Parallel Tensor Train through Hierarchical Decomposition

Suraj Kumar

Alpines team, Inria Paris

Moliere Associated Team Workshop

July 8, 2021

Collaborators

This is joint work with ...

- Laura Grigori Inria Paris, France
- Olivier Beaumont Inria Bordeaux, France
- Alena Shilova Inria Bordeaux, France

Overview

- Introduction
- 2 Low Rank Tensor Representations
- 3 Algorithms to Compute Tensor Train Representation
 - Sequential Algorithms
 - Parallel Algorithms
- Experimental Evaluation
- Conclusion

Table of Contents

- Introduction
- 2 Low Rank Tensor Representations
- 3 Algorithms to Compute Tensor Train Representation
 - Sequential Algorithms
 - Parallel Algorithms
- 4 Experimental Evaluation
- Conclusion

Tensors: Multidimensional Arrays

• Neuroscience: Neuron \times Time \times Trial

 $\bullet \ \ \textbf{Transportation} \colon \mathsf{Pickup} \times \mathsf{Dropoff} \times \mathsf{Time}$

Media: User x Movie x Time

• **Ecommerce**: User x Product x Time

• Cyber-Traffic: IP x IP x Port x Time

Vector

4-dimensional tensor

• **Social-Network**: Person x Person x Time x Interaction-Type

High Dimensional Tensors

Neural Network:

- Molecular Simulation: To represent wave functions
- Quantum Computing: To represent qubit states

Tensor computations

- Memory and computation requirements are exponential in the number of dimensions
 - A molecular simulation involving just 100 spatial orbitals manipulate a huge tensor with 4^{100} elements
- People work with low dimensional structure (decomposition) of the tensors
 - A tensor is represented with smaller objects
 - Improves memory and computation requirements
- Limited work on parallelization of tensor algorithms
- Most tensor decompositions rely on Singular Value Decomposition (SVD) of matrices

Table of Contents

- Introduction
- 2 Low Rank Tensor Representations
- 3 Algorithms to Compute Tensor Train Representation
 - Sequential Algorithms
 - Parallel Algorithms
- Experimental Evaluation
- Conclusion

Singular Value Decomposition (SVD) of Matrices

- It decomposes a matrix $A \in \mathbb{R}^{m \times n}$ to the form $U \Sigma V^T$
 - U is an $m \times m$ orthogonal matrix
 - V is an $n \times n$ orthogonal matrix
 - Σ is an $m \times n$ rectangular diagonal matrix
- It represents a matrix as the sum of rank one matrices
 - $A = \sum_{i} \Sigma(i; i) U_{i} V_{i}^{T}$
 - Minimum number of rank one matrices required in the sum is called the rank of the original matrix

Popular Tensor Decompositions

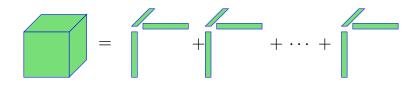
Higher Order Generalization of SVD

- Canonical decomposition (equivalently known as Canonical Polyadic or CANDECOMP or PARAFAC)
- Tucker decomposition
- Tensor Train decomposition (equivalently known as Matrix Product States)

Tensor Notations

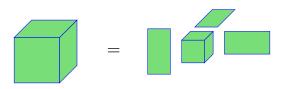
- $\mathbf{A} \in \mathbb{R}^{n_1 \times ... \times n_d}$ is a *d*-dimensional tensor
- $A(i_1, \dots, i_d)$ represent elements of A
- Use bold letters to denote tensors

Canonical Representation



- $\mathbf{A}(i_1, \dots, i_d) = \sum_{\alpha=1}^r U_1(i_1, \alpha) U_2(i_2, \alpha) \dots U_d(i_d, \alpha)$
- (+) For $n_1 = n_2 = \cdots n_d = n$, the number of entries $= \mathcal{O}(nrd)$
- ullet (-) Determining the minimum value of r is an NP-complete problem
- (-) No robust algorithms to compute this representation

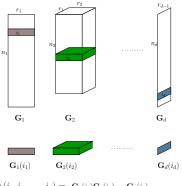
Tucker Representation



- Represents a tensor with d matrices and a small core tensor
- $\mathbf{A}(i_1,\cdots,i_d) = \sum_{\alpha_1=1}^{r_1}\cdots\sum_{\alpha_d=1}^{r_d}\mathbf{g}_{\alpha_1\cdots\alpha_d}U_1(i_1,\alpha_1)\cdots U_d(i_d,\alpha_d)$
- ullet (+) SVD based stable algorithms to compute this representation
- (-) For $n_1 = n_2 = \cdots n_d = n$ and $r_1 = r_2 = \cdots = r_d = r$, the number of entries $= \mathcal{O}(ndr + r^d)$

Tensor Train Representation: Product of Matrices View

• A d-dimensional tensor is represented with 2 matrices and d-23-dimensional tensors.



 $A(i_1, i_2, \dots, i_d) = G_1(i_1)G_2(i_2) \dots G_d(i_d)$

An entry of $\mathbf{A} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ is computed by multiplying corresponding matrix (or row/column) of each core.

Tensor Train Representation

 $\mathbf{A} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ is represented with cores $\mathbf{G}_k \in \mathbb{R}^{r_{k-1} \times n_k \times r_k}$, $k=1,2,\cdots d$, $r_0=r_d=1$ and its elements satisfy the following expression:

$$\mathbf{A}(i_1, \dots, i_d) = \sum_{\alpha_0=1}^{r_0} \dots \sum_{\alpha_d=1}^{r_d} \mathbf{G}_1(\alpha_0, i_1, \alpha_1) \dots \mathbf{G}_d(\alpha_{d-1}, i_d, \alpha_d)$$

$$= \sum_{\alpha_1=1}^{r_1} \dots \sum_{\alpha_{d-1}=1}^{r_{d-1}} \mathbf{G}_1(1, i_1, \alpha_1) \dots \mathbf{G}_d(\alpha_{d-1}, i_d, 1)$$

• For $n_1 = n_2 = \cdots = n_d = n$ and $r_1 = r_2 = \cdots = r_{d-1} = r$, the number of entries $= \mathcal{O}(ndr^2)$

Table of Contents

- Introduction
- 2 Low Rank Tensor Representations
- 3 Algorithms to Compute Tensor Train Representation
 - Sequential Algorithms
 - Parallel Algorithms
- Experimental Evaluation
- Conclusion

Unfolding Matrices of a Tensor & Notations

- Frobenius norm of a matrix A is defined as, $||A||_F = \sqrt{\sum_{i,j} A(i;j)^2}$
- Frobenius norm of a d-dimensional tensor $\bf A$ is defined as, $||{\bf A}||_F = \sqrt{\sum_{i_1,i_2,\cdots,i_d} {\bf A}(i_1,i_2,\cdots,i_d)^2}$

k-th unfolding matrix

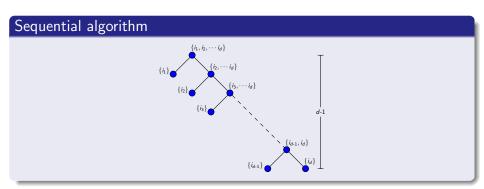
 A_k denotes k-th unfolding matrix of tensor $\mathbf{A} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$.

$$A_k = [A_k(i_1, i_2, \cdots, i_k; i_{k+1}, \cdots, i_d)]$$

- Size of A_k is $(\prod_{l=1}^k n_l) \times (\prod_{l=k+1}^d n_l)$
- r_k denotes the rank of A_k .
- $(r_1, r_2, \cdots, r_{d-1})$ denotes the ranks of unfolding matrices of the tensor.

Tensor Train algorithms and Separation of dimensions

 Sequential algorithms to compute Tensor Train decomposition and approximation exist [Oseledets, 2011]



Tensor Train Decomposition [Oseledets, 2011]

Algorithm 1 Tensor Train Decomposition

Require: d-dimensional tensor **A** and ranks $(r_1, r_2, \dots r_{d-1})$

Ensure: Cores $G_k(\alpha_{k-1}, n_k, \alpha_k)_{1 \le k \le d}$ of the Tensor Train representation with $\alpha_k < r_k$ and $\alpha_0 = \alpha_d = 1$

- 1: Temporary tensor: $\mathbf{C} = \mathbf{A}$, $\alpha_0 = 1$
- 2: **for** k = 1 : d 1 **do**
- 3: $A_k = reshape(\mathbf{C}, \alpha_{k-1}n_k, \frac{numel(\mathbf{C})}{\alpha_{k-1}n_k})$
- 4: Compute SVD: $A_k = U \Sigma V^T$
- 5: Compute rank of Σ , $\alpha_k = \text{rank}(\Sigma)$
- 6: New core: $\mathbf{G}_k := reshape(U(; 1 : \alpha_k), \alpha_{k-1}, n_k, \alpha_k)$
- 7: $\mathbf{C} = \Sigma(1 : \alpha_k; 1 : \alpha_k) V^T(1 : \alpha_k;)$
- 8: end for
- 9: $\mathbf{G}_d = \mathbf{C}, \ \alpha_d = 1$
- 10: return $\mathbf{G}_1, \cdots, \mathbf{G}_d$

Tensor Train Approximation [Oseledets, 2011]

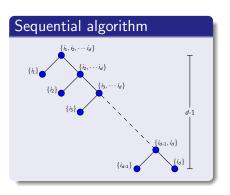
Algorithm 2 Tensor Train Approximation

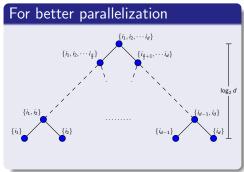
Require: d-dimensional tensor **A** and expected accuracy ϵ

Ensure: Cores $G_k(\alpha_{k-1}, n_k, \alpha_k)_{1 \leq k \leq d}$ of the approximated tensor **B** in Tensor Train representation such that $||\mathbf{A} - \mathbf{B}||_F$ is not more than ϵ

- 1: Temporary tensor: $\mathbf{C} = \mathbf{A}$, $\alpha_0 = 1$, $\delta = \frac{\epsilon}{\sqrt{d-1}}$
- 2: **for** k = 1 : d 1 **do**
- 3: $A_k = reshape(\mathbf{C}, \alpha_{k-1}n_k, \frac{numel(\mathbf{C})}{\alpha_{k-1}n_k})$
- 4: Compute SVD: $A_k = U \Sigma V^T$
- 5: Compute α_k such that $A_k = U(; 1 : \alpha_k) \Sigma(1 : \alpha_k; 1 : \alpha_k) V^T(1 : \alpha_k;) + E_k$ and $||E_K||_F \leq \delta$
- 6: New core: $\mathbf{G}_k := reshape(U(; 1 : \alpha_k), r_{k-1}, n_k, r_k)$
- 7: $\mathbf{C} = \Sigma(1:\alpha_k; 1:\alpha_k) V^T(1:\alpha_k;)$
- 8: end for
- 9: $\mathbf{G}_d = \mathbf{C}, \ \alpha_d = 1$
- 10: return ${f B}$ in Tensor Train representation with cores ${f G}_1,\cdots,{f G}_d$

Tensor Train algorithms and Separation of dimensions





- Can obtain better parallelism by expressing the operation in a balanced binary tree shape
 - Proposed parallel algorithms based on this idea

Table of Contents

- Introduction
- 2 Low Rank Tensor Representations
- 3 Algorithms to Compute Tensor Train Representation
 - Sequential Algorithms
 - Parallel Algorithms
- Experimental Evaluation
- Conclusion

Extra Definitions for Parallel Algorithms

- Original indices of a tensor are called external indices
- Indices obtained due to SVD are called internal indices
 - $\mathbf{A}(\alpha, i_1, i_2, i_3, \beta)$ has 3 external and 2 internal indices
- nEI(A) denotes the number of external indices of A

k-th Unfolding Matrix

k-th unfolding of a tensor with elements $\mathbf{A}(\alpha, i_1, i_2, \dots, i_k, i_{k+1}, \dots, \beta)$ is represented as, $A_k = [A_k(\alpha, i_1, i_2, \dots, i_k; i_{k+1}, \dots, \beta)].$

All indices from the beginning to i_k denote the rows of A_k and the remaining indices denote the columns of A_k .

• **Tensor**(A_I) converts an unfolding matrix A_I to its tensor form

Parallel Tensor Train decomposition I

Algorithm 3: PTT-decomposition (parallel Tensor Train Decomposition)

Require: d-dimensional tensor **A** and ranks $(r_1, r_2, \dots r_{d-1})$

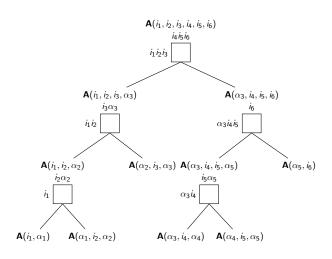
Ensure: Cores $\mathbf{G}_k(\alpha_{k-1}, n_k, \alpha_k)_{1 \leq k \leq d}$ of the Tensor Train representation with $\alpha_k \leq r_k$ and $\alpha_0 = \alpha_d = 1$

- 1: if $nEI(\mathbf{A}) > 1$ then
- 2: Find the middle external index k
- 3: Compute unfolding matrix A_k
- 4: Compute SVD: $A_k = U \Sigma V^T$
- 5: Compute rank of Σ , $\alpha_k = \text{rank}(\Sigma)$
- 6: Select diagonal matrices X_k , S_k and Y_k such that $X_k S_k Y_k = \Sigma(1 : \alpha_k; 1 : \alpha_k)$
- 7: $\mathbf{A}_{left} = \mathbf{Tensor}(U(; 1 : \alpha_k)X_k)$
- 8: list1 = PTT-decomposition(\mathbf{A}_{left} , $(r_1, \dots r_{k-1}, \alpha_k)$)
- 9: $\mathbf{A}_{right} = \mathbf{Tensor}(Y_k V^T (1 : \alpha_k;))$

Parallel Tensor Train decomposition II

```
list2= PTT-decomposition(\mathbf{A}_{right}, (\alpha_k, r_{k+1}, \cdots r_{d-1}))
10:
         return {list1, list2}
11:
12: else
13:
         Find the external index k
         if k is the last index of A then
14:
            \alpha_k = 1
15:
         else if k is the first index of A then
16:
17:
            \alpha_{k-1}=1
            \mathbf{A}(i_k,\beta) = \sum_{\beta=1}^{\alpha_k} \mathbf{A}(i_k,\beta) S_k(\beta;\beta)
18:
         else
19:
            \mathbf{A}(\gamma, i_k, \beta) = \sum_{\beta=1}^{\alpha_k} \mathbf{A}(\gamma, i_k, \beta) S_k(\beta; \beta)
20:
         end if
21:
22: G_k = A
23:
         return G_k
24: end if
```

Diagramatic Representation of the Algorithm



Ranks of Tensor Train Representation (Algorithm 3)

Theorem

If for each unfolding A_k of a d-dimensional tensor \mathbf{A} , $rank(A_k) = r_k$, then Algorithm 3 produces a Tensor Train representation with ranks not higher than r_k .

The rank of the kth-unfolding matrix is r_k ; hence it can be written as:

$$A_{k}(i_{1}, \dots, i_{k}; i_{k+1}, \dots, i_{d}) = \sum_{\alpha=1}^{r_{k}} U(i_{1}, \dots, i_{k}; \alpha) \Sigma(\alpha; \alpha) V^{T}(\alpha; i_{k+1}, \dots, i_{d})$$

$$= \sum_{\alpha=1}^{r_{k}} U(i_{1}, \dots, i_{k}; \alpha) X(\alpha; \alpha) S(\alpha; \alpha) Y(\alpha; \alpha) V^{T}(\alpha; i_{k+1}, \dots, i_{d})$$

$$= \sum_{\alpha=1}^{r_{k}} B(i_{1}, \dots, i_{k}; \alpha) S(\alpha; \alpha) C(\alpha; i_{k+1}, \dots, i_{d}).$$

In matrix form we obtain, $A_k = BSC$, $B = A_kC^{-1}S^{-1} = A_kZ$, $C = S^{-1}B^{-1}A_k = WA_k$. or in the index form, $B(i_1, \cdots, i_k; \alpha) = \sum_{i_{k+1}=1}^{n_{k+1}} \cdots \sum_{i_d=1}^{n_d} \mathbf{A}(i_1, \cdots, i_d)Z(i_{k+1}, \cdots, i_d; \alpha)$,

$$C(\alpha; i_{k+1}, \dots, i_d) = \sum_{i_1=1}^{n_1} \dots \sum_{i_k=k}^{n_k} \mathbf{A}(i_1, \dots, i_d) W(\alpha; i_1, i_2, \dots, i_k).$$

B and C can be treated as k+1 and d-k+1 dimensional tensors B and C respectively. We prove that $\operatorname{rank}(B_{k'}) \leq r_{k'-1} < k' < k-1$ and $\operatorname{rank}(C_{k'}) \leq r_{k'-k+1} \leq k' \leq d-1$;

Parallel Tensor Train Approximation I

Algorithm 4: PTT-approx (Parallel Tensor Train Approximation)

Require: d-dimensional tensor **A** and expected accuracy ϵ

Ensure: Cores $G_k(\alpha_{k-1}, n_k, \alpha_k)_{1 \le k \le d}$ of the approximated tensor **B** in

TT-representation such that $||\mathbf{A}-\mathbf{B}||_F$ is close to or less than ϵ

- 1: if $nEl(\mathbf{A}) > 1$ then
- 2: Find the middle external index k
- 3: Compute unfolding matrix A_k
- 4: Compute SVD: $A_k = U \Sigma V^T$
- 5: Compute truncation accuracy Δ
- 6: Compute α_k such that $A_k = U(; 1 : \alpha_k) \Sigma(1 : \alpha_k; 1 : \alpha_k) V^T(1 : \alpha_k;) + E_k$ and $||E_K||_F \leq \Delta$
- 7: Select diagonal matrices X_k , S_k and Y_k such that $X_kS_kY_k = \Sigma(1:\alpha_k;1:\alpha_k)$
- 8: $\mathbf{A}_{left} = \mathbf{Tensor}(U(; 1 : \alpha_k)X_k)$
- 9: $list1 = PTT-approx(\mathbf{A}_{left}, \epsilon_1)$
- 10: $\mathbf{A}_{right} = \mathbf{Tensor}(Y_k V^T(1:\alpha_k;))$

Parallel Tensor Train Approximation II

```
list2 = PTT-approx(\mathbf{A}_{right}, \epsilon_2)
11:
          return {list1, list2}
12:
13: else
          Find the external index k
14:
          if k is the last index of A then
15:
16:
              \alpha \nu = 1
          else if k is the first index of A then
17:
18:
             \alpha_{\nu-1}=1
             \mathbf{A}(i_k,\beta) = \sum_{\beta=1}^{\alpha_k} \mathbf{A}(i_k,\beta) S_k(\beta;\beta)
19:
20:
          else
             \mathbf{A}(\gamma, i_k, \beta) = \sum_{\beta=1}^{\alpha_k} \mathbf{A}(\gamma, i_k, \beta) S_k(\beta; \beta)
21:
22:
          end if
23:
      G_k = A
24:
          return G<sub>k</sub>
25: end if
```

Frobenius Error with Product of Approximated Matrices

The SVD of a real matrix A can be written as,

$$A = (U_1 U_2) \begin{pmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{pmatrix} (V_1 V_2)^T = U_1 \Sigma_1 V_1^T + U_2 \Sigma_2 V_2^T$$

= $U_1 \Sigma_1 V_1^T + E_A = BSC + E_A$.

Here $B = U_1 X$, $C = Y V_1^T$ and $XSY = \Sigma_1$. Matrices B and C are approximated by \hat{B} and \hat{C} , i.e., $B = \hat{B} + E_B$ and $C = \hat{C} + E_C$. X, Y and S are diagonal matrices. E_A , E_B and E_C represent error matrices corresponding to low-rank approximations of A, B and C.

$$||A - \hat{B}S\hat{C}||_F^2 \approx ||E_A||_F^2 + ||BSE_C||_F^2 + ||E_BSC||_F^2$$

Our Approximation Approaches

We propose 3 approaches based on how leading singular values of the unfolding matrix are passed to the left and right subtensors in Algorithm 4.

- Leading Singular values to Right subtensor (LSR)
- Square root of Leading Singular values to Both subtensors (SLSB)
- Leading Singular values to Both subtensors (LSB)

Approach	Description	Δ	ϵ_1	ϵ_2	
LSR	$X = I, Y = \Sigma_{\alpha}, S = I$	$\frac{\epsilon}{\sqrt{d-1}}$	$\epsilon \sqrt{\frac{(d-2)(d_1-1)}{(d-1)(d_2-1+(d_1-1)tr(\Sigma_{\alpha}^2))}}$	$\epsilon \sqrt{\frac{(d-2)(d_2-1)}{(d-1)(d_2-1+(d_1-1)tr(\Sigma_{\alpha}^2))}}$	
SLSB	$X = Y = \sum_{\alpha}^{\frac{1}{2}}, S = I$	$\frac{\epsilon}{\sqrt{d-1}}$	$\epsilon \sqrt{\frac{d_1-1}{(d-1)tr(\Sigma_{\alpha})}}$	$\epsilon \sqrt{\frac{d_2-1}{(d-1)tr(\Sigma_{\alpha})}}$	
LSB	$X = Y = \Sigma_{\alpha}, S = \Sigma_{\alpha}^{-1}$	$\frac{\epsilon}{\sqrt{d-1}}$	$\epsilon \sqrt{\frac{d_1-1}{d-1}}$	$\epsilon \sqrt{\frac{d_2-1}{d-1}}$	
STTA	$X = I, Y = \Sigma_{\alpha}, S = I$	$\frac{\epsilon}{\sqrt{d-1}}$	0	$\epsilon \sqrt{\frac{d_2-1}{d-1}}$	

• STTA represents Sequential Tensor Train Approximation

Table of Contents

- Introduction
- 2 Low Rank Tensor Representations
- 3 Algorithms to Compute Tensor Train Representation
 - Sequential Algorithms
 - Parallel Algorithms
- Experimental Evaluation
- Conclusion

Low Rank Functions

Log	$\log(\sum_{j=1}^d j i_j)$
Sin	$\sin(\sum_{j=1}^d i_j)$
Inverse-Square-Root (ISR)	$\frac{1}{\sqrt{\sum_{j=1}^d i_j^2}}$
Inverse-Cube-Root (ICR)	$\frac{1}{\sqrt[3]{\sum_{j=1}^d i_j^3}}$
Inverse-Penta-Root (IPR)	$\frac{1}{\sqrt[5]{\sum_{j=1}^d i_j^5}}$

We consider d=12 and $i_j \in \{1,2,3,4\}_{1 \le j \le d}$. This setting produces a 12-dimensional tensor with 4^{12} elements for each low rank function.

Comparison of All Approaches for 12-dimensional Tensors

- Prescribed accuracy = 10^{-6}
- compr: compression ratio, ne: number of elements in aprroximation, OA: approximation accuracy

Appr.	Metric	Log	Sin	ISR	ICR	IPR
STTA	compr	99.993	99.999	99.987	99.981	99.971
	ne	1212	176	2240	3184	4864
	OA	2.271e-07	2.615e-09	1.834e-07	4.884e-07	4.836e-07
LSR	compr	99.817	99.998	99.915	99.874	99.824
	ne	30632	344	14196	21176	29524
	OA	3.629e-08	1.412e-11	1.118e-07	8.520e-08	5.811e-08
SLSB	compr	99.799	99.999	99.952	99.912	99.870
	ne	33772	176	8068	14824	21792
	OA	2.820e-08	6.144e-12	1.118e-07	8.518e-08	5.664e-08
LSB	compr	99.993	99.999	99.987	99.981	99.970
	ne	1212	176	2240	3184	4964
	OA	2.265e-07	1.252e-11	1.834e-07	4.884e-07	3.999e-07

Moliere Workshop

Alternatives to SVD

- SVD is expensive
- Good alternatives to SVD: QR factorization with column pivoting (QRCP), randomized SVD (RSVD)

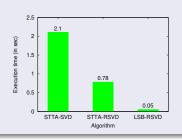
SVD vs QRCP+SVD vs RSVD for Log tensor

Approach	Rank	compr	ne	LSB-OA	STTA-OA
SVD				6.079e-06	6.079e-06
QRCP+SVD	5	99.994	992	1.016e-05	1.384e-05
RSVD				6.079e-06	6.079e-06
SVD				1.323e-07	1.340e-07
QRCP+SVD	6	99.992	1376	3.555e-07	5.737e-07
RSVD				1.322e-07	1.322e-07
SVD				2.753e-09	2.279e-08
QRCP+SVD	7	99.989	1824	6.620e-09	1.167e-08
RSVD				2.760e-09	2.774e-09

Performance Comparison

Sequential performance with Log tensor

- Number of computations for both RSVD algorithms = $O(n^d)$
- LSB-SVD is very slow
- LSB-RSVD is much faster



RSVD Algorithm of LSB-RSVD

- ullet Input matrix is A and the desired rank is r
- Multiply with a random sketch matrix (depends on r), Y = A *RS
- Perform QR factorization, $[Q, \sim] = QR(Y)$
- Compute SVD decomposition, [U S V] = $SVD(Q^T * A)$
- Update U, U = Q*U

Parallel performance counts on P processors

Communication cost analysis along the critical path

- To perform A*RS, #data transfers = $\mathcal{O}(\frac{n^{\frac{d}{2}}}{\sqrt{P}}\log P)$
- To perform $Q^T * A$, #data transfers $= \mathcal{O}(\frac{n^{\frac{d}{2}}}{\sqrt{P}} \log P)$
- To perform reshape operation, #data transfers $= \mathcal{O}(\frac{n^{\frac{d}{2}}}{\sqrt{P}}\log P)$
- At each step, #messages $= \mathcal{O}(\log P)$

Algorithm	# Computations	Communications ¹	# Messages
<i>LSB</i> -RSVD	$\mathcal{O}(\frac{n^d}{P})$	$\mathcal{O}(\frac{n^{\frac{d}{2}}}{\sqrt{P}}\log P)$	$\mathcal{O}(\log d \log P)$
<i>STTA</i> -RSVD	$\mathcal{O}(\frac{n^d}{P})$	$\mathcal{O}(\frac{n^{d-1}}{P}(1+\frac{\log P}{d}))$	$\mathcal{O}(d \log P)$

Moliere Workshop

¹Assuming *n* is large.

Table of Contents

- Introduction
- 2 Low Rank Tensor Representations
- 3 Algorithms to Compute Tensor Train Representation
 - Sequential Algorithms
 - Parallel Algorithms
- 4 Experimental Evaluation
- Conclusion

Conclusion & Ongoing Work

Conclusion

- Proposed parallel algorithms to compute tensor train decomposition and approximation of a tensor
- LSB approach achieves similar compression to the sequential algorithm
- Accuracies of all approaches are within prescribed limit

Ongoing Work

- Proving quasi optimality for parallel approximation algorithms
- Implementation of parallel algorithms for distributed memory systems

Thank You!