browser (21).
Figure 1C illustrates the ASTEC-Pm1 digitized

embryo, which contains a total of 67,003 seg-
mented three-dimensional (3D) cell “snapshots,”
and describes the behavior over time of 1395
individual cells generated by 697 cell divi-
sion events. Manual inspection revealed that
the pipeline only missed 4/1399 cells and 3/
700 cell divisions, and it assigned 99% of
voxels to the correct cell (figs. S6 and S18
and tables S2 and S3). In a manner consistent
with previous work in another ascidian spe-
cies (22), no programmed cell death was de-
tected, such that all cells but one were tracked
until their division or the end of the movie
(fig. S15). On this dataset, ASTEC outper-
formed RACE, a reference membrane–based
segmentation algorithm adapted to embryonic
datasets (16) (fig. S19). The segmentation and
tracking accuracy of all 10 embryos was compa-
rable to that of ASTEC-Pm1 (tables S2 and S3).

Ascidian development is reproducible down to
the scale of cell-cell contacts

Wesystematicallymeasured the developmental
variability of a range of temporal and spatial
cell featuresduringgastrulation andneurulation.
At the temporal level, the median variability
of the cell cycle durations of homologous cells
(equivalent bilateral cells within an embryo or
across embryos) was on the order of one time
point, within the image sampling error (figs.
S20 to S22). The cell lineages of homologous
cells were similar (Fig. 2A), as quantified with
a normalized tree-edit distance capturing the
average cost per cell of the transformation of
one tree into the other (fig. S23). This high
lineage similarity led to a quasi-invariant num-
ber of cells at any given developmental stage
across the 10 embryos (2% average variation in
cell number across all embryos) (Fig. 2B). At
the spatial level, we observed up to a twofold
variation in the total volume of individual em-
bryos, reflecting egg size heterogeneity, as no
cell growth occurred during the considered
developmental period (fig. S24). The relative
cell volumes (i.e., cell volume divided by total
embryo volume) (fig. S25) and relative cell
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Fig. 1. High-resolution multiview light-sheet imaging and segmentation of P. mammillata embryos.
(A) (Top) Vegetal and dorsal views of 3D rendering at the indicated time points of the imaged embryo after
fusion of the images taken along the four angles of view. The time scale indicates the duration of imaging
in hours. (Bottom) Parasagittal sections along the plane shown with the vertical dashed white line. Scale
bar, 20 mm. (B) The ASTEC pipeline. Different cases are illustrated: a nondividing cell (yellow), a dividing cell
(white), an oversegmented nondividing cell (blue) corrected during postcorrection. For more details, see
fig. S9. (C) Dorsal view of the segmentation of ASTEC-Pm1 at the late gastrula stage (time t = 2 hours
30 min). Colors are arbitrary. (D) Position of mesoderm progenitors in ASTEC-Pm1 at the early gastrula
(t = 1 hour 10 min), late gastrula (t = 2 hours 40 min), and late neurula (t = 4 hours 40 min) stages.
B-line mesenchyme, yellow; trunk lateral cells, cyan; primary notochord, green; secondary notochord, purple.
Anterior is to the top. For more details, see fig. S16.

RESEARCH | RESEARCH ARTICLE
on July 20, 2020
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


positions of matching cells within and be-
tween embryos (Fig. 2, C and D) had, however,
a median variability below 5%, highlighting
the reproducibility of cell geometries and posi-
tions as well as their scaling with egg size. The
reproducibility of relative cell positions was
higher in Phallusia than in a Caenorhabditis
elegans dataset (23) (Fig. 2C and fig. S26). Cell
neighborhoods were also highly conserved: Up

to the late neurula stage, 75% ofmatching cells
shared at least 80% of their physical neighbors
across all embryos (Fig. 2D and fig. S27). Most
shared cell contacts lasted throughout the
cell cycle (fig. S27), such that cell neighbor ex-
changes, a major source of stochastic variabil-
ity during animal embryogenesis, were rare. The
relative areas of shared cell-cell contacts varied
by less than 20%across the 10 embryos (Fig. 2E).

To assess the developmental impact of the
high genetic diversity found in ascidians (24),
we compared the variability observed between
matching bilateral cells within an embryo, which
share the same genotype, with that observed
between homologous cells of embryos gener-
ated from different wild-caught adults of differ-
ent genotypes. Variability in cell lineage trees
(Fig. 2A) and relative cell volumes (fig. S25C) of
homologous cellswas not significantly different
within and between embryos, whereas relative
cell positions (Fig. 2C) and areas of cell contacts
(Fig. 2E) were only slightly less reproducible
between embryos. Consistent with a develop-
mental control, as proposed in C. elegans (23),
cell position variability differed between cell
lineages (fig. S27).

Areas of cell contacts are modulated by
asymmetric cell divisions

Cell contact areas are determined by cell
growth, cell death, cell neighbor exchanges, cell
shape changes, and the geometry of cell divi-
sions. The first three processes are absent or rare
in ascidian embryos. In this study, we focused
on the impact of cell divisions on cell contacts.
We first classified cell divisions into sym-

metric and asymmetric divisions. Symmetric
divisions are defined as giving rise to two
daughters with the same larval tissue fate. By
contrast, asymmetric divisions produce two
daughter cells differing in their larval tissue
fates. Because 64-cell–stage progenitors seeding
similar lineage trees, according to the tree-edit
distance, adopt the same larval tissue fate (figs.
S28 and S29), we identified asymmetric divi-
sions by comparing the lineages seeded by sister
cells, as exemplified in Fig. 3B. This approach
correctly classified 82 and 100% of a ground
truth of 28 asymmetric and 30 symmetric di-
visions, respectively (tables S4 to S6). The same
classification, applied to cell divisions of previ-
ously undetermined status, identified 12 novel
asymmetric cell divisions (table S6). These di-
visions were found in the lineages of larval tis-
sues made of a diversity of cell fates or giving
rise to several juvenile mesodermal and endo-
dermal tissues. More than 32% of divisions
(44 out of 136) occurring during the period
considered are therefore asymmetric.
Asymmetric cell divisions have been asso-

ciated to the control of cell division geometry
(25). Most Phallusia embryonic cell divisions
until the neurula stages produced daughters
of equal volumes (fig. S30A and tables S7 and
S8) and equal lifespan (fig. S30B and tables S9
and S10). Thirty-two divisions (19%), mostly
found in the mesendodermal and neural line-
ages, produced daughters with consistently
unequal volumes across embryos (Fig. 3A and
tables S7 and S8). These unequal divisions also
affected the timing of division of daughter
cells. The larger sibling generally divided ear-
lier (fig. S30C), in agreement with a negative
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Fig. 2. Cellular reproducibility of ascidian development. (A) Distributions of pairwise distances between
Phallusia cell lineage trees originated from individual cells at the 64-cell stage. Baseline: all trees; Intra: trees
originating from matching bilateral left and right cells within each embryo; Inter: trees originating from
homologous cells between embryos. In (A) and (C), boxes show the first, second, and third quartiles; whiskers
show the range to 1.5 interquartile. N.S., not significant according to the Kolmogorov-Smirnov (K-S) test.
(B) Comparison of the cell numbers across time between 10 individual Phallusia embryos after linear temporal
rescaling (see supplementary materials). hpf, hours post fertilization at a temperature of 18°C. (C) Violin
plots showing the distributions of the differences in relative cell position between matching bilateral cells
in a Phallusia embryo (Intra), homologous Phallusia (Inter), or C. elegans (Inter C.e.) cells across embryos.
(D) Conserved neighborhood and spatial position of the a9.61 cell in the ASTEC-Pm1 (tp73) and ASTEC-Pm2
(tp53) embryos. Ventral view. (E) Evolution in time (for cellular generations 7 to 10) of the percentage of cells
showing a variability in areas of contact to shared neighbors smaller than the indicated thresholds between left and
right cells of the same embryo (solid lines) or between homologous cells of distinct embryos (dashed lines).

Movie 2. Sagittal section of 10 digitized P. mammillata embryos. Side views through sagittal sections
across the ASTEC-Pm1 to ASTEC-Pm10 segmented and fate-colored P. mammillata embryos. Anterior is to
the top. Color code as in Movie 1.
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correlation between cell volume and cell cycle
duration observed throughout ascidian embryo-
genesis (fig. S30D), as in C. elegans (26).
Inequality and asymmetry of divisions were

often associated in Phallusia. Seventy-three
percent of asymmetric cell divisions gave rise
to sister cells that showed inequality in their
volumes or cell cycle durations (Fig. 3C and
tables S7 to S10). Conversely, 78% of geomet-
rically unequal divisions and 92% of divisions
producing sisters with asynchronous cell cycles
were asymmetric (Fig. 3C and tables S6 to S10).
The mid-gastrula neural plate exemplifies a
near-perfect association between asymmetric
divisions, geometrically unequal divisions, and
asynchronouslydividing sister cells (Fig. 3,D toF).
Asymmetric divisions were also preferen-

tially associated with oriented cell divisions.
By default, cells divide at 90° from the division
orientation of their mother (27), such that a
doublet of sister cells divides to form a square
or tetrahedral clone of four cells (fig. S31A).
We could score the orientation of 14 known
symmetric, 11 known asymmetric, and 6 can-
didate asymmetric cell divisions. Whereas all
known symmetric divisions followed the de-
fault orientation pathway, eight known and

five candidate asymmetric divisions deviated
from it (fig. S31, B and C).
Asymmetric cell divisions in Phallusia are

thus associated with an active control of the
volumes or relative positions of sister cells and
thereby of the contact areas they establish with
their neighbors. This geometrical control may
be important for the differential fate specifi-
cation of sister cells.

A model of geometric control of
cell inductions

In ascidian embryos, most asymmetric divi-
sions involve cell communication. Two non-
exclusive mechanisms have been described.
First, sister cells can be differentially induced
after the division as a result of their exposure
to distinct signals. Second, the mother cell can
be polarized by extracellular signals before its
division, causing the inheritance of activated
signaling pathway components by only one
of its daughters (11). Neural induction at the
32-cell stage involves sister differential cell in-
duction and is controlled by the area of contact
established with inducing cells (12), providing
a proof of principle of a functional connection
between cell arrangements and fate specifica-

tion. To test the generality of this mechanism,
we augmented our geometric description of
embryogenesis with a representation of the
spatiotemporal distribution of signaling path-
way components (Fig. 4, A andB) anddeveloped
a theoretical framework to analyze the impact
of the range of signaling proteins on inductive
processes.
Given the conservation of the expression of

signaling genes between Phallusia and Ciona
(28, 29), we inferred the expression of Phallusia
signaling genes with cellular resolution from
extensive Ciona signaling gene expression at-
lases (30). We focused our attention on six
developmental signaling pathways (FGF, ephrin,
Wnt, Bmp, Nodal, and Notch) showing pat-
terned expression of extracellular ligands or
antagonists up to the early gastrula stages (fig.
S32). These pathways were sufficient to explain
all known inductions up to this stage (11).
We next introduced a series of simplifying

assumptions relative to both the competence of
cells and the availability of inducing extra-
cellular ligands. Receptors and intracellular
components of the six candidate pathways
were maternally expressed and their mRNAs
uniformly distributed throughout the egg cyto-
plasm (30). We therefore estimated that, up
to the gastrula stages, all cells were equally
competent to respond to all pathways and that
the receptors were uniformly distributed on
cell surfaces. Extracellular ligand availability
was therefore the main driver of pathway acti-
vation. When ligands and antagonists were
colocalized at a cell-cell interface, secreted
antagonists were assumed to fully inactivate
their cognate ligands (Fig. 4D and fig. S33).
Finally, we tested two scenarios for the range
of secreted ligands and antagonists (Fig. 4, C
and D, blue and red, respectively). This range
was either limited to first-order neighbors con-
tacting emitting cells (Fig. 4C, left) or extended
to second-order neighbors (Fig. 4C, right). In
both cases, potential concentration gradients
were neglected, free ligands being either ab-
sent or present at a uniform concentration at
the interface between two cells.
Interactions between ligands, receptors, and

intracellular effectors were thenmodeled using
the law of mass action (see supplementary
materials). The cell geometry was introduced
into the equations by proportionally linking
the total number of receptors that could be
activated by a ligand with the area of the cell
exposed to free ligandmolecules (Fig. 4D). For
each pathway, we modeled differential sister
inductions by computing the fraction of acti-
vated intracellular effectors as a function of the
surface of each sister cell exposed to the inducer
(Fig. 4E). In the case of polarization of the
mother cell, activated effectors in each sister
cell were computed from the portion of the
exposed mother’s surface inherited by the cell
under consideration. The fraction of activated
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intracellular effectors is well approximated by
a linearly increasing function of the area of ex-
posure to free ligands when the areas of cell con-
tact and the biochemical parameters remain
within the range found in the literature (fig. S34).
Finally, to convert continuous levels of ef-

fector activation into a binary map of induced
and uninduced cells (Fig. 4, F and G, and figs.
S35 and S36), we implemented induction thresh-
olds (Fig. 4F) governed by tunable free param-
eters that defined both the minimum effector
activity levels for an induction and a minimum
ratio of activity between induced and unin-
duced sister cells. This simplified differential
induction model thus provides both a semi-
quantitative estimate of the relative level of
signaling for each pathway in each cell and a
qualitative prediction of differential inductions.

Contact area–dependent inductions drive
ascidian fate specification

We next explored the parameter space to ad-
just induction thresholds and find the best fit
of the model to a ground truth of sister cells
known to be differentially induced (14) or not
(49). When the range of secreted protein was
limited to first-order neighbors, the model, run
on ASTEC-Pm1, successfully recapitulated all
14 known differential induction events with
their correct inducers, with only 11 false pre-

dictions (Fig. 5A; figs. S37, and S40 to S57; and
table S13). This fit was reached with a relatively
large set of possible combinations of param-
eters values (fig. S58), which were consistent
with the scientific literature [e.g., time neces-
sary for an inductionwas consistentwith the one
found for FGF in (31)] (table S12). In agreement
with the high rate of molecular evolution in
ascidians, the affinity and concentration of
ligands and receptors appeared least constrained
(fig. S58). Training the model on two other
embryos revealed that the predictions were
robust to natural variability (figs. S38 and S39)
andwere obtainedwith similar optimal param-
eter sets (tables S12 and S13). The quality of
the predictions, however, strongly decreased
when the model was trained either without
taking into account cell contact areas (Fig. 5A)
or with surfaces approximated from a Voronoi
tessellation of the cell barycenters (table S13).
Retraining the model with a range of action
of secreted ligands and inhibitors increased to
second-orderneighbors degraded its performance
(Fig. 5A) and strongly decreased its robustness
to parameter variations (fig. S58), which is con-
sistent with the notion that secreted proteins
act by direct contact to emitting cells.
The model run with short-range inducers

also correctly predicted events it was not trained
on. For instance, the model trained to predict

differential sister induction also predicted
the simultaneous induction by FGF of both
daughters of the A6.1 and B6.1 endoderm pre-
cursors (11) (figs. S40 and S41). Running the
modelwith optimal parameters for thewild-type
(WT) situation but after virtual inactivation of
ephrin receptor (Eph) signaling phenocopied
themorphant Eph phenotype (11) and affected
all FGF-mediated differential inductions except
that of the daughters of the B6.4 mesenchyme
and muscle precursor (32) (fig. S59).
Finally, we compared semiquantitative pre-

dictions of pathway activation with in vivo mea-
surements in live embryos. We focused on the
Eph-FGF/extracellular signal–regulated kinase
(ERK) pathway, the main inducing pathway in
early ascidian embryos (table S11) and imaged a
live ERK activity biosensor, ERK–kinase trans-
location reporter (KTR) (33) (fig. S60). Exper-
imentally measured values of ERK activity
were highly reproducible between embryos (figs.
S61 and S62), depended on MEK kinase activ-
ity (fig. S63), and were highly correlated to in
silico predicted FGF/ERK pathway activation
levels (Spearman correlation: 0.9) (Fig. 5B). Our
simplified contact area–dependent induction
model thus provides both reliable qualitative
predictions of inductions and quantitative esti-
mates of pathwayactivation levels in thedifferent
cells of WT embryos.
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Robustness of ascidian fate specification to
in vivo and in silico perturbations
To further analyze the sensitivity of fate spe-
cification to changes in surface of exposure to
free ligand, we experimentally modified cell
arrangements. Figure 5, B to D, and fig. S64
illustrate the case of a half embryo obtained
by bisecting an embryo at the two-cell stage
along its plane of cleavage. As expected (12),
ectopic neural induction of epidermal precur-
sors was observed at the 32-cell stage. The area
of contact established between FGF-emitting
vegetal cells and the a6.6 head epidermis pre-
cursor was strongly increased, as was the re-

sulting ERK signaling intensity in this cell,
leading to neural induction (fig. S64).
Embryo halving also affected FGF-dependent

mesendodermal fate decisions at the 64-cell stage
(Fig. 5, B to D). In vivo ERK signaling activity
was modified in several cells, with the model
correctly predicting the direction of the changes
(Fig. 5B). Surface changes observed in the half
embryo could even alter cell fate. During normal
embryogenesis, the A6.3 mother cell divides
asymmetrically to produce the A7.5 endoder-
mal progenitor and the A7.6 trunk lateral cell
progenitor. A7.5 is induced by FGF signaling,
whereas the induction of A7.6 is antagonized by

its contact with ephrin-expressing b-line animal
cells (Fig. 5C, left: contact between the green
A7.6 and the dark blue b7.9 cell) (11). In the
half embryo, the repositioning of the B-line
vegetal blastomeres sheltered A7.6 fromephrin
signaling (Fig. 5C, right: contact between the
green A7.6 and the ephrin-negative light blue
B7.5 and B7.7 cells). As a result, A7.6 received
a level of ERK signaling comparable to the
inducedA7.1, A7.2, A7.5, and B7.1 endodermal
precursors in the half embryo and accordingly
seeded an endoderm-like lineage tree (Fig. 5D
and fig. S65).
Finally, we explored in silico the effect of

systematic geometrical perturbations that can-
not easily be generated experimentally. We ran
the model with an optimal set of parameters
for the WT situation but applied ±30% varia-
tion in the surface of contact to FGF-expressing
cells during the 64-cell stage, without change
in the contacts to ephrin-expressing cells or in
the total surface of each cell. These conditions
altered the predicted induction status of 8 of
32 bilateral cell pairs (Fig. 6A). Extending this
approach to all pathways, 22 of 32 cell pairs
changed induction status for at least one path-
way upon a ±30% variation in the surface of
contacts they established with signaling cells
(Fig. 6A). Similar conclusions were drawn at
the 112-cell stage (fig. S66). A high level of pre-
cision and reproducibility of cell-cell contacts is
thus crucial for early ascidian fate specification.

Concluding remarks

In this work, we systematically quantified and
analyzed the behavior and fate decisions of
individual embryonic cells across gastrulation
and neurulation in Phallusia. We then enriched
this geometric description with measurements
of signaling activities and gene expression ac-
tivity. Combined with high throughput single-
cell genomics data (34), emerging computational
methods to map such data onto reference geo-
metrical descriptions (35), and the determina-
tion ofmechanical properties by inference from
the geometry or by direct force measurements
(36, 37), our work establishes the ascidian
embryo as a system to bridge cell behaviors,
the forces that drive morphogenesis, and the
underlying regulatory program.
Descriptions of cell inductions during animal

embryogenesis often highlight the role of long-
rangemorphogen gradients (38). In this scenario,
the outcome of a cell communication event is
determined by local morphogen concentrations,
whereas variations in individual cell contacts are
considered to play a minor part (Fig. 6B, top).
Here, we show that areas of contact between
communicating cells have a sufficient encod-
ing potential to explain most fate specification
events in a chordate embryo (Fig. 6B, bottom),
extending previous work in ascidians and verte-
brates (12, 39). Our work thus reveals that quan-
titative cues can shift from ligand concentration
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to areas of cell contacts. Consistent with an
equivalence of processes, variations in cell con-
tact areas or in ligand concentrations have
comparable effects on ascidian cell inductions
(fig. S67).
The prevalent use of contact area–dependent

inductionsmay also causally explain the coun-
terintuitive association between the cellular
reproducibility of the ascidian embryonic pro-
gram and a high level of genetic divergence.
Precisely and robustly shaping a morphogen
gradient involves the coordinated recruitment
of multiple cellular functions to control the pro-
duction, degradation, transport, or endocytosis
of ligands and receptors (38). Because of the
shallowness and noisiness of such gradients, ad-
ditional layers of regulatory cross-talk between
target transcription factors (38) or subsequent
cell sorting (40) are needed to transform the
coarse information provided by the gradient
into sharp boundaries. The precise response
to long-range morphogen gradients thus in-
volves sophisticated layers of regulation, which
may constrain the architecture of regulatory
networks and global genome evolution. By con-
trast, the surface-of-contact–dependent signal-
ing we described here ensures that sister cells
are exposed to sufficiently different signals to
directly define boundaries, thereby limiting the
need for subsequent transcriptional refinements.
Contact area–dependent inductions are therefore
likely to involve fewer layers of regulation than
long-rangemorphogen gradients, thereby relaxing
constraints on genome evolution.

Methods summary

All methods used in this study are recapitu-
lated in detail in the supplementarymaterials,
which include the following 14 sections: (i) the
imaging protocol, (ii) the preprocessing of the
movies of P. mammillata development, (iii)

the limitation of the state-of-the art methods
for cell segmentation and tracking, (iv and v) our
segmentation and tracking algorithm (ASTEC)
and its postprocessing step, (vi) the quantifi-
cation of the quality of the segmentations and
trackings, (vii and viii) the analysis of devel-
opmental stereotypy and fate restriction events,
(ix) the mathematical model of cell-cell signal-
ing, (x) the validation of the model through the
in vivo measurement of ERK signaling, and
(xi) the validation of the model through the
analysis of the effect of experimental pertur-
bations of surfaces of contacts. Sections xii to
xiv describe the authors’ contributions, list the
tables, and indicate how to access software
and datasets.
Note added in proof: A reference (106) was

added at proof stage to a relevant new resource
on single-cell transcriptional profiles covering
P. mammillata early embryogenesis.
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