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Tensors: Multidimensional Arrays

High Dimensional Tensors

Neuroscience: Neuron x Time x Trial = D @

Vector Matrix  3-dimensional tensor
Transportation: Pickup x Dropoff x Time

Media: User x Movie x Time @@@
Ecommerce: User x Product x Time

4-dimensional tensor

Cyber-Traffic: IP x IP x Port x Time

Social-Network: Person x Person x Time x Interaction-Type

Neural Network:

Molecular Simulation: To represent wave functions

Quantum Computing: To represent qubit states
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Tensor computations

@ Memory and computation requirements are exponential in the number
of dimensions
e A molecular simulation involving just 100 spatial orbitals manipulate a
huge tensor with 419 elements

@ People work with low dimensional structure (decomposition) of the
tensors

e A tensor is represented with smaller objects
e Improves memory and computation requirements

@ Limited work on parallelization of tensor algorithms

@ Most tensor decompositions rely on Singular Value Decomposition
(SVD) of matrices
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Singular Value Decomposition (SVD) of Matrices

o It decomposes a matrix A € R™*" to the form UL VT
e U is an m x m orthogonal matrix
e Vis an n X n orthogonal matrix
e XY is an m x n rectangular diagonal matrix

@ It represents a matrix as the sum of rank one matrices
o A=Y 2(i U VT
e Minimum number of rank one matrices required in the sum is called
the rank of the original matrix

-1 +...+H:

Q
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Popular Tensor Decompositions

Higher Order Generalization of SVD

e Canonical decomposition (equivalently known as Canonical Polyadic
or CANDECOMP or PARAFAC)

@ Tucker decomposition

@ Tensor Train decomposition (equivalently known as Matrix Product
States)

Tensor Notations

@ A € Rm*X" is a d-dimensional tensor
@ A(i, - ,iq) represent elements of A

@ Use bold letters to denote tensors
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Canonical Representation

:H//./:

A(in, - ig) = Y nq Ui(i1, @) Ua(i2, @) - - - Ug(ia, @)

(+) For np = ny = -+ ng = n, the number of entries = O(nrd)

(-) Determining the minimum value of r is an NP-complete problem

(-) No robust algorithms to compute this representation
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Tucker Representation

-

@ Represents a tensor with d matrices and a small core tensor

© A(in, i) = 2om1 " D=1 8ayag Ui (i1, 1) -+ Ug(ig, o)

@ (+) SVD based stable algorithms to compute this representation

o (()Formi=m=---ng=nandrp=ro=---=ry=r, the number
of entries = O(ndr + r9)
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Tensor Train Representation: Product of Matrices View

@ A d-dimensional tensor is represented with 2 matrices and d-2
3-dimensional tensors.

r e

G, G, Gy
e dAF - 7
Gi(in) Gy(in) Galia)

Ay, da, -, iq) = Gili1)Goliz) - - Galig)

An entry of A € R™M*"*"d is computed by multiplying corresponding
matrix (or row/column) of each core.
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Tensor Train Representation

A € R™M*XNd ig represented with cores Gy€ RH«—1%MXk k=1 2 ...d,
ro=rg=1 and its elements satisfy the following expression:

) rd
A(i, -+ ig) = Z Z Gi(ao, i1, 01) -+ Ga(ad—1, ia, a)

ap=1 ag=1
n rd—1
= g g Gi(1,i,0a1) - Gg(ag-1,id,1)
a1:1 Oéd_1:1

“ a2 fro “d-1

e Formm=m=---=ng=nandrn=mn=---=ry_1 =r, the
number of entries = O(ndr?)
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Unfolding Matrices of a Tensor & Notations

o Frobenius norm of a matrix A is defined as, ||Al[r = />, A(i;j)?

@ Frobenius norm of a d-dimensional tensor A is defined as, ||A||F =

\/2;17;2’... Jig A(i17 ’.2, Tty id)2

k-th unfolding matrix

Ay denotes k-th unfolding matrix of tensor A € R™M*""*"d
Ak = [Ak(is 2y -+ 5 ki ik1s o+ 5 )]

o Size of A is ([T/_y m) X (IT ks )
@ r, denotes the rank of Ay.

e (r,rm, -+ ,rqy—1) denotes the ranks of unfolding matrices of the
tensor.
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Tensor Train algorithms and Separation of dimensions

@ Sequential algorithms to compute Tensor Train decomposition and
approximation exist [Oseledets, 2011]

Sequential algorithm

{i1, iz, ig}

N
N Aig1,ia}

(i} {ia} 1
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Tensor Train Decomposition [Oseledets, 2011]

Algorithm 1 Tensor Train Decomposition

Require: d-dimensional tensor A and ranks (ri, r, -« rg—1)
Ensure: Cores Gy(ak_1, Nk, k)1<k<d Of the Tensor Train representation
with a < r,and ag = ag =1

1: Temporary tensor: C=A, ag =1

2. fork=1:d—1do

3. Ay = reshape(C, ay_1ny, %el’fﬁ))

4. Compute SVD: A, = UX VT

5. Compute rank of ¥, ay = rank(X)

6: New core: Gy := reshape(U(;1: ak), ak—1, Nk, k)
7. C=X(l:akl:anVT(1:a)

8: end for

9 Gy =C,ay=1

10: return Gq,---, Gy
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Tensor Train Approximation [Oseledets, 2011]

Al

gorithm 2 Tensor Train Approximation

Require: d-dimensional tensor A and expected accuracy €
Ensure: Cores Gy(ak—1, Nk, ik)1<k<d of the approximated tensor B in Tensor

1
2
3:
4
5

© oo N

10:

Train representation such that ||A — B||g is not more than €
: Temporary tensor: C=A, ap =1, = ﬁ
:fork=1:d—-1do
Ay = reshape(C, ak_1ng, %’e{(’?)
Compute SVD: A, = UX VT
Compute ay such that Ay = U1 : a)Z(1: ap;l:ar)VT(1: ax;) + Ex
and ||EKHF <9
New core: Gy := reshape(U(; 1 : ak), rk—1, Nk, rk)
C=X(l:anl:a)VT(1:ak)
end for
: Gd = C, Qg = 1
return B in Tensor Train representation with cores Gy, - , Gy
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nsor Train algorithms and Separation of dimensions

Sequential algorithm For better parallelization

{1, i2,+ia} it i ig}
(i1, ig} {ias1. i}
. i3, - g} s S ro N
’ N
K S log,
N d-1 s N
N L 4 > P
N {2} 7 N {ig-1,ia}
< 1 T«
N {iaaia} {i} io} {ig-1} ia}
{ig1} L} 1
v v

@ Can obtain better parallelism by expressing the operation in a balanced
binary tree shape

e Proposed parallel algorithms based on this idea
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Extra Definitions for Parallel Algorithms

@ Original indices of a tensor are called external indices
@ Indices obtained due to SVD are called internal indices
o A(q, i1, i, i3, 3) has 3 external and 2 internal indices

e nE/(A) denotes the number of external indices of A

k-th Unfolding Matrix

k-th unfolding of a tensor with elements A(«, i1, ia, - - , ik, ik+1, - ,3) is
represented as, Ay = [Ax(a, i, iy -+ ikiike1 -+ 5 B)]-

All indices from the beginning to iy denote the rows of Ay and the
remaining indices denote the columns of Ag.

@ Tensor(A/) converts an unfolding matrix A to its tensor form
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Parallel Tensor Train decomposition |

Algorithm 3: PTT-decomposition (parallel Tensor Train Decomposition)

Require: d-dimensional tensor A and ranks (r1,r, - rg—1)
Ensure: Cores Gy(ak—1, nk, ak)1<k<d of the Tensor Train representation
with a < r,and ag = ag =1
1. if nE/(A) >1 then
Find the middle external index k
Compute unfolding matrix Ak
Compute SVD: A, = UZ VT
Compute rank of ¥, a = rank(X)
Select diagonal matrices Xy, Sk and Y such that
XkSkYk = Z(l ey 1: ak)
A[eft = Tensor(U(; 1: Ock)Xk)
. listl = PTT-decomposition(Ajes, (r1,- - rk—1, k) )
9: Aright = Tensor(Yk VT(]. DO, ))

AU

© N
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Parallel Tensor Train decomposition Il

10: list2= PTT-decomposition(A,,-ght,(ak, kg1, rd,l))
11:  return {listl, list2}

12: else

13:  Find the external index k

14: if k is the last index of A then

15: ar =1

16:  else if k is the first index of A then

17: a1 =1

18 Al B) = S5, Al B)Sk(5: B)

19: else

20: A(v, ik, B) = 32551 A, ik, B)Sk(B; B)
21:  end if

2. G,=A

23:  return Gy

24: end if
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Diagramatic Representation of the Algorithm

Suraj Kt

¢

A(i, iz, 13, ia, s, i)

inisie
i3
A(i1, iz, i3, 3) A(as, ia, is, i)
i30t3 iﬁ
> azigls
A(i1, i2, a2) Az, i3, a3) A(as, ia, is, as) A(as, ig)
i I5ts
il a3i4
A(i, 1) A(ai, b, az) A(as, iz, as)  A(oa, is, as)
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epresentation (Algorithm 3)

If for each unfolding Ay of a d-dimensional tensor A, rank(Ax) = rk, then
Algorithm 3 produces a Tensor Train representation with ranks not higher than ry.

The rank of the kth-unfolding matrix is ry; hence it can be written as:
rk
Aclin, - ik it yig) = Y Ui, -+ ik ) Z(as ) VT (@ iigr, -+ i)
a=1
rk
= Z U(ir, - ik @)X (o @)S(e; @) Y (e )V T (@ ks, - - 5 ig)
a=1
rk
= B(i, ik @)S(e; @) C(i ikia, - s ig)-
a=1

In matrix form we obtain, Ay = BSC,B = A, C 1S 1= A, Z C=S"1B71A, = WA,

or in the index form, B(iy,- - ,ix;a) = Z;:(k:llzl . Z:.;"Zl A(it, - ig)Z(iks1, 5 id; @),
Clasiksr, - yig) = 200y 200 A, ig) Wi i, i, k).

B and C can be treated as k + 1 and d-k + 1 dimensional tensors B and C respectively. We

prove that rank(By/ )< re 1</ <k—1 and rank(Cu )< rer jp1<ir<d—1-

Suraj KUMAR (Inria Paris) Parallel Tensor Train Moliere Workshop 25/38



Parallel Tensor Train Approximation |

Algorithm 4: PTT-approx (Parallel Tensor Train Approximation)

Require: d-dimensional tensor A and expected accuracy €
Ensure: Cores Gy(ak—1, Nk, cuk)i<k<d Of the approximated tensor B in
TT-representation such that ||A — BJ|F is close to or less than €

1: if nE/(A) >1 then
Find the middle external index k
Compute unfolding matrix Ay
Compute SVD: A, = UL VT
Compute truncation accuracy A
Compute oy such that Ay = U(G1: ap)Z(1: ap;1:ap)VT(1: ak;) + Ex
and HEKHF < A

7:  Select diagonal matrices Xy, S and Y such that

XkSkYk = Z(]. Qe 1: Oék)

8 Ak = Tensor(U(;1: aw)Xy)

9:  listl = PTT-approx(Ajes, €1)
10: Aygne = Tensor(Yi VT (1: ay;))

A
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Parallel Tensor Train Approximation Il

11: list2 = PTT-approx(Aight, €2)
12:  return {listl, list2}

13: else

14: Find the external index k

15:  if k is the last index of A then

16: a =1

17:  else if k is the first index of A then

18: Q-1 = 1

19: A(ik, B) = >_551 Alix, B)Sk(5: B)

20: else

21: A(’Y7 Ikyﬁ) = ngzl A(’Yv lk7ﬂ)5k(51/6)
22:  endif

23: G, =A

24: return Gy

25: end if
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Frobenius Error with Product of Approximated Matrices

The SVD of a real matrix A can be written as,

¥1 0
A= (Uils) < 01 22) (ViVo)T = Ui V)| + UhSo vy

= U1X1 V)" + Ex = BSC + E,.

Here B = U1 X, C = YVlT and XSY = X;. Matrices B and C are
approximated by Band C, ie, B=B+ Eg and C = ¢+ Ec. X, Y and
S are diagonal matrices. Ej, Eg and Ec represent error matrices
corresponding to low-rank approximations of A, B and C.

1A~ BSC% ~ ||Eall? + ||BSEcl[7 + ||EsSCII7
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Our Approximation Approaches

We propose 3 approaches based on how leading singular values of the
unfolding matrix are passed to the left and right subtensors in Algorithm 4.

o Leading Singular values to Right subtensor (LSR)
e Square root of Leading Singular values to Both subtensors (SLSB)
o Leading Singular values to Both subtensors (LSB)

Approach Description A €1 €
— _ _ € (d—2)(d; —1) (d—2)(dp—1)
LSR X=1Y=%a S=1 d—1 \/(d 1)(dp —1+(dy —1)tr(¥2))) \/(d 1)(dp —1+(dy —1)tr(¥2)))

T
2 dy—1 dy—1
SLSB X=Y=32 5=1 NCES e\ @Decay \/m

_ 1 d—1 dy—1
LSB X=Y=%n S=X_ \/% Y= RV =
_ _ _ -1
STTA X=1Y=Xq S=1 \/% 0 e 1

o STTA represents Sequential Tensor Train Approximation
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Low Rank Functions

Log log(3-71 Ji)
Sin sin(zj‘-"::l i)
Inverse-Square-Root (/SR) ——
D j=1 ’j2
Inverse-Cube-Root (/CR) %dﬁ
j=1']
Inverse-Penta-Root (/PR) %dis
j=1']

We consider d = 12 and j; € {1,2,3,4}1<j<qg. This setting produces a
12-dimensional tensor with 412 elements for each low rank function.
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Comparison of All Approaches for 12-dimensional Tensors

e Prescribed accuracy = 1076

e compr: compression ratio, ne: number of elements in aprroximation, OA:
approximation accuracy

Appr. | Metric Log Sin ISR ICR IPR
compr 99.993 99.999 99.987 99.981 99.971
STTA ne 1212 176 2240 3184 4864
OA 2.271e-07 | 2.615e-09 | 1.834e-07 | 4.884e-07 | 4.836e-07
compr 99.817 99.998 99.915 99.874 99.824
LSR ne 30632 344 14196 21176 29524
OA 3.629e-08 | 1.412e-11 | 1.118e-07 | 8.520e-08 | 5.811e-08
compr 99.799 99.999 99.952 99.912 99.870
SLSB ne 33772 176 8068 14824 21792
OA 2.820e-08 | 6.144e-12 | 1.118e-07 | 8.518e-08 | 5.664e-08
compr 99.993 99.999 99.987 99.981 99.970
LSB ne 1212 176 2240 3184 4964
OA 2.265e-07 | 1.252e-11 | 1.834e-07 | 4.884e-07 | 3.999e-07
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Alternatives to SVD

@ SVD is expensive

@ Good alternatives to SVD: QR factorization with column pivoting
(QRCP), randomized SVD (RSVD)

SVD vs QRCP+SVD vs RSVD for Log tensor

Approach Rank | compr | ne LSB-OA | STTA-OA
SVD 6.079e-06 | 6.079e-06
QRCP+SVD 5 99.994 | 992 | 1.016e-05 | 1.384e-05
RSVD 6.079e-06 | 6.079e-06
SVD 1.323e-07 | 1.340e-07
QRCP+SVD 6 99.992 | 1376 | 3.555e-07 | 5.737e-07
RSVD 1.322e-07 | 1.322e-07
SVD 2.753e-09 | 2.279e-08
QRCP+SVD 7 99.989 | 1824 | 6.620e-09 | 1.167e-08
RSVD 2.760e-09 | 2.774e-09
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Performance Comparison

Sequential performance with Log tensor

25

@ Number of computations for
both RSVD algorithms = O(n9)

@ LSB-SVD is very slow

o LSB-RSVD is much faster

STTA-SVD STTA-RSVD LSB-RSVD
Algorithm

0.78

Execution time (in sec)

v

RSVD Algorithm of LSB-RSVD

@ Input matrix is A and the desired rank is r

e Multiply with a random sketch matrix (depends on r), Y = A *RS
e Perform QR factorization, [Q, ~] = QR(Y)

o Compute SVD decomposition, [U S V] = SVD(QT * A)

e Update U, U = Q*U
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Parallel performance counts on P processors

Communication cost analysis along the critical path

@ To perform A*RS, #data transfers = O( Iog P)

o To perform QT x A, #data transfers = (9( Iog P)

d
n2

@ To perform reshape operation, #data transfers = (9(\/—5 log P)
@ At each step, #messages = O(log P)

Algorithm # Computations Communications1 # Messages
LSB-RSVD o) (9( ~logP) | O(logdlogP)
STTA-RSVD o(%) O("-(1+ 2Py | O(dlog P)

! Assuming n is large.
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Conclusion & Ongoing Work

Conclusion
@ Proposed parallel algorithms to compute tensor train decomposition
and approximation of a tensor

@ LSB approach achieves similar compression to the sequential
algorithm

@ Accuracies of all approaches are within prescribed limit

v

Ongoing Work

@ Proving quasi optimality for parallel approximation algorithms

@ Implementation of parallel algorithms for distributed memory systems
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Thank You!
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