Module ECUE « Applied AI »

AI & Biomedical : Big data in bio imagery

Xavier Descombes Morpheme team INRIA/I3S/iBV

High Spatial Resolution Multiscale

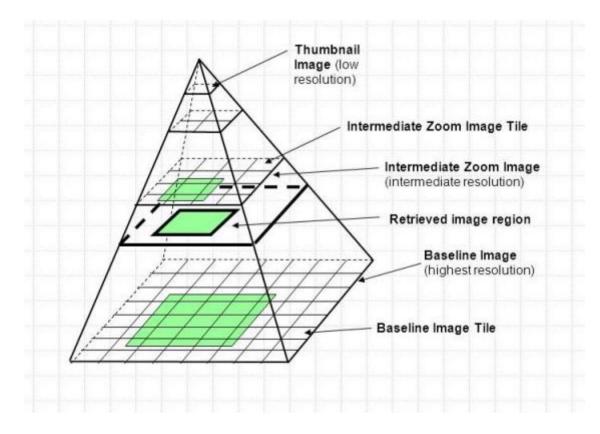
- Microscopy images :
 - Spatial resolution in x/y : lower than $1\mu m$
 - 2D or 3D datasets : up to several hundreds of slices

Example : mice brain image on light-sheet microscopy

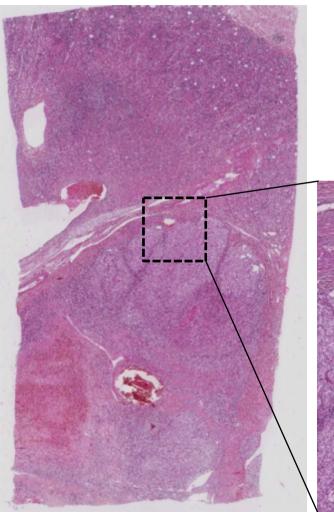
X = 0.75μm, Y = 0.75μm, Z = 1.99μm 6000 x 6000 x 1000 voxels Voxels coded on 16 bit Study on 2 channels + time course 20-300 Gb about 40 brains

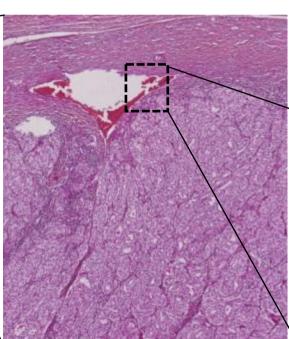
Histopathology data

Pyramidal structure of data (Whole_Slide Imaging format)



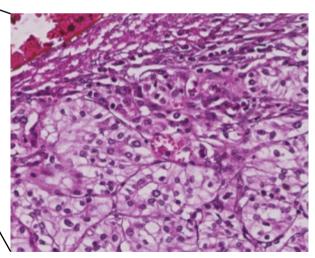
Histopathological data





First goal : focus on suspicious areas Multiscale approach :

> First analyse the low resolution image to consider only small areas on the high resolution image (to reduce for example the size of a CNN first layer)



(822 x 1.365)

(13.152 x 21.840)

(52.608 x 87.360)

Histopathology data analysis

- Goal : classify and grade the cancer
- Focuss on ROI (tumor zones)
- Medical decision based on local patterns
- Histopathologist analysis :
 - Screen the low resolution image to detect ROIs
 - Zoom on these ROIs (and come back)
 - -> multiscale analysis
 - -> qualitative analysis

A first machine learning task

 \sum

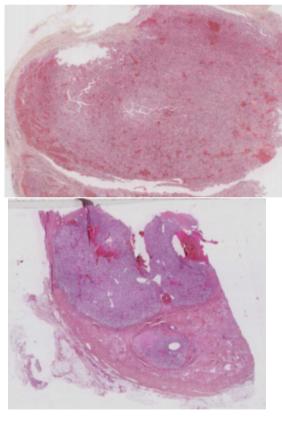
• Classify ROI (tumor areas)

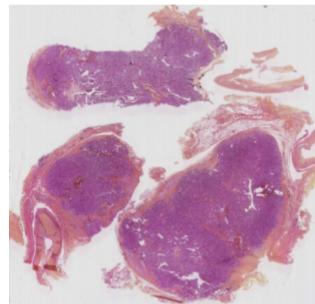
Initial Image

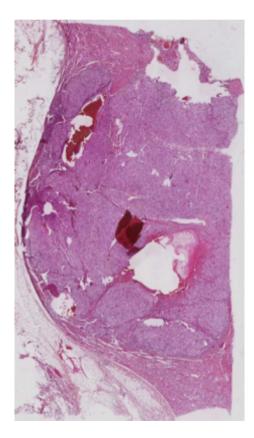
Tumor areas (ROI)

Challenge

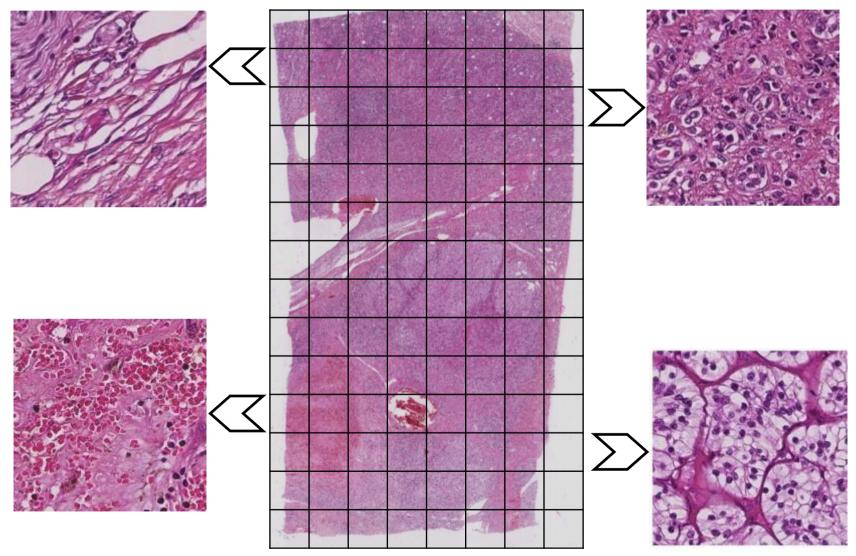
- Variability between and within images
- Non informative areas (fat, blood...)
- Huge datasets (12 Go ≈ 100 000 pixels per axis)







Patches classification



Pre-Processing : color deconvolution

$$\forall c \in \mathbb{N}^{2}, H(c) = \frac{Rouge(c)}{C3(c)}, \\ \forall c \in \mathbb{N}^{2}, E(c) = \frac{Vert(c)}{Rouge(c)}. \\ \forall c \in \mathbb{N}^{2}, C2(c) = \arctan\left[\frac{Vert(c)}{max(Rouge(c),Bleu(c))}\right] \\ \forall c \in \mathbb{N}^{2}, C3(c) = \arctan\left[\frac{Bleu(c)}{max(Rouge(c),Vert(c))}\right] \\ \forall c \in \mathbb{N}^{2}, C3(c) = \arctan\left[\frac{Bleu(c)}{max(Rouge(c),Vert(c))}\right] \\ \end{cases}$$

E channel

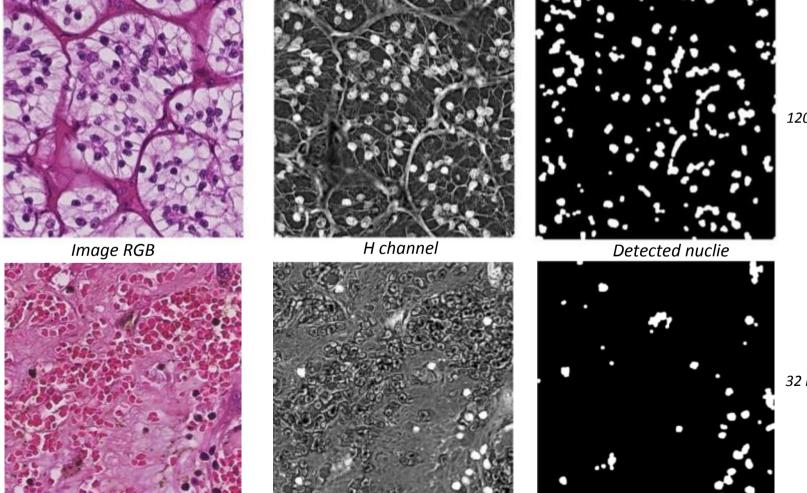
RGB image

THE LY AD

H channel

Reduce dataset

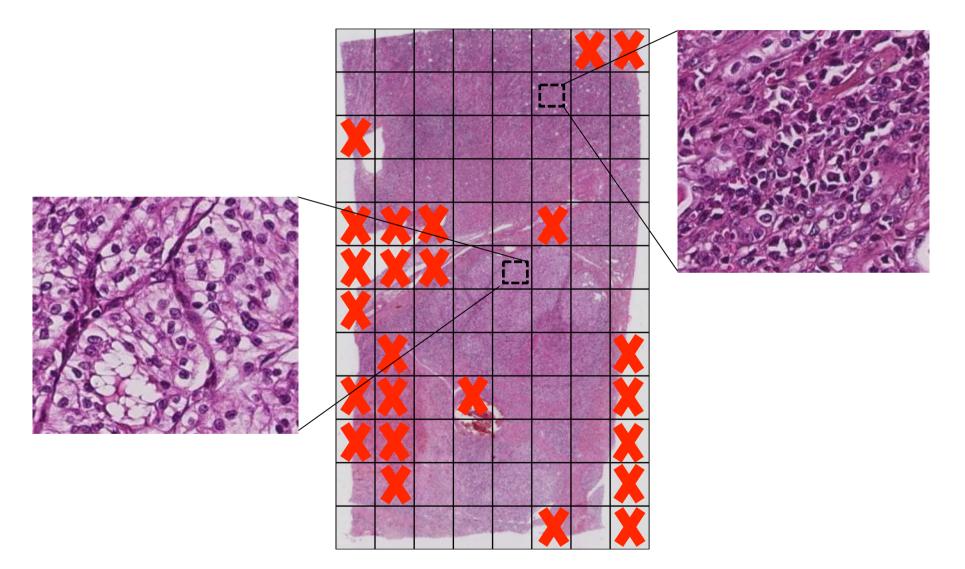
• Remove patches with few cells



120 nuclei

32 nuclei

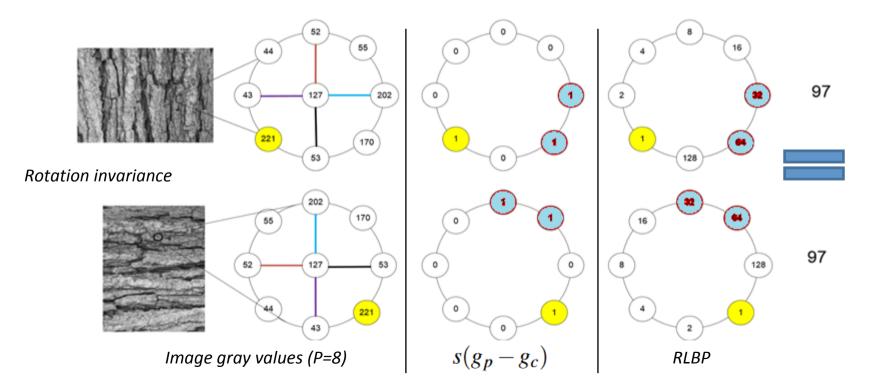
Reduce dataset



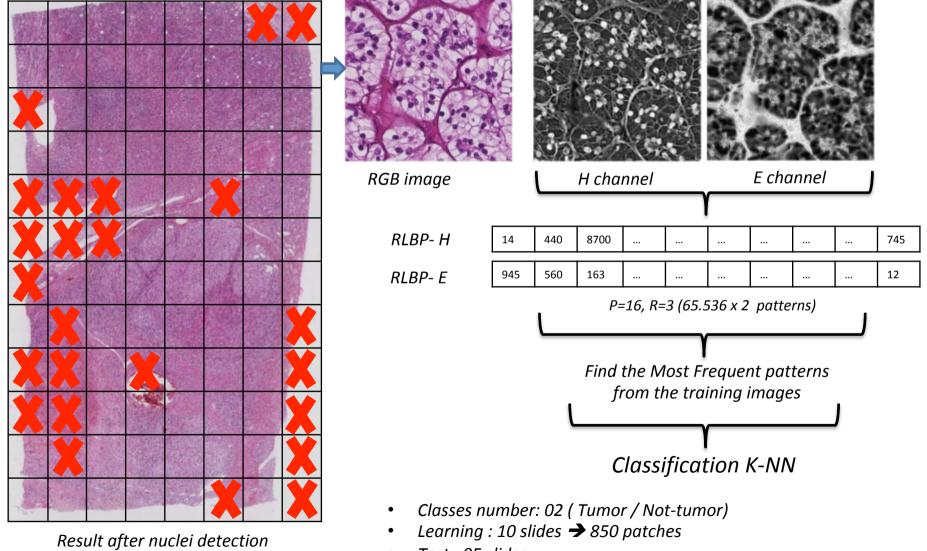
Features extraction : local binary patterns

 $D = \underset{p \in (0,1\dots P-1)}{\arg \max} |g_p - g_c|$

$$RLBP_{R,P} = \sum_{p=0}^{P-1} s(g_p - g_c) \cdot 2^{mod(p-D,P)}$$

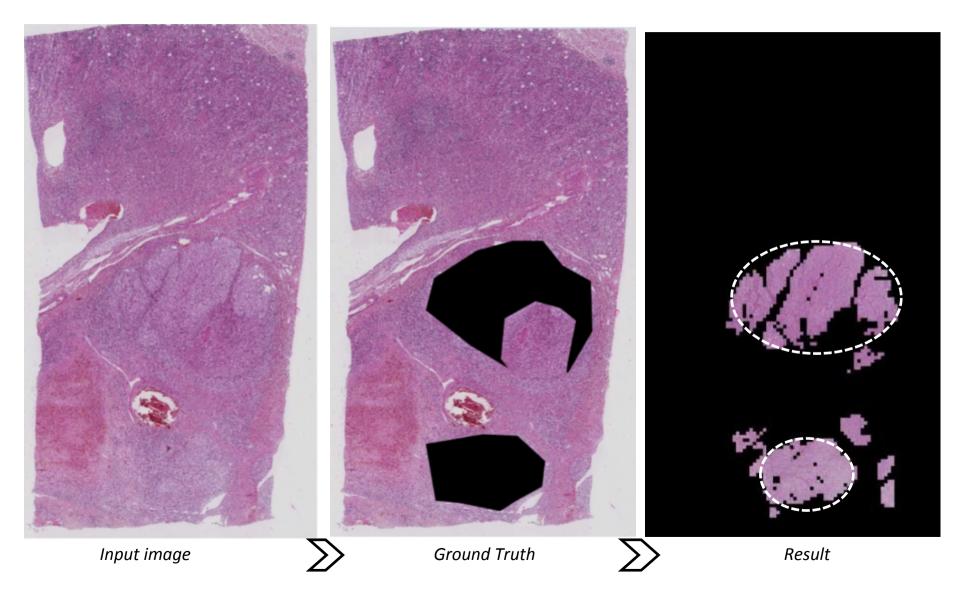


Classification : k-means

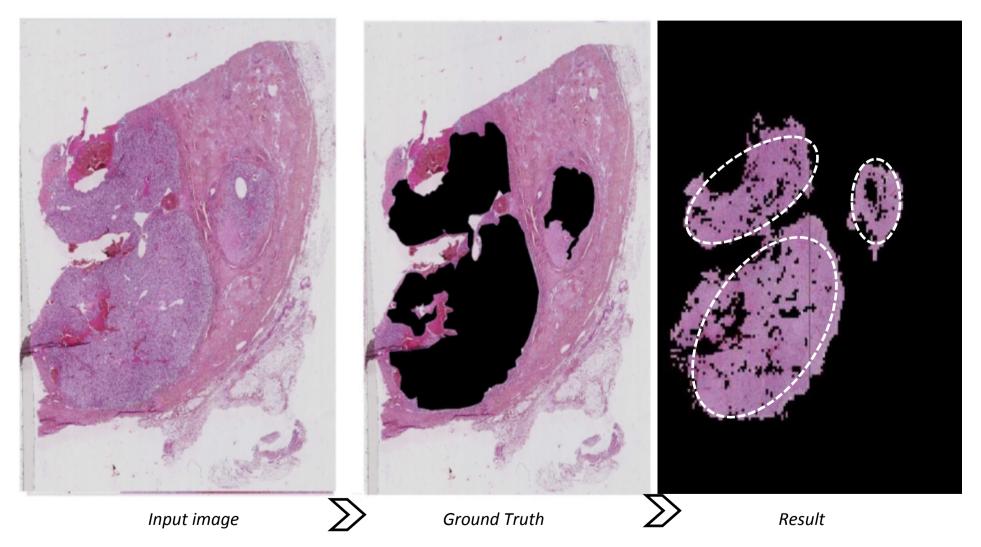


• Test : 05 slides

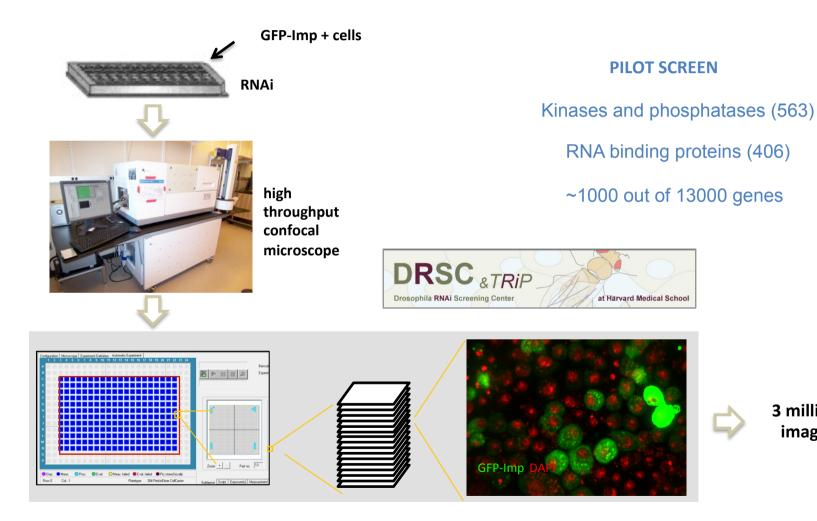
Result on learning set



Result on test set



High Throughput data



3 millions of images !!!

High Throughput data

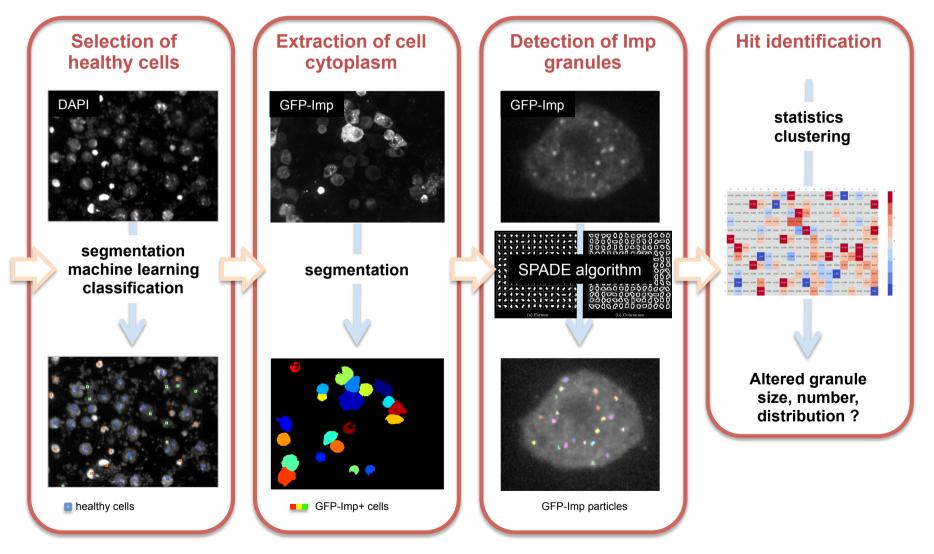
First consider a PILOT screen (subsample of well chosen genes) :

Kinases and phosphatases (563)

RNA binding proteins (406)

~1000 out of 13000 genes

A pipeline for analysing the screen



RAW IMAGE DATA BASE

Disciplines involved : biology, machine learning, image processing, data base

Machine learning task

- Classify the cells w.r.t. the granule population
- Features : number, size, spatial repartition
- Challenge : unknown number of classes
- Rejection class
- Unbalanced classes
- Huge number of samples : checking difficult

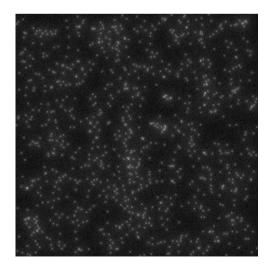
Time sequences

Time sequences

Multiple particles tracking

- Main approaches in two steps :
 - 1) Objects (particles) detection
 - 2) Objects (particles) linking
- Particular case : (for low speed)

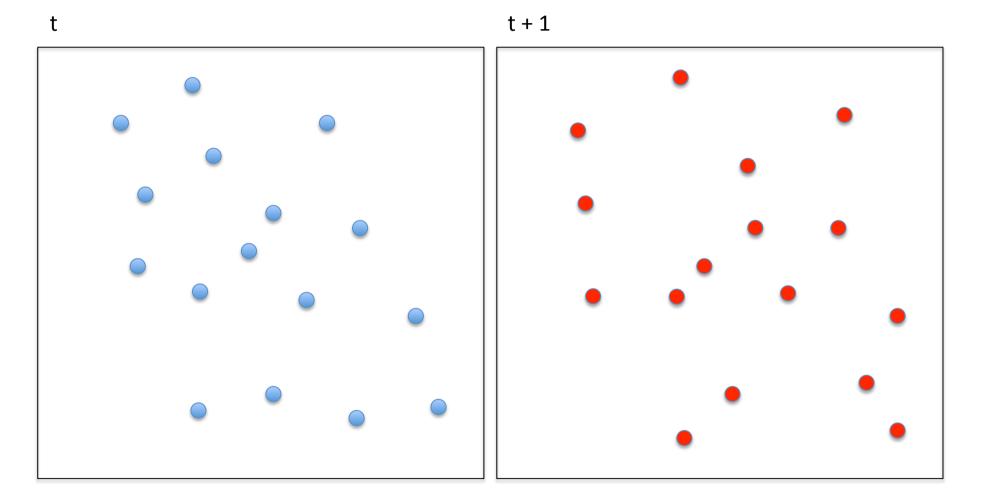
» Trajectories detection in (Space + Time) domain



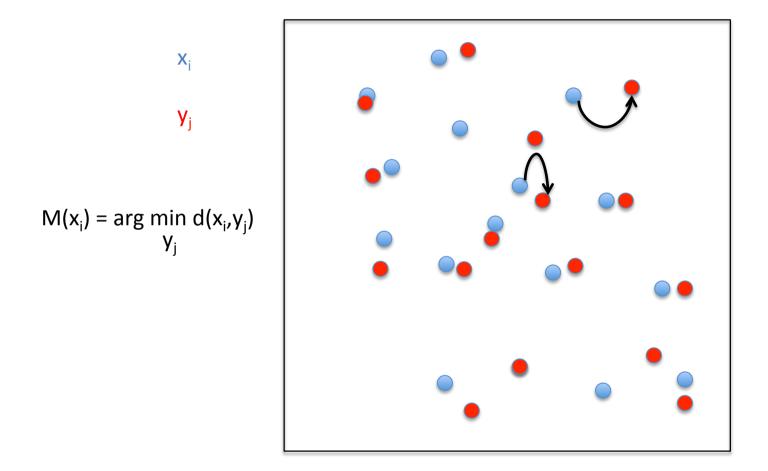
The challenges

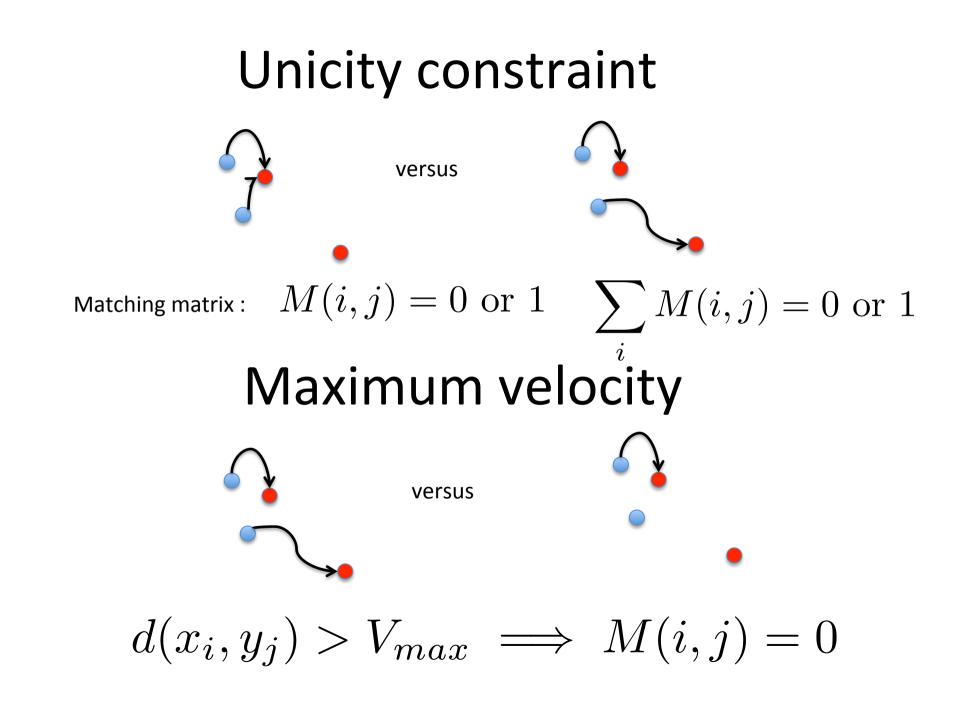
- Detection (see corresponding course)
- Appearance / Disappearance of particles
- Crossing
- Occlusion
- Noise
- Location VS shape descriptor

Detect and Match



Match : nearest neighbor





Global optimization

$$argmin_M \sum_{i \in I, j \in J} d(x_i, y_j) M(i, j)$$

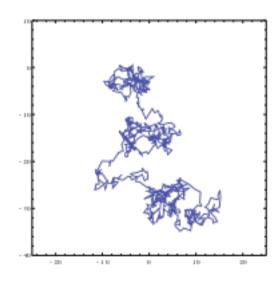
$$M(i, j) = 0 \text{ or } 1$$

$$\forall i \sum_{j} M(i, j) = 0 \text{ or } 1$$

$$d(x_i, y_j) = f(||y_j - x_i||)$$

Movement modeling

• Brownian motion : random movement (big particle in a fluid)



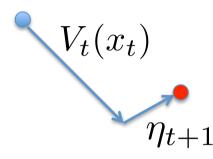
$$P(x_{t+1}|x_t) = \frac{1}{2\pi\sqrt{\sigma^2}} \exp\left[-\frac{(x_{t+1} - x_t)^2}{2\sigma^2}\right]$$

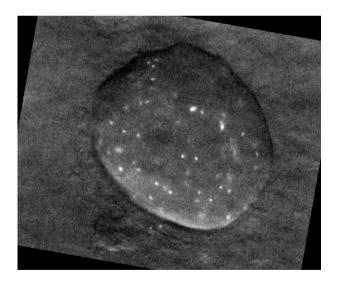
https://fr.wikipedia.org/wiki/Mouvement_brownien#Processus_d%E2%80%99Ornstein-Uhlenbeck

Deterministic speed model

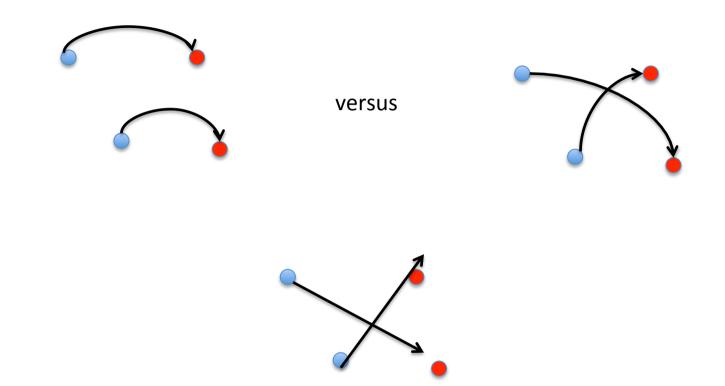
 $x_{t+1} = x_t + V_t(x_t)dt + d\eta_{t+1}$

Deterministic model Fluctuation

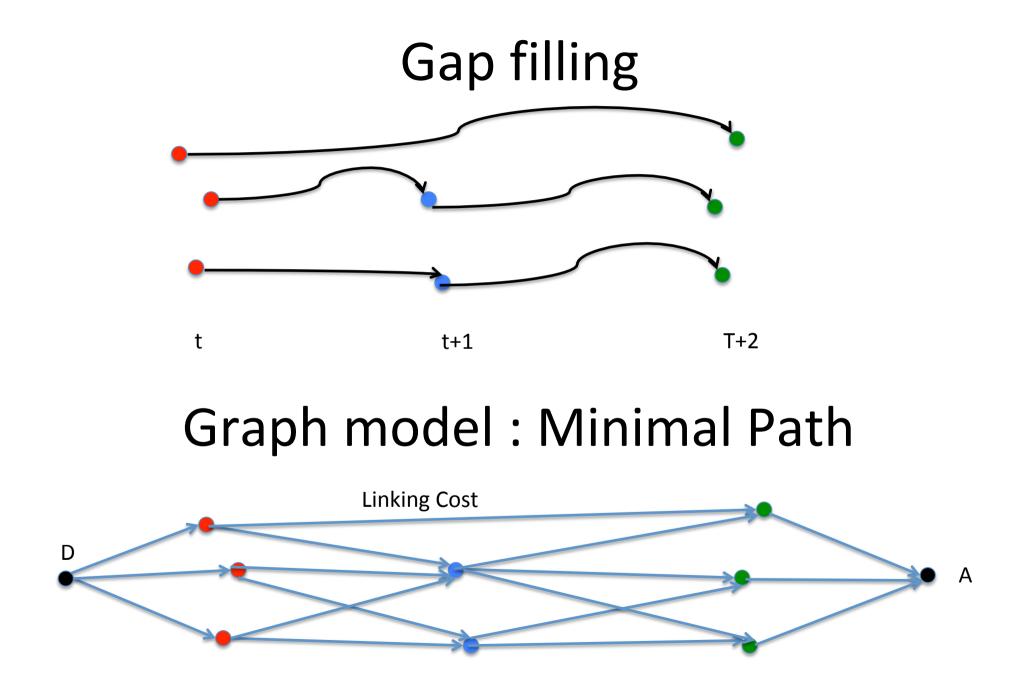




Advantage of a model



Speed : learnt from a model or estimated from past steps



Tracklets

Two steps : Local (tracklets detection), tracklets merging

Pros : consider trajectory and/or speed models

Take home message

- Do not consider higher resolution than needed (for space, time and intensity)
- Consider a multiscale approach
- Adapt the processing to the size of data (compromise between accuracy and computaiton time)
- Consider parrallel programing