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Abstract
To overcome the physical barriers caused by light diffraction, super-resolution techniques are often applied in
fluorescent microscopy. State-of-the-art approaches require specific and often demanding acquisition conditions
to achieve adequate levels of both spatial and temporal resolution. Analyzing the stochastic fluctuations of the
fluorescent molecules provides a solution to the aforementioned limitations, as sufficiently high spatio-temporal
resolution for live-cell imaging can be achieved by using common microscopes and conventional fluorescent dyes.
Based on this idea, we present COL0RME, a method for COvariance-based ℓ0 super-Resolution Microscopy with
intensity Estimation, which achieves good spatio-temporal resolution by solving a sparse optimization problem
in the covariance domain, and discuss automatic parameter selection strategies. The method is composed of two
steps: the former where both the emitters’ independence and the sparse distribution of the fluorescent molecules
are exploited to provide an accurate localization; the latter where real intensity values are estimated given the
computed support. The paper is furnished with several numerical results both on synthetic and real fluorescent
microscopy images and several comparisons with state-of-the art approaches are provided. Our results show that
COL0RME outperforms competing methods exploiting analogously temporal fluctuations; in particular, it achieves
better localization, reduces background artifacts and avoids fine parameter tuning.

Impact Statement
This research paper describes a super-resolution method improving the spatio-temporal resolution of images
acquired by common fluorescent microscopes and conventional blinking fluorophores. The problem is formu-
lated in terms of a sparse and convex/non-convex optimization problem in the covariance domain for which
a well-detailed algorithmic and numerical description are provided. It is addressed to an audience working at
the interface between applied mathematics and biological image analysis. The proposed approach is validated
on several synthetic datasets and shows promising results also when applied to real data, thus paving the way
for new future research directions.
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1. Introduction
In the field of fluorescent (or, more generally, light) microscopy, the main factor characterizing the
microscope resolution is the limit imposed by the diffraction of light: structures with size smaller than
the diffraction barrier (typically around 250nm in the lateral direction) cannot be well distinguished
nor localized. The need to investigate small sub-cellular entities thus led to the implementation of a
plethora of super-resolution methods.

A large and powerful family of imaging techniques achieving nanometric resolution are the ones
often known as Single Molecule Localization Microscopy (SMLM) techniques, see, e.g. (1) for a review.
Among them, methods such as Photo-Activated Localization Microscopy (PALM) (2) and STochastic
Optical Reconstruction Microscopy (STORM) (3) are designed so as to create a super-resolved image
(achieving around 20nm of resolution) by activating and precisely localizing only a few molecules
in each of thousands of acquired frames at a time. For their use, these methods need specific photo-
activable fluorophores, a large number (typically thousands) of sparse acquired frames leading to a poor
temporal resolution and large exposure times which can significantly damage the sample. A different
technique improving spatial resolution is well-known under the name of STimulated Emission Deple-
tion (STED) microscopy (4). Similarly to SMLM, STED techniques are based on a time-consuming and
possibly harmful acquisition procedure requiring special equipment. In STED microscopy, the size of
the point spread function (PSF) is reduced by using a stimulated emission laser and by switching off
some out-of-focus fluorescent molecules. Structured Illumination Microscopy (SIM) (5) methods use
patterned illumination to excite the sample; differently from the aforementioned approaches, images
here can be recovered with high temporal-resolution via high speed acquisitions that do not damage
the sample, but at the cost of a relatively low spatial resolution and, more importantly, the requirement
of a specific illumination setup. Note that the majority of the super-resolution approaches commonly
used are grid-based, i.e. they formalize the super-resolution problem as the task of retrieving a well-
detailed image on a fine grid from coarse measurements. More recently, off-the-grid super-resolution
approaches have started to be studied in the literature, such as the one of Candès et al. (6), with applica-
tions to SMLM data in Denoyelle et al. (7), as well as DAOSTORM (8), a high-density super-resolution
microscopy algorithm. The great advantage of the gridless approaches is that there are no limitations
imposed by the size of the discrete grid considered. Howevever, both the theoretical study of the
problem and its numerical realization become very hard due to the infinite-dimensional and typically
non-convex nature of the optimization.

During the last decade, a new approach taking advantage of the independent stochastic temporal fluc-
tuations of conventional fluorescent emitters appeared in the literature. A stack of images is acquired at
a high temporal rate by means of common microscopes (such as widefield, confocal or Total Internal
Reflectance Fluorecence (TIRF) ones) using standard fluorophores, and then their independent fluctu-
ations are exploited so as to compute a super-resolved image. Note that no specific material is needed
here, neither for the illumination setup nor for fluorophores. Several methods exploiting this idea have
been proposed over the last years. To start with, Super-resolution Optical Fluctuation Imaging (SOFI) (9)

is a powerful technique where second and/or higher-order statistical analysis is performed, leading to
a significant reduction of the size of the PSF. Due to its standard acquisition settings, SOFI drastically
improves the temporal resolution properties. However, spatial resolution cannot reach the same levels of
PALM/STORM. Almost the same behavior has been noticed in Super-Resolution Radial Fluctuations
(SRRF) (10) microscopy, where super-resolution is achieved by calculating the degree of local symmetry
at each frame. Despite its easy manipulation and broad applicability, SRRF creates significant recon-
struction artifacts which may limit its use in view of accurate analysis. The approach SPARsity-based
super-resolution COrrelation Microscopy (SPARCOM) (11,12) exploits, as SOFI, both the lack of corre-
lation between distinct emitters as well as the sparse distribution of the fluorescent molecules via the
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use of an ℓ1 regularization defined on the emitters’ covariance matrix. Along the same lines, a deep-
learning method exploiting algorithmic unfolding, called Learned SPARCOM (LSPARCOM) (13), has
recently been introduced. Differently from plain SPARCOM, the advantage of LSPARCOM is that nei-
ther previous knowledge of the PSF nor any heuristic choice of the regularization parameter for tuning
the sparsity level is required. As far as the reconstruction quality is concerned, both SPARCOM and
LSPARCOM create some artifacts under challenging imaging conditions, for example when the noise
and/or background level are relatively high. Finally, without using higher order statics, a constrained
tensor modeling approach that estimates a map of local molecule densities and their overall intensi-
ties, as well as, a matrix-based formualation that promotes structure sparsity via an ℓ0 type regularizer,
are available in (14). These approaches can achieve excellent temporal resolution levels, but the spatial
resolution is limited.

Contribution. In this paper, we propose a method for live-cell super-resolution imaging based on
the sparse analysis of the stochastic fluctuations of molecule intensities. The proposed approach pro-
vides a good level of both temporal and spatial resolution, thus allowing for both precise molecule
localization and intensity estimation at the same time, while relaxing the need for special equipment
(microscope, fluorescent dyes) typically encountered in state-of-the art super-resolution methods such
as, e.g., STORM and SMLM. The proposed method is called COL0RME, which stands for COvariance-
based super-Resolution Microscopy with intensity Estimation. Similarly to SPARCOM (12), COL0RME
enforces signal sparsity in the covariance domain by means of sparsity-promoting terms, either of con-
vex (ℓ1, TV) or non-convex (ℓ0-based)-type. Differently from SPARCOM, COL0RME allows also for
an accurate estimation of the noise variance in the data and is complemented with an automatic selec-
tion strategy of the model hyperparameters. Furthermore, and more importantly, COL0RME allows for
the estimation of both signal and background intensity, which are relevant pieces of information for
biological studies. By exploiting information on the estimated noise statistics, the parameter selection
in this step is also made fully automatic, based on the standard discrepancy principle. We remark that
an earlier version of COL0RME has been already introduced by the authors in (15). Here, we consider
an extended formulation combined with automatic parameter selection strategies which allows for the
analysis of more challenging data having, e.g., spatially varying background. The method is validated
on simulated and tested on challenging real data. Our results show that that COL0RME outperforms
competing methods in terms of localization precision, parameter tuning and removal of background
artifacts.

2. Mathematical Modeling
For real scalars 𝑇, 𝑀 > 1 and 𝑡 ∈ {1, 2, . . . , 𝑇}, let Y𝑡 ∈ R𝑀×𝑀 be the blurred, noisy and down-
sampled image frame acquired at time 𝑡. We look for a high-resolution image X ∈ R𝐿×𝐿 being defined
as X = 1

𝑇

∑𝑇
𝑡=1 X𝑡 with 𝐿 = 𝑞𝑀 and defined on a 𝑞-times finer grid, with 𝑞 ∈ N. Note that in the

following applications we typically set 𝑞 = 4. The image formation model describing the acquisition
process at each frame 𝑡 can be written as:

Y𝑡 =M𝑞 (H (X𝑡 )) + B + Nt, (1)

where M𝑞 : R𝐿×𝐿 → R𝑀×𝑀 is a down-sampling operator averaging every 𝑞 consecutive pixels in
both dimensions, H : R𝐿×𝐿 → R𝐿×𝐿 is a convolution operator defined by the PSF of the optical
imaging system and B ∈ R𝑀×𝑀 models the background, which collects the contributions of the out-
of-focus (and the ambient) fluorescent molecules. Motivated by experimental observations showing
that the blinking behaviour of the out-of-focus molecules is not visible after convolution with wide de-
focused PSFs, we assume that the background is temporally constant (B does not depend on 𝑡), while we
allow it to smoothly vary in space. Finally, N𝑡 ∈ R𝑀×𝑀 describes the presence of the electronic noise
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Figure 1. Principles of COL0RME . (a) An overview of the two steps (Support Estimation and
Intensity Estimation) by visualizing the inputs/outputs of each, as well as the interaction between

them. (b) The two main outputs of COL0RME are: the support Ω ⊂ R𝐿2
containing the locations of

the fine-grid pixels with at least one fluorescent molecule, and the intensity x ∈ R𝐿2
whose non-null

values are estimated only on Ω. .

modeled here as a matrix of independent and identically distributed (i.i.d.) Gaussian random variables,
with zero mean and constant variance 𝑠 ∈ R+. We assume that the molecules are located at the center
of each pixel and that there is no displacement of the specimen during the imaging period, which is a
reasonable assumption whenever short time acquisitions are considered.
Remark 1. A more appropriate model taking also into account the presence of signal-dependent
Poisson noise in the data would indeed be the following:

Y𝑡 = 𝑃
(
M𝑞 (H (X𝑡 ))

)
+ B + Nt, ∀𝑡 = 1, 2, . . . , 𝑇, (2)

where, for W ∈ R𝑀×𝑀 , 𝑃(W) represents the realization of a multivariate Poisson variable of param-
eter W. Model (2) is indeed the one we use for the generation of the simulated data in section 6.1.
However, in order to simplify the reconstruction process, we only consider in our modeling the additive
Gaussian noise component N𝑡 .

In vectorized form, model (1) reads:

y𝑡 = 𝚿x𝑡 + b + n𝑡 , (3)

where 𝚿 ∈ R𝑀2×𝐿2
is the matrix representing the compositionM𝑞 ◦ H , while y𝑡 ∈ R𝑀2

, x𝑡 ∈ R𝐿
2
,

b ∈ R𝑀2
and n𝑡 ∈ R𝑀2

are the column-wise vectorizations of Y𝑡 , X𝑡 , B and N𝑡 in (1), respectively.
For all 𝑡 and given 𝚿 and y𝑡 , the problem can thus be formulated as

find x =
1
𝑇

𝑇∑︁
𝑡=1

x𝑡 ∈ R𝐿
2
, b ∈ R𝑀2

and 𝑠 > 0 s.t. x𝑡 solves (3).

In order to exploit the statistical behavior of the fluorescent emitters, we reformulate the model in
the covariance domain. This idea was previously exploited by the SOFI approach (9) and was shown
to significantly reduce the full-width-at-half-maximum (FWHM) of the PSF. In particular, the use of
second-order statistics for a Gaussian PSF corresponds to a reduction factor of the FWHM of

√
2.
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To formulate the model, we consider the frames (y𝑡 )𝑡 ∈{1,...,𝑇 } as 𝑇 realizations of a random variable
y with covariance matrix defined by:

Ry = Ey{(y − Ey{y})(y − Ey{y})ᵀ}, (4)

where Ey{·} denotes the expected value computed w.r.t. to the unknown law of y. We estimate Ry by
computing the empirical covariance matrix, i.e.:

Ry ≈
1

𝑇 − 1

𝑇∑︁
𝑡=1
(y𝑡 − y) (y𝑡 − y)ᵀ,

where y = 1
𝑇

∑𝑇
𝑡=1 y𝑡 denotes the empirical temporal mean. From (3) and (4), we thus deduce the

relation:

Ry = 𝚿Rx𝚿
ᵀ + Rn, (5)

where Rx ∈ R𝐿
2×𝐿2

and Rn ∈ R𝑀2×𝑀2
are the covariance matrices of {x𝑡 } and {n𝑡 }, respectively. As

the background is stationary by assumption, the covariance matrix of b is zero. Recalling now that the
emitters are uncorrelated by assumption, we deduce that Rx is diagonal. We thus set rx := diag(Rx) ∈
R𝐿

2
. Furthermore, by the i.i.d. assumption on n𝑡 , we have that Rn = 𝑠IM2 , where 𝑠 ∈ R+ and IM2 is

the identity matrix in R𝑀2×𝑀2
. Note that the model in equation (5) is similar to the SPARCOM one

presented in (12), with the difference that here we consider also noise contributions by including in the
model the diagonal covariance matrix Rn. Finally, the vectorized form of the model in the covariance
domain can thus be written as:

ry = (𝚿 � 𝚿)rx + 𝑠vI,

where � denotes the Khatri–Rao (column-wise Kronecker) product, ry ∈ R𝑀4
is the column-wise

vectorization of Ry and vI = vec(IM2 ).

3. COL0RME, step I: support estimation for precise molecule localization
Similarly to SPARCOM (12), our approach makes use of the fact that the solution rx is sparse, while
including further the estimation of 𝑠 > 0 for dealing with more challenging scenarios. In order to
compare specific regularity a-priori constraints on the solution, we make use of different regularization
terms, whose importance is controlled by a regularization hyperparameter 𝜆 > 0. By further introducing
some non-negativity constraints for both variables rx and 𝑠, we thus aim to solve:

arg min
rx≥0, 𝑠≥0

F (rx, 𝑠) + R(rx;𝜆), (6)

where the data fidelity term is defined by:

F (rx, 𝑠) =
1
2
‖ry − (𝚿 � 𝚿)rx − 𝑠vI‖22, (7)

and R(·;𝜆) is a sparsity-promoting penalty. Ideally, one would like to make use of the ℓ0 norm to
enforce sparsity. However, as it is well-known, solving the resulting non-continuous, non-convex and
combinatorial minimization problem is an NP-hard problem. A way to circumvent this difficulty con-
sists in using the continuous exact relaxation of the ℓ0 norm (CEL0) proposed by Soubies et al. in (16).
The CEL0 regularization is continuous, non-convex and preserves the global minima of the original
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ℓ2 − ℓ0 problem while removing some local ones. It is defined as follows:

R(rx;𝜆) = ΦCEL0 (rx;𝜆) =
𝐿2∑︁
𝑖=1

𝜆 − ‖a𝑖 ‖
2

2

(
| (rx)𝑖 | −

√
2𝜆
‖a𝑖 ‖

)2

1{ | (rx)𝑖 | ≤
√

2𝜆
‖a𝑖 ‖
}, (8)

where a𝑖 = (𝚿 � 𝚿)𝑖 denotes the 𝑖-th column of the operator A := 𝚿 � 𝚿.
A different, convex way of favoring sparsity consists in taking as regularizer the ℓ1 norm, that is:

R(rx;𝜆) = 𝜆‖rx‖1. (9)

Besides convexity and as it is well-known, the key difference between using the ℓ0 and the ℓ1-norm
is that the ℓ0 provides a correct interpretation of sparsity by counting only the number of the non-
zero coefficients, while the ℓ1 depends also on the magnitude of the coefficients. However, its use as a
sparsity-promoting regularizer is nowadays well-established (see, e.g., (17)) and also used effectively in
other microscopy applications, such as SPARCOM (12).

Finally, in order to model situations where piece-wise constant structures are considered, we con-
sider a different regularization term favoring gradient-sparsity by using the Total Variation (TV)
regularization defined in a discrete setting as follows:

R(rx;𝜆) = 𝜆𝑇𝑉 (rx) = 𝜆
𝐿2∑︁
𝑖=1

(
| (rx)𝑖 − (rx)𝑛𝑖,1 |2 + |(rx)𝑖 − (rx)𝑛𝑖,2 |2

) 1
2
, (10)

where (𝑛𝑖,1, 𝑛𝑖,2) ∈ {1, . . . , 𝐿2}2 indicate the locations of the horizontal and vertical nearest neighbor
pixels of pixel 𝑖, as shown in Figure 2. For the computation of the TV penalty, Neumann boundary
conditions have been used.

Figure 2. The one-sided nearest horizontal and vertical neighbors of the pixel 𝑖 used to compute the
gradient discretization in (10).

To solve (6) we use the Alternate minimization algorithm between 𝑠 and rx
(18), see the pseudo-

code reported in Algorithm 1. Note that, at each 𝑘 ≥ 1, the update for the variable 𝑠 can be efficiently
computed through the following explicit expression:

𝑠𝑘+1 =
1
𝑀2 vI

ᵀ (ry − (𝚿 � 𝚿)rx
𝑘).

Concerning the update of rx, different algorithms were used depending on the choice of the reg-
ularization term in (8), (9) and (10). For the CEL0 penalty (8) we used the iteratively reweighted ℓ1
algorithm (IRL1) (19), following Gazagnes et al. (20) with Fast Iterative Shrinkage-Thresholding Algo-
rithm (FISTA) (21) as inner solver. If the ℓ1 norm (9) is chosen, FISTA is used. Finally, when the TV
penalty (10) is empoloyed, the Primal-Dual Splitting Method in (22) was considered.
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Algorithm 1 COL0RME, Step I: Support Estimation

Require: ry ∈ R𝑀4
, rx

0 ∈ R𝐿2
, 𝜆 > 0

repeat
𝑠𝑘+1 = arg min

𝑠∈R+
F (rx

𝑘 , 𝑠)

rx
𝑘+1 = arg min

rx∈R𝐿
2
+

F (rx, 𝑠
𝑘+1) + R(rx;𝜆)

until convergence
return Ωx, 𝑠

ȳ + GT CEL0 result ℓ1 result TV result

(a)

(b)

Figure 3. (a) Noisy simulated dataset with low-background (LB) and stack size: 𝑇 = 500 frames, (b)
Noisy simulated high-background (HB) dataset, with 𝐾 = 500 frames. From left to right:

Superimposed 4x diffraction limited image (temporal mean of the stack) on ground truth support
(blue), CEL0 reconstruction, ℓ1 reconstruction and TV reconstruction.

Following the description provided by Attouch et al. in (18), convergence of Algorithm 1 can be
guaranteed only if an additional quadratic term is introduced in the objective function of the second min-
imization sub-problem. Nonetheless, empirical convergence was observed also without such additional
terms.

To evaluate the performance of the first step of the method COL0RME using the different regulariza-
tion penalties described above, we created two noisy simulated datasets, with low background (LB) and
high background (HB), respectively and used them to apply COL0RME and estimate the desired sam-
ple support. More details on the two datasets are available in the following sub-section 6.1. The results
obtained by using the three different regularizers are reported in Figure 3. In this example we chose
the regularization parameter 𝜆 heuristically, while more details about the selection of the parameter are
given in the subsection 5.1.

By a visual inspection the TV reconstruction, regardless the nice continuous structure, is misleading.
For example, the separation of the two filaments on the top-right corner is not visible and the junction
of the other two filaments on the bottom-left should appear further down, according to the ground truth
support image. For this reason, we will not use, in this paper, the TV-regularizer but rather we will use
the other two that allow us to have a more precise localization.
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The Jaccard indices (JI) of both the results obtained when using the CEL0 and ℓ1 regularizer are
presented in the Figure 4. The Jaccard index, is a quantity in the range [0, 1] computed as the ratio
between correct detections and the sum of correct detections, false positives and false negatives, up to
a tolerance 𝛿 > 0. The figure reports the average Jaccard index computed from 20 different noise real-
izations, as well as, an error bar (vertical lines) that represent the standard deviation, for several stack
sizes. According to the figure, a slightly better Jaccard index is obtained when the CEL0 regularizer
is being used, while an increase in the number of frames, when both regularizers being used, leads to
better Jaccard index, hence better localization.

(a) LB dataset (b) HB dataset

Figure 4. Jaccard Index values with tolerance 𝛿 = 40𝑛𝑚 for different datasets, stack sizes and
regularization penalty choices.

3.1. Accurate noise variance estimation
Along with the estimations of the emitter’s temporal sparse covariance matrix, the estimation of the
noise variance in the joint model (6) allows for much more precise results even in challenging acqui-
sition conditions. In Figure 5 we show how the relative error between the computed noise variance 𝑠
and the ground-truth one 𝜎2 used to produce simulated no-background (NB) data (more details in 6.1),
decays as the number of temporal frames increases. In this example 15 dB of Gaussian noise were used,
while the value of 𝜎 in average used for the different stack sizes is equal to 7.11 × 105. Note that, in
general, the estimation of the noise variance obtained by COL0RME is very precise.
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Figure 5. No-background dataset: the relative error in noise variance estimation, defined as: Error =
|𝑠−𝜎2 |
|𝜎2 | . The Error is computed for 20 different noise realizations, presenting in the graph the mean and

the standard deviation (error bars)..

4. COL0RME, step II: Intensity estimation
From the previous step, we obtain a sparse estimation of rx ∈ R𝐿

2
. Its support, i.e. the location of

non-zero variances, can thus be deduced. This is denoted in the following by Ω := {𝑖 : (rx)𝑖 ≠ 0} ⊂{
1, . . . , 𝐿2}. Note that this set corresponds indeed to the support of the desired x, hence in the following

we will use the same notation to denote both sets.
We are now interested in enriching COL0RME with an additional step where intensity information

of the signal x can be retrieved in correspondence with the estimated support Ω. To do so, we thus
propose an intensity estimation procedure for x restricted only to the pixels of interest. Under this
modeling assumption, it is thus reasonable to consider a regularization term favoring smooth intensities
on Ω, in agreement to the intensity variation typically found in the processing of real images. Note that
this choice further has the advantage of discouraging the appearance of isolated points resulting from
possible errors in the support estimation step.

In order to take into account the modeling of blurry and out-of-focus fluorescent molecules, we
further include in our model a regularization term for smooth background estimation. We can thus
consider the following joint minimization problem:

arg min
x∈R|Ω|+ , b∈R𝑀2

+

1
2
‖𝚿𝛀x − (y − b)‖22 +

𝜇

2
‖∇Ωx‖22 +

𝛽

2
‖∇b‖22, (11)

where the data term models the presence of Gaussian noise, 𝜇, 𝛽 > 0 are regularization parameters and
the operator 𝚿𝛀 ∈ R𝑀2×|Ω | is a matrix whose 𝑖-th column is extracted from 𝚿 for all indexes 𝑖 ∈ Ω.
Finally, the regularization term on x is the squared norm of the discrete gradient restricted to Ω, i.e.:

‖∇Ωx‖22 :=
∑︁
𝑖∈Ω

∑︁
𝑗∈N(𝑖)∩Ω

(𝑥𝑖 − 𝑥 𝑗 )2,

where N(𝑖) denotes the 8-pixel neighborhood of 𝑖 ∈ Ω. Note that, according to this definition, ∇Ωx
denotes a (redundant) isotropic discretization of the gradient of x evaluated for each pixel in the support
Ω. Note that this definition coincides with the standard one for ∇x restricted to points in the support Ω.

The non-negativity constraints on x and b as well as the one restricting the estimation of x on Ω can
be relaxed by using suitable penalty terms, so that, finally, the following optimization problem can be
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addressed:

arg min
x∈R𝐿2

, b∈R𝑀2

1
2
‖𝚿x−(y−b)‖22+

𝜇

2
‖∇x‖22+

𝛽

2
‖∇b‖22+

𝛼

2
©­«‖I𝛀x‖22 +

𝐿2∑︁
𝑖=1
[𝜙(x𝑖)]2 +

𝑀2∑︁
𝑖=1
[𝜙(b𝑖)]2

ª®¬ , (12)

where the parameter 𝛼 � 1 can be chosen arbitrarily high to enforce the constraints, I𝛀 is a diagonal
matrix acting as characteristic function of Ω, i.e. defined as:

I𝛀 (𝑖, 𝑖) =
{

0 if 𝑖 ∈ Ω,
1 if 𝑖 ∉ Ω

, ∀𝑖 ∈ {1, ..., 𝐿2},

and 𝜙 : R→ R+ penalizes negative entries, being defined as:

𝜙(𝑧) :=

{
0 if 𝑧 ≥ 0,
𝑧 if 𝑧 < 0

, ∀𝑧 ∈ R. (13)

To solve the joint-minimization problem (12) we use the Alternate Minimization algorithm, see
Algorithm 2. In the following subsections, we provide more details on the solution of the two
minimization sub-problems.

Algorithm 2 COL0RME, Step II: Intensity Estimation

Require: y ∈ R𝑀2
, x0 ∈ R𝐿2

, b0 ∈ R𝑀2
, 𝜇, 𝛽 > 0, 𝛼 � 1

repeat
x𝑘+1 = arg min

x∈R𝐿2

1
2 ‖𝚿x − (y − bk)‖22 +

𝜇

2 ‖∇x‖22 +
𝛼
2

(
‖I𝛀x‖22 +

∑𝐿2

𝑖=1 [𝜙(x𝑖)]2
)

b𝑘+1 = arg min
b∈R𝑀2

1
2 ‖b − (y −𝚿x𝑘+1)‖22 +

𝛽

2 ‖∇b‖22 +
𝛼
2
∑𝑀2

𝑖=1 [𝜙(b𝑖)]2

until convergence
return x, b

4.1. First sub-problem: update of x
In order to find at each 𝑘 ≥ 1 the optimal solution x𝑘+1 ∈ R𝐿2

for the first sub-problem, we need to
solve a minimization problem of the form:

x𝑘+1 = arg min
x∈R𝐿2

𝑔(x; b𝑘) + ℎ(x), (14)

where, for b𝑘 ∈ R𝑀2
being fixed at each iteration 𝑘 ≥ 1, 𝑔(·; b𝑘) : R𝑀2 → R+ is a proper and convex

function with Lipschitz gradient, defined as:

𝑔(x; b𝑘) :=
1
2
‖𝚿x − (y − b𝑘)‖22 +

𝜇

2
‖∇x‖22, (15)
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and where the function ℎ : R𝐿2 → R encodes the penalty terms:

ℎ(x) = 𝛼

2
©­«‖I𝛀x‖22 +

𝐿2∑︁
𝑖=1
[𝜙(x𝑖)]2

ª®¬ . (16)

Solution of (14) can be obtained iteratively, using, for instance, the proximal gradient descent
algorithm, whose iteration can be defined as follows :

x𝑛+1 = proxℎ,𝜏 (x𝑛 − 𝜏∇𝑔(x𝑛)), 𝑛 = 1, 2, ... (17)

where ∇𝑔(·) denotes the gradient of 𝑔, 𝜏 ∈ (0, 1
𝐿𝑔
] is the algorithmic step-size chosen inside a range

depending on the Lipschitz constant of ∇𝑔, here denoted by 𝐿𝑔, to guarantee convergence. The proximal
update in (17) can be computed explicitly using the computations reported in Appendix A. One can
show in fact that, for each w ∈ R𝐿2

there holds element-wise:

(
proxℎ,𝜏 (w)

)
𝑖
= proxℎ,𝜏 (w𝑖) =

{
w𝑖

1+𝛼𝜏I𝛀 (𝑖,𝑖) if w𝑖 ≥ 0,
w𝑖

1+𝛼𝜏 (I𝛀 (𝑖,𝑖)+1) if w𝑖 < 0.
(18)

Remark 2. As the reader may have noted, we consider the proximal gradient descent algorithm (17)
for solving (14), even though both functions 𝑔 and ℎ in (15) and (16), respectively, are smooth and
convex, hence, in principle, (accelerated) gradient descent algorithms could be used. Note, however,
that the presence of the large penalty parameter 𝛼 � 1 would significantly slow down convergence
speed in such case as the step size 𝜏 in this case would be constrained to the smaller range (0, 1

𝐿𝑔+𝛼 ].
By considering the penalty contributions in terms of their proximal operators, this limitation doesn’t
affect the range of 𝜏 and convergence is still guaranteed (23) in a computationally fast way through the
update (18).

Intensity estimation results can be found in Figure 6 where (12) is used for intensity/background
estimation on the supports ΩR estimated from the first step of COL0RME using R = ℓ1, R = CEL0
and R = TV. The colormap ranges are different for the coarse-grid and fine-grid representations, as
explained in section 6.1, and their colorbars can be found in Figure 12. The result on Ω𝑇𝑉 , even after
the second step does not allow for the observation of a few significant details (e.g. the separation of the
two filament on the bottom left corner) and that is why it will not further discussed.

A quantitative assessment for the other two regularization penalty choices, Ω𝐶𝐸𝐿0 and Ωℓ1 , is
available in Figure 7. More precisely we compute the Peak-Signal-to-Noise-Ratio (PSNR), given the
following formula:

PSNRdB = 10 log10

(
MAX2

R
MSE

)
, MSE =

1
𝐿2

𝐿2∑︁
𝑖=1
(R𝑖 −K𝑖)2 (19)

where R ∈ R𝐿2
is the reference image, K ∈ R𝐿2

the image we want to evaluate using the PSNR metric
and MAXR the maximum value of the image R. In our case, the reference image is the ground truth
intensity image: x𝐺𝑇 ∈ R𝐿2

. The higher the PSNR, the better the quality of the reconstructed image.
According to Figures 6 and 7, when a only a few frames are considered (eg. 𝑇 = 100 frames, high

temporal resolution), the method performs better by using the CEL0 penalty for the support estimation.
However, when longer temporal sequences are available (e.g. 𝑇 = 500 or 𝑇 = 700 frames) the method
performs better by using the ℓ1-norm instead. In addition to this, for both penalizations, PSNR improves
as the number of temporal frames increases.
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ȳ(𝐿𝐵) ȳ(𝐻𝐵) x𝐺𝑇

Result on Ω𝐶𝐸𝐿0 Result on Ωℓ1 Result on Ω𝑇𝑉

(a)

(b)

Figure 6. On top: Diffraction limited image ȳ = 1
𝑇

∑𝑇
𝑡=1 yt, with T=500, (4x zoom) for the

low-background (LB) dataset and for the high-background (HB) dataset, Ground truth (GT) intensity
image. (a) Reconstructions for the noisy simulated dataset with low-background (LB), (b)

Reconstruction for the noisy simulated dataset with high-background (HB). From left to right:
intensity estimation result on estimated support using CEL0 regularization, ℓ1 regularization and TV

regularization (see Figure 12 for colorbars).

4.2. Second sub-problem: update of b
As far as the estimation of the background is concerned, the minimization problem we aim to solve at
each 𝑘 ≥ 1 takes the form:

b𝑘+1 = arg min
𝑏∈R𝑀2

𝑟 (b; x𝑘+1) + 𝑞(b), (20)

where:

𝑟 (b; x𝑘+1) :=
1
2
‖b − (y −𝚿x𝑘+1)‖22 +

𝛽

2
‖∇b‖22, 𝑞(b) :=

𝛼

2

𝑀2∑︁
𝑖=1
[𝜙(b𝑖)]2.

Note that 𝑟 (·; x𝑘+1) : R𝑀2 → R+ is a convex function with 𝐿𝑟 -Lipschitz gradient and 𝑞 : R𝑀2 → R+
encodes (large, depending on 𝛼 � 1) penalty contributions. Recalling Remark 2, we thus use again the
proximal gradient descent algorithm for solving (20). The desired solution b̂ at each 𝑘 ≥ 1 can thus be
found by iterating:

b𝑛+1 = prox𝑞, 𝛿 (b𝑛 − 𝛿∇𝑟 (b𝑛)), 𝑛 = 1, 2, ..., (21)
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(a) LB dataset (b) HB dataset

Figure 7. COL0RME PSNR values for two different datasets (LB and HB dataset), stack sizes and
regularization penalty choices. The mean and the standard deviation of 20 different noise realizations

are presented.

for 𝛿 ∈ (0, 1
𝐿𝑟
]. The proximal operator prox𝑞, 𝛿 (·), has an explicit expression and it is defined element-

wise for 𝑖 = 1, . . . , 𝑀2 as:

(
prox𝑞, 𝛿 (d)

)
𝑖
= prox𝑞, 𝛿 (d𝑖) =

{
d𝑖 if d𝑖 ≥ 0,

d𝑖

1+𝛼𝛿
if d𝑖 < 0.

(22)

5. Automatic selection of regularization parameters
We describe in this section two parameter selection strategies addressing the problem of estimating
the regularization parameters 𝜆 and 𝜇 appearing in the COL0RME support estimation problem (6) and
intensity estimation one (11), respectively. The other two regularization parameters 𝛽 and 𝛼 do not need
fine tuning. They are both chosen arbitrary high, so as with large enough 𝛽 to allow for a very smooth
background and with very high 𝛼 to respect the required constraints (positivity for both intensity and
background and restriction to the predefined support only for the intensity estimation).

5.1. Estimation of support regularization parameter 𝜆
The selection of the regularization parameter value 𝜆 in (6) is critical, as it determines the sparsity level
of the support of the emitters. For its estimation, we start by computing a reference value 𝜆𝑚𝑎𝑥 , defined
as the smallest regularization parameter for which the identically zero solution is found. It is indeed
possible to compute such a 𝜆𝑚𝑎𝑥 for both regularization terms CEL0 and ℓ1 (see (24) and (25)). Once
such values are known, we thus need to find a fraction 𝛾 ∈ (0, 1) of 𝜆𝑚𝑎𝑥 corresponding to the choice
𝜆 = 𝛾𝜆𝑚𝑎𝑥 . For the CEL0 regularizer the expression for 𝜆𝑚𝑎𝑥 (see Proposition 10.9 in (24)) is:

𝜆𝐶𝐸𝐿0
𝑚𝑎𝑥 := max

1≤𝑖≤𝐿2

〈a𝑖 , ry〉2

2‖a𝑖 ‖2
, (23)

where a𝑖 = (𝚿 � 𝚿)𝑖 denotes the 𝑖-th column of the operator A := 𝚿 � 𝚿. Regarding the ℓ1-norm
regularization penalty, 𝜆𝑚𝑎𝑥 is given as follows:

𝜆ℓ1
𝑚𝑎𝑥 := ‖Aᵀry‖∞ = max

1≤𝑖≤𝐿2
〈a𝑖 , ry〉. (24)
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As far as ℓ1 is used as regularization term in (6), we report in Figure 8 a graph showing how the PSNR
value of the final estimated intensity image (i.e. after the application of the second step of COL0RME)
varies for the two datasets considered depending on 𝜆. It can be observed that for a large range of
values 𝜆, the final PSNR remains almost the same. Although this may look a bit surprising at a first
sight, we remark that such a robust result is due, essentially, to the second step of the algorithm where
false localizations related to an underestimation of 𝜆 can be corrected through the intensity estimation
step. Note, however, that in the case of an overestimation of 𝜆, points contained in the original support
are definitively lost so no benefit is obtained from the intensity estimation step, hence the overall PSNR
decreases.

(a) LB dataset (b) HB dataset

Figure 8. The PSNR value of the final COL0RME image, using the ℓ1-norm regularizer for support
estimation, for different 𝛾 values. The mean and the standard deviation of 20 different noise

realization are presented.

When the CEL0 penalty is used for support estimation, a heuristic parameter selection strategy can
be used to improve the localization results but also to avoid the fine parameter tuning. More specifi-
cally, the non-convexity of the model can be used by considering an algorithmic restarting approach
to improve the support reconstruction quality. In short, a relatively big value to 𝜆 can be fixed, so as
to achieve a very sparse reconstruction. Then, the support estimation algorithm can be run and itera-
tively repeated with a new initialization (that is, restarted) several times. While keeping 𝜆 fixed along
this procedure, a wise choice of the initialization depending, but not being equal to the previous output
can be used to enrich the support, see Appendix C for more details. Non-convexity is here exploited by
changing, for a fixed 𝜆, the initialization at each algorithmic restart, so that new local minimizers (cor-
responding to possible support points) can be computed. The final support image can thus be computed
as the superposition of the different solutions computed at each restarting. In such a way, a good result
for a not-finely-tuned value of 𝜆 can be computed.

5.2. Estimation of intensity regularization parameter 𝜇 by discrepancy principle
In this section we provide some details on the estimation of the parameter 𝜇 in (11), which is crucial
for an accurate intensity estimation. Recall that the problem we are looking at in this second step is

find x ∈ R𝐿2
s.t. y = 𝚿x + b + n, (25)

where the quantities correspond to the temporal averages of the vectorized model in (3), so that
n = 1

𝑇

∑𝑇
𝑡=1 nt. The temporal realizations nt of the random vector n follow a normal distribution with
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zero mean and covariance matrix 𝑠I𝑀2 , where 𝑠 has been estimated in the first step of the algorithm,
see Section 3.1. Consequently, the vector n follows also a normal distribution with zero mean and
covariance matrix equal to 𝑠

𝑇
I𝑀2 . As both 𝑠 and 𝑇 are known, we can use the discrepancy principle,

a well-known a-posteriori parameter-choice strategy (see, e.g., (26,27)), to efficiently estimate the hyper-
parameter 𝜇. To detail how the procedure is applied to our problem, we will write x𝜇 in the following to
highlight the dependence of x on 𝜇. According to the discrepancy principle strategy, the regularization
parameter 𝜇 is chosen so that the residual norm of the regularized solution satisfies:

‖y − Ψx̂𝜇 − b̂‖22 = 𝜈2
𝐷𝑃 ‖n‖22, (26)

where x̂𝜇 ∈ R𝐿
2

and b̂ ∈ R𝑀2
are the solutions of (11). The expected value of ‖n‖22 is:

E{‖n‖22} = 𝑀
2 𝑠

𝑇
, (27)

which can be used as an approximation of ‖n‖22 for 𝑀2 big enough. The scalar value 𝜈𝐷𝑃 ≈ 1 is a
’safety factor’ that plays an important role in the case when a good estimate of ‖n‖2 is not available. In
such situations a value 𝜈𝐷𝑃 closer to 2 is used. As detailed in Section 3.1, the estimation of 𝑠 is rather
precise in this case, hence we fix 𝜈𝐷𝑃 = 1 in the following.

We can now define the function 𝑓 (𝜇) : R+ → R as:

𝑓 (𝜇) = 1
2
‖y −𝚿x̂𝜇 − b̂‖22 −

𝜈2
𝐷𝑃

2
‖n‖22. (28)

We want to find the value �̂� such that 𝑓 ( �̂�) = 0. This can be done iteratively, using the Newton’s method
whose iterations read:

𝜇𝑛+1 = 𝜇𝑛 −
𝑓 (𝜇𝑛)
𝑓 ′(𝜇𝑛)

, 𝑛 = 1, 2, .. (29)

In order to be able to compute easily the values 𝑓 (𝜇) and 𝑓 ′(𝜇), the values x̂𝜇 ∈ R𝐿
2
, b̂ ∈ R𝑀2

and
x̂′𝜇 = 𝜕

𝜕𝜇
x̂𝜇 ∈ R𝐿

2
need to be computed, as it can be easily noticed by writing the expression of 𝑓 ′(𝜇)

which reads:

𝑓 ′(𝜇) = 𝜕

𝜕𝜇
{1
2
‖y −𝚿x̂𝜇 − b̂‖22} = (x̂

′
𝜇)ᵀ𝚿ᵀ (y −𝚿x̂𝜇 − b̂). (30)

The values x̂𝜇 and b̂ can be found by solving the minimization problem (11). As far as x̂′𝜇 is con-
cerned, we report in Appendix B the steps necessary for its computation. One can show that x̂′𝜇 is the
solution of the following minimization problem:

x̂′𝜇 = arg min
x∈R𝐿2

1
2
‖𝚿x‖22 +

𝜇

2
‖∇x + c‖22 +

𝛼

2

(
‖I𝛀x‖22 + ‖Ix̂𝜇

x‖22
)
, (31)

where c is a known quantity defined by c = 1
𝜇
∇x̂𝜇, and the diagonal matrix Ix̂𝜇

∈ R𝐿2×𝐿2
identifies the

support of x̂𝜇 by:

Ix̂𝜇
(𝑖, 𝑖) =

{
0 if (x̂𝜇)𝑖 ≥ 0,
1 if (x̂𝜇)𝑖 < 0.

We can find x̂′𝜇 by iterating

x′𝑛+1𝜇 = prox
ℎ,𝜏
(x′𝑛𝜇 − 𝜏∇𝑔(x′

𝑛
𝜇)), 𝑛 = 1, 2, .. (32)
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where
𝑔(x) :=

1
2
‖𝚿x‖22 +

𝜇

2
‖∇x + c‖22, ℎ(x) :=

𝛼

2

(
‖I𝛀x‖22 + ‖Ix̂𝜇

x‖22
)
. (33)

For z ∈ R𝐿2
, the proximal operator prox

ℎ,𝜏
(z) can be obtained following the computations in Appendix

A:
(prox

ℎ,𝜏
(z))𝑖 = prox

ℎ,𝜏
(z𝑖) =

z𝑖
1 + 𝛼𝜏

(
I𝛀 (𝑖, 𝑖) + Ix̂𝜇

(𝑖, 𝑖)
) , (34)

while
∇𝑔(x′) = (𝚿ᵀ𝚿 + 𝜇∇ᵀ∇)x′ + ∇ᵀ∇x̂𝜇, (35)

and the step 𝜏 ∈ (0, 1
𝐿𝑔
], with 𝐿𝑔 = ‖𝚿ᵀ𝚿 + 𝜇∇ᵀ∇‖2 the Lipschitz constant of ∇𝑔. A pseudo-code

explaining the procedure we follow to find the optimal �̂� can be found in Algorithm 3. Finally, in Figure
9, a numerical example is available to show the good estimation of the parameter �̂�.

Algorithm 3 Discrepancy Principle

Require: y ∈ R𝑀2
, x0 ∈ R𝐿2

, b0 ∈ R𝑀2
, 𝜇0, 𝛽 > 0, 𝛼 � 1

repeat
Find x̂𝜇𝑛 , b̂ using Algorithm 2
Find x̂′𝜇𝑛 solving (31)
Compute 𝑓 (𝜇𝑛), 𝑓 ′(𝜇𝑛) from (28) and (30)
𝜇𝑛+1 ← 𝜇𝑛 − 𝑓 (𝜇𝑛)

𝑓 ′ (𝜇𝑛)
until convergence
return �̂�

6. Results
In this section we compare the method COL0RME with state-of-the-art methods that exploit the tem-
poral fluctuations of blinking fluorophores, while applying them to simulated and real data. More
precisely we compare: COL0RME-CEL0 (using the CEL0 regularization in the support estimation),
COL0RME-ℓ1 (using the ℓ1-norm regularization in the support estimation), SRRF (10), SPARCOM (12)

and LSPARCOM (13).

6.1. Simulated Data
To evaluate the method COL0RME we choose images of tubular structures that simulate standard
microscope acquisitions with standard fluorescent dyes. In particular, the spatial pattern (see Figure
11a) is taken from the MT0 microtubules training dataset uploaded for the SMLM Challenge of 20161.
The temporal fluctuations are obtained by using the SOFI simulation tool (28). This simulation software,
implemented in MATLAB, generates realistic stacks of images, similar to the ones obtained from real
microscopes, as it makes use of parameters of the microscope setup and some of the sample’s main
properties.

For the experiments presented in this paper, we generate initially a video of 700 frames, however we
evaluate the methods using the first 𝑇 = 100, 𝑇 = 300, 𝑇 = 500 and 𝑇 = 700 frames, so as to examine
further the trade-off between temporal and spatial resolution. The frame rate is fixed at 100 frames
per second (fps) and the pixel size is 100 nm. Regarding the optical parameters, we set the numerical
aperture equal to 1.4 and the emission waveleght to 525 nm, while the FWHM of the PSF is equal to
228.75nm. The fluorophore parameters are set as follows: 20ms for on-state average lifetime, 40ms for

1http://bigwww.epfl.ch/smlm/datasets/index.html

http://bigwww.epfl.ch/smlm/datasets/index.html
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Figure 9. The solid blue line shows the PSNR values computed by solving (12) for several values of 𝜇
within a specific range. Tha data used are the HB dataset with 𝑇 = 500 frames (Figure 11d) and the
ℓ1-norm regularization penalty. The red cross shows the PSNR value �̂� obtained by applying the
Discrepancy Principle. We note that such value is very close to one maximizing the PSNR metric.

off-state average lifetime and 20s for average time until bleaching. The emitter density is equal to 10.7
emitters/pixel/frame, while 500 photons are emitted, on average, by a single fluorescent molecule in
every frame.

We create three datasets with the main difference among them being the background level, as in
real scenarios the background is usually present. More precisely we create: the no-Background (NB)
dataset where the background is equal to 0 photons/pixel/frame, the low-Background (LB) dataset,
where the background is equal to 50 photons/pixel/frame and finally, the most realistic of the three,
the high-Background (HB) dataset, where the background is equal to 2500 photons/pixel/frame. In
all three datasets, Poisson and Gaussian noise is added to simulate among others, the photon and the
read noise, the two main types of noise in fluorescence microscopy (see (2)). In order to give a visual
inspection of the background and noise, in Figure 10, one frame of the HB dataset is presented before
and after the background/noise addition. As we want, also, to provide a quantitative assessment, we
measure the quality of the reconstruction of the final sequence of 𝑇 frames (y𝑡 , 𝑡 = 1, 2, . . . , 𝑇) using
the Signal-to-Noise-Ration (SNR) metric, given by the following formula:

SNRdB = 10 log10

©­­­­«
1

𝑇𝑀2

𝑇𝑀2∑
𝑖=1
(R𝑖)2

1
𝑇𝑀2

𝑇𝑀2∑
𝑖=1
(R𝑖 −K𝑖)2

ª®®®®¬
, (36)

where R ∈ R𝑇𝑀2
is the reference image and K ∈ R𝑇𝑀2

the image we want to evaluate, both of them
in a vectorized form. As reference, we choose the sequence of convoluted and down-sampled ground
truth frames (see one frame of the reference sequence in Figure 10a). The SNR values for a sequence
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(a) (b)

Figure 10. One frame of the HB dataset, before and after the addition of background and noise. (a) A
convoluted and down-sampled ground truth frame: 𝚿x𝐺𝑇

𝑡 , (b) A frame of the final noisy sequence: y𝑡 .
Note the different colormaps to better capture the presence of noise and background..

(a) GT image (b) ȳ (NB) (c) ȳ (LB) (d) ȳ (HB)

Figure 11. The Ground truth (GT) intensity image, as well as, the diffraction limited images
ȳ = 1

𝑇

∑𝑇
𝑡=1 yt for the three datasets with a 4x zoom, for a sequence of T=500 frames.

0 0.5 1 1.5 2 2.5 3

10
4

(a) Colorbar for the coarse-grid representations

0 5000 10000 15000

(b) Colorbar for the fine-grid representations

Figure 12. Colorbars used for the representation of the images.

of 𝑇 = 500 frames for the NB, LB and HB dataset are 15.84dB, 15.57dB and −6.07dB, respectively. A
negative value is computed for the HB dataset due to the very high background used in this case.

The diffraction limited image (the average image of the stack) of each dataset as well as the ground
truth intensity image are available in Figure 11. In the LB dataset, due to the high signal values, the
background is not visible. Further, as the observed microscopic images and the reconstructed ones
belong to different grids, coarse and fine grid respectively, their intensity values are not comparable and
we can not use the same colorbar to represent them. The intensity of one pixel in the coarse grid is the
summation of the intensities of 𝑞 × 𝑞 pixels in the fine grid, where 𝑞 is the super-resolution factor. For
this reason, we use two different colorbars, presented in Figure 12.

The comparison of the method COL0RME with other state-of-the-art methods that take advan-
tage of the blinking fluorophores is available bellow. Regarding the method COL0RME-CEL0 and
COL0RME-ℓ1, a regularization parameter equal to 𝜆 = 5 × 10−3 × 𝜆𝐶𝐸𝐿0

𝑚𝑎𝑥 and 𝜆 = 5 × 10−3 × 𝜆ℓ1
𝑚𝑎𝑥 ,

respectively, is used in the support estimation. The hyper-parameters 𝛼 and 𝛽 are set as follows: 𝛼 = 106,
𝛽 = 20. For the method COL0RME-CEL0 the algorithmic restarting approach is used for a better sup-
port estimation, while the maximum number of restarts is set to 10. For the method SRRF we are using
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the NanoJ SRRF plugin for ImageJ2. Concerning the method SPARCOM, we make use of the MAT-
LAB code available online 3. As regularization penalty we choose the ℓ1-norm with a regularization
parameter equal to 10−10 and we avoid the post-processing step (the convolution with a small Gaussian
function) for most precise localization. Finally we test the method LSPARCOM, using the code that is
available online 4 and the tubulin (TU) training set that is provided.

In Figure 13 we compare the reconstructions of the methods COL0RME-CEL0, COL0RME-ℓ1,
SRRF, SPARCOM and LSPARCOM for the LB dataset and in Figure 14 for the HB dataset, for a
sequence of T = 500 frames. Results for different stack sizes, are available in the Supplementary Figures
S1, S2 and S3. In both datasets, LB and HB dataset, and for a sequence of T= 500 frames, the better
reconstruction is the one of the method COL0RME-ℓ1, as it is able to achieve a more clear separation
of the filaments in the critical regions (yellow and green zoom boxes). The method COL0RME-CEL0
achieves also a good result, eventhough the separation of the filaments, that are magnified in the green
box, is not so obvious. The same happens also when the method SPARCOM is being used. Finally, the
reconstruction of the methods SRRF and LSPARCOM, is slightly misleading.

GT image COL0RME-CEL0 COL0RME-ℓ1

SRRF SPARCOM LSPARCOM

0 2000 4000 6000 8000 10000 12000 0 5 10 15 20 25 30 0 2000 4000 6000 8000

Figure 13. Results for the (LB) dataset with 𝑇 = 500. Note that the methods SRRF, SPARCOM and
LSPARCOM do not estimate real intensity values. Between the compared methods only COL0RME is

capable of estimating them (see Figure 12 for the colorbar of the GT and the COL0RME images).

2https://github.com/HenriquesLab/NanoJ-SRRF
3https://github.com/KrakenLeaf/SPARCOM
4https://github.com/gilidar/LSPARCOM

https://github.com/HenriquesLab/NanoJ-SRRF
https://github.com/KrakenLeaf/SPARCOM
https://github.com/gilidar/LSPARCOM
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GT image COL0RME-CEL0 COL0RME-ℓ1

SRRF SPARCOM LSPARCOM

0 2000 4000 6000 8000 10000 12000 0 5 10 15 20 25 30 0 2000 4000 6000 8000

Figure 14. Results for the (HB) dataset with 𝑇 = 500. The colorbar of the GT and the COL0RME
images is available in Figure 12 .

6.2. Real Data
To show the effectiveness of our method for handling real-world data, we apply COL0RME to an
image sequence acquired from a Total Internal Reflection Fluorescence (TIRF) microscope. The TIRF
microscope offers a good observation of the activities happening next to the cell membrane, as it uses
an evanescent wave to illuminate and excite fluorescent molecules only in this restricted region of
the specimen (29). Further, the TIRF microscope does not require specific fluorescent dyes, allows live
cell imaging by using a low illumination laser, with really low out-of-focus contribution and produces
images with a relatively good, in comparison with other fluorescence microscopy techniques, SNR. To
enhance the resolution of the images acquired from a TIRF microscope, super-resolution approaches
that exploit the temporal fluctuations of blinking fluorophores, like COL0RME, can be applied.

The data we are using have been obtained from a Multi-Angle TIRF microscope, with a fixed angle
close to the critical one. A sequence of 500 frames has been acquired, with an acquisition time equal to
25s. The diffraction limited image, or with other words the mean stack image, can be found in Figure
15 under the title ȳ. The FWHM has been measured experimentally and is equal to 292.03nm, while
the CCD camera has a pixel of size 106nm.

The results of the method COL0RME-CEL0 and COL0RME-ℓ1 and more precisely the intensity and
the background estimation, can be found in Figure 15. For the method COL0RME-CEL0 the regular-
ization parameter 𝜆 is equal to 𝜆 = 5×10−4×𝜆𝐶𝐸𝐿0

𝑚𝑎𝑥 and the algorithmic restarting approach has is used
(maximum 10 restarts). Regarding the method COL0RME-ℓ1 the regularization parameter 𝜆 is equal to
𝜆 = 5 × 10−6 × 𝜆ℓ1

𝑚𝑎𝑥 , a relatively small value so as to be sure that we will include all the pixels that
contain fluorescent molecules. Even if we underestimate 𝜆 and find more false positives in the support
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ȳ COL0RME-CEL0 Background

0 2000 4000 6000 8000 10000 12000 0 500 1000 1500 2000 2500 0 2000 4000 6000 8000 10000 12000

COL0RME-ℓ1 Background

0 500 1000 1500 2000 2500 0 2000 4000 6000 8000 10000 12000

Figure 15. Real TIRF data, 𝑇 = 500 frames. Difraction limited image ȳ (4x zoom), The intensity and
background estimation of the methods COL0RME-CEL0 and COL0RME-ℓ1.

estimation, after the second step of the algorithm, the final reconstruction is corrected, as explained in
5.1. The hyper-parameters 𝛼 and 𝛽 are equal to: 𝛼 = 106, 𝛽 = 20. Using any of the two regularizers the
spatial resolution is enhanced, as it can be also observed from the yellow zoom boxes. However, there
are a few filaments that do not seem to be well reconstructed, especially using the COL0RME-CEL0
method, e.g. the one inside the green box.

Finally, the comparison of the methods COL0RME-CEL0 and COL0RME-ℓ1 with the other state-of-
the-art methods, is available in Figure 16. The parameters used for the methods SRRF, SPARCOM and
LSPARCOM, are explained in the section 6.1. Here, we further use the post-processing step (convolu-
tion with a small Gaussian function) in the method SPARCOM, as the result was dotted. The methods
COL0RME-CEL0 and COL0RME-ℓ1 seem to have the most precise localization, eventhough the most
appealing visually is the result of the method SRRF, where the filaments have a more continuous struc-
ture. SPARCOM and LSPARCOM do not perform very well in this real image sequence due to, mainly,
background artifacts.

7. Discussion and Conclusion
In this paper, we propose and discuss the model and the performance of COL0RME, a method for super-
resolution microscopy imaging based on the sparse analysis of the stochastic fluctuations of molecules’
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ȳ COL0RME-CEL0 COL0RME-ℓ1

0 2000 4000 6000 8000 10000 12000 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

SRRF SPARCOM LSPARCOM

0 500 1000 1500 2000 2500 3000 0 10 20 30 40 0 5000 10000 15000

Figure 16. Real TIRF data, 𝑇 = 500 frames. Difraction limited image ȳ (4x zoom), Comparisons
between the method that exploit the temporal fluctuations..

intensities. Similarly to other methods exploiting temporal fluctuations, COL0RME relaxes all the
requirements for special equipment (microscope and fluorescent dyes) and allows for live-cell imaging,
due to the good temporal resolution and the low power lasers employed. In comparison with competing
methods, COL0RME achieves very high spatial resolution while having a sufficient temporal resolu-
tion. COL0RME is based on two different steps: a former one where accurate molecule localization
and noise estimation are achieved by solving non-smooth convex/non-convex optimization problems
in the covariance domain and the latter where intensity information is retrieved in correspondence
with the estimated support only. Our numerical results show that COL0RME outperforms competing
approaches in terms of localization precision. To the best of our knowledge, COL0RME is the only
super-resolution method exploiting temporal fluctuations which is capable of retrieving intensity-type
information, signal and spatially-varying background, which are of fundamental interest in biological
data analysis. For both steps, automatic parameter selection strategies are detailed. Let us remark that
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such strategy of intensity estimation could be applied to the other competing super-resolution meth-
ods in the literature. Several results obtained on both simulated and real data are discussed, showing
the superior performance of COL0RME in comparison with analogous methods such as SPARCOM,
LSPARCOM and SRRF. Possible extensions of this work shall address the use the intensity information
estimated by COL0RME for 3D reconstruction in, e.g., MA-TIRF acquisitions.

A. Appendix. Proximal computations
Given the function ℎ : R𝐿2 → R, defined in (16), the proximal mapping of ℎ is a an operator given by:

proxℎ,𝜏 (w) = arg min
u

(
1
2𝜏
‖u − w‖22 + ℎ(w)

)
= arg min

u

©­« 1
2𝜏
‖u − w‖22 +

𝛼

2
©­«‖I𝛀u‖22 +

𝐿2∑︁
𝑖=1
[𝜙(u𝑖)]2

ª®¬ª®¬ (A.1)

The optimal solution û (û = proxℎ,𝜏 (w)), as the problem (A.1) is convex, is attained when:

0 ∈ ∇ ©­« 1
2𝜏
‖û − w‖22 +

𝛼

2
©­«‖I𝛀û‖22 +

𝐿2∑︁
𝑖=1
[𝜙(û𝑖)]2

ª®¬ª®¬ ,
0 ∈ 1

𝜏
(û − w) + 𝛼

(
I𝛀û + [𝜙(û𝑖)𝜙′(û𝑖)] {𝑖=1,...,𝐿2 }

)
. (A.2)

Starting from (13) we can compute 𝜙′ : R→ R+, as:

𝜙′(𝑧) :=

{
0 if 𝑧 ≥ 0,
1 if 𝑧 < 0

, ∀𝑧 ∈ R. (A.3)

Given (A.3), we can write:

0 ∈ 1
𝜏
(û − w) + 𝛼

(
I𝛀û + [𝜙(û𝑖)] {𝑖=1,...,𝐿2 }

)
. (A.4)

Exploiting component-wise, as problem (A.1) is separable with respect to both x and w, and
assuming û𝑖 ≥ 0, the derivative computed at (A.4) vanishes for:

û𝑖 =
1

1 + 𝛼𝜏I𝛀 (𝑖, 𝑖)
w𝑖 , (A.5)

and it holds for w𝑖 ≥ 0. Similarly, for the case û𝑖 < 0, this anlysis yields:

û𝑖 =
1

1 + 𝛼𝜏(I𝛀 (𝑖, 𝑖) + 1)w𝑖 , (A.6)

for w𝑖 < 0.
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So finally, the proximal operator is given by:

(
proxℎ,𝜏 (w)

)
𝑖
= proxℎ,𝜏 (w𝑖) =

{
w𝑖

1+𝛼𝜏I𝛀 (𝑖,𝑖) if w𝑖 ≥ 0,
w𝑖

1+𝛼𝜏 (I𝛀 (𝑖,𝑖)+1) if w𝑖 < 0.
(A.7)

In a similar way, we compute the proximal mapping of the function ℎ : R𝐿2 → R, defined in (33),
as follows:

prox
ℎ,𝜏
(z) = arg min

u

(
1
2𝜏
‖u − z‖22 + ℎ(u)

)
= arg min

u

(
1
2𝜏
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𝛼

2

(
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u‖22
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. (A.8)

The optimal solution û of (A.8) (û = prox
ℎ,𝜏
(z)) is attained when:

0 ∈ ∇
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1
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2
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,
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𝜏
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I𝛀û + Ix̂𝜇

û
)
. (A.9)

By eliminating u in the expression (A.9), we compute element-wise the proximal operator:

(prox
ℎ,𝜏
(z))𝑖 = prox

ℎ,𝜏
(z𝑖) =

z𝑖
1 + 𝛼𝜏

(
I𝛀 (𝑖, 𝑖) + Ix̂𝜇

(𝑖, 𝑖)
) . (A.10)

B. Appendix. The minimization problem to estimate x̂′𝜇
Starting from the penalized optimization problem (12) and having b fixed, we aim to find a relation that
contains the optimal x̂𝜇. While there are only quadratic terms, we proceed as following :

0 ∈ ∇ ©­« 1
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(
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(
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)
. (A.11)

Given (A.3) we can write:

0 ∈ 𝚿ᵀ
(
𝚿x̂𝜇 − y − b

)
+ 𝜇∇ᵀ∇x̂𝜇 + 𝛼

(
I𝛀x̂𝜇 + [𝜙((x̂𝜇)𝑖)] {𝑖=1,...,𝐿2 }

)
. (A.12)

Our goal is to compute x̂′𝜇, the partial derivative of x̂𝜇 w.r.t. 𝜇. So, we derive as follows:

𝜕

𝜕𝜇

(
0 ∈ 𝚿ᵀ

(
𝚿x̂𝜇 − y − b

)
+ 𝜇∇ᵀ∇x̂𝜇 + 𝛼

(
I𝛀x̂𝜇 + [𝜙((x̂𝜇)𝑖)] {𝑖=1,...,𝐿2 }

))
,

0 ∈ 𝚿ᵀ𝚿x̂′𝜇 + 𝜇∇ᵀ∇x̂′𝜇 + ∇ᵀ∇x̂𝜇 + 𝛼
(
I𝛀x̂′𝜇 + [𝜙′((x̂𝜇)𝑖) (x̂′𝜇)𝑖] {𝑖=1,...,𝐿2 }

)
. (A.13)
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Figure 17. The yellow pixels belong to the support estimated in the previous restarting, while the red
pixels belong to the initialization that is used in the current restarting..

We define the matrix Ix̂𝜇
such as:

Ix̂𝜇
(𝑖, 𝑖) =

{
0 if (x̂𝜇)𝑖 ≥ 0,
1 if (x̂𝜇)𝑖 < 0.

Now the vector [𝜙′((x̂𝜇)𝑖) (x̂′𝜇)𝑖] {𝑖=1,...,𝐿2 }, using further the equation (A.3), can be simply written
as: Ix̂𝜇

x̂′𝜇 and then (A.13) becomes:

0 ∈ 𝚿ᵀ𝚿x̂′𝜇 + 𝜇∇ᵀ∇x̂′𝜇 + ∇ᵀ∇x̂𝜇 + 𝛼
(
I𝛀x̂′𝜇 + Ix̂𝜇

x̂′𝜇
)
,

The minimization problem we should solve in order to find x̂′𝜇 thus is:

x̂′𝜇 = arg min
x∈R𝐿2

1
2
‖𝚿x‖22 +

𝜇

2
‖∇x + 1

𝜇
∇x̂𝜇 ‖22 +

𝛼

2

(
‖I𝛀x‖22 + ‖Ix̂𝜇

x‖22
)

(A.14)

C. Appendix. Algorithmic restart.
Every initialization is based on the solution obtained at the previous restarting. There are many ways to
choose the new initialization, deterministic and stochastic ones. In this paper we chose a deterministic
way based on the following idea: for every pixel belonging to the solution of the previous restarting
we find its closest neighbor. Then, we define the middle point between the two and we include it in
the intialization of the current restarting. A small example is given in the Figure 17. The yellow points
belong to the support estimation of the previous restarting. Starting from them we define the red points,
used for the initialization of the current restarting.
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