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Neural Network Compression: Motivation

Most state of the art deep neural networks are overparameterized and exhibit a high
computational cost.

Often they cannot be efficiently deployed on embedded systems and mobile devices.

Acceleration of pre-trained networks are usually achieved through structural
pruning/sparcification, low-rank approximation and quantization.
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Recent Research

1 Low-rank tensor approximation of weight tensors to speed up and compress pre-trained
NNs:

multi-stage compression (ICCVW, 2019, link),
stable low-rank approximation(ECCV, 2020, link).

2 Dimensionality reduction of activations (layers’ outputs) to speed up and compress
pre-trained NNs:

faster NNs using maximum volume algorithm (Computational Mathematics and Mathematical
Physics Journal, 2021, link),
smaller NNs using active subspaces (SIAM Journal on Mathematics of Data Science, 2020,
link).
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NNs Compression via Weight Approximation: Motivation

For a convolutional layer with input of size H ×W × S and kernel (weight tensor) of size
d × d × T × S number of

parameters: O(d2ST)

operations: O(HWd2ST)

Source: https://arxiv.org/pdf/1412.6553.pdf
Figure: Convolutional layer.

Reducing the number of parameters in NNs is a common trick to accelerate inference time and
at the same time reduce power usage and network memory.
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Tensor Decompositions for Weight Approximation
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Figure: rank-R CP decomposition of 3D tensor (source: http://arxiv.org/abs/1609.00893)
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Figure: rank-(R1,R2,R3) Tucker decomposition of 3D tensor
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Layer Compression via Weight Approximation

Top row: low-rank approximation of 3D weight tensor.
Tucker: O(d2CinCout) −→ O(CinRin + d2RoutRin + CoutRout) parameters,
CP: O(d2CinCout) −→ O

(
R(Cin + d2 + Cout)

)
parameters, R = Rout = Rin.

Bottom row: initial layer is replaced with a sequence of layers.
Tucker: middle convolution is standard.
CP: middle convolution is depth-wise.
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NN Compression via Weight Approximation: One-Stage

NN compression via low-rank tensor/matrix approximations of weight tensors is usually built on
the following one-stage scheme:

Compress a pre-trained neural network. For each layer do
Extract a convolutional kernel.
Decompose it into factors.
Replace initial layer by a sequence of layers with factors as kernels.
Calibrate NN statistics.

Fine-tune NN.

Drawbacks:

significant loss of accuracy for high compression rates,

this yields a bad initialization for further fine-tuning.
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NN Compression: Multi-Stage

Multi-stage approach with gradual rank reduction addresses the problem arised in one-stage
approach.

While a desired compression rate is not reached or automatically selected ranks are not
stabilized, repeat:

Compress the neural network.

Fine-tune the neural network.

Benefits: compressed representation allows to find a good initial approximation.
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NN Compression: Automated Rank Selection

Constant compression rate.

#params(Rnew) =
#params(R)

rate
.

Constant layer acccuracy drop.

accuracy(R) − accuracy(Rnew) < drop,

accuracy is computed before fine-tuning, drop is a maximum allowed accuracy decrease
caused by one layer compression.

Bayesian approach. For each channel dimension

Rnew = R − factor · (R − REVBMF ),

REVBMF is found via global analytic solution of Empirical Variational Bayesian Matrix
Factorization, 0 ≤ factor ≤ 1, REVBMF ≤ Rnew ≤ R.
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NN Compression: Further Compression Step

Figure: Compression of the factorized weight. Rank of the approximation is reduced from R to R ′.
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Results: MUlti-Stage COmpression

MUlti-Stage COmpression outperforms one-stage compression on all tested
classification (AlexNet, VGG-16, ResNet-18, ResNet-50) and
object detection tasks (YOLOv2, TinyYOLO, FasterRCNN).

Comparison with pruning approaches

Method FLOPs ∆ top-1 ∆ top-5
RESNET-18 @ ILSVRC12 dataset

Network Slimming(Liu &al.,’17) 1.39 -1.77 -1.29
Low-cost Col. Layers(Dong &al.,’17) 1.53 -3.65 -2.3
Channel Gating NN(Hua &al., ’18) 1.61 -1.62 -1.03
Filter Pruning(Li &al.,’17) 1.72 -3.18 -1.85
Discr.-aware Ch.Pr.(Zhuang &al.,’18) 1.89 -2.29 -1.38
FBS(Gao &al.,’18) 1.98 -2.54 -1.46
MUSCO (Our) 2.42 -0.47 -0.30

Next: How to stabilize fine-tuning with CP decomposed layers.

Julia Gusak, y.gusak@skoltech.ru Tensor Methods for NNs Speed-Up and Compression July, 2021 12 / 39



Recent Research

1 Low-rank tensor approximation of weight tensors to speed up and compress pre-trained
NNs:

multi-stage compression (ICCVW, 2019, link),
stable low-rank approximation(ECCV, 2020, link).

2 Dimensionality reduction of activations (layers’ outputs) to speed up and compress
pre-trained NNs:

faster NNs using maximum volume algorithm (Computational Mathematics and Mathematical
Physics Journal, 2021, link),
smaller NNs using active subspaces (SIAM Journal on Mathematics of Data Science, 2020,
link).

Julia Gusak, y.gusak@skoltech.ru Tensor Methods for NNs Speed-Up and Compression July, 2021 13 / 39

https://openaccess.thecvf.com/content_ICCVW_2019/papers/LPCV/Gusak_Automated_Multi-Stage_Compression_of_Neural_Networks_ICCVW_2019_paper.pdf
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123740511.pdf
https://arxiv.org/pdf/1910.06995.pdf
https://epubs.siam.org/doi/pdf/10.1137/19M1296070


CPD: Degeneracy

Standard CPD suffers from the presence of rank-one components that have relatively high
Frobenius norms, but cancel each other.
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Figure: Intensity (Frobenius norm) for each rank-1 component from rank-500 CPD of a ResNet-18
weight. CPD-EPC states for the proposed decomposition.
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CPD: Sensitivity

Sensitivity of the tensor T = ~A,B,C� is a measure of factorized tensor norm change with
respect to perturbations in individual factor matrices.

ss(~A,B,C�) = lim
σ2→0

1
Rσ2
E{‖T − ~A + δA,B + δB,C + δC�‖2F ,

where δA, δB, δC ∼ N(0, σ2).
Sensitivity can be computed as

ss(~A,B,C�) = tr{(AT A) ~ (BT B) + (BT B) ~ (CT C) + (AT A) ~ (CT C)}
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CPD-EPC

Proposed CPD-EPC is a CPD with minimal sensitivity
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Figure: Sum of squares of the intensity and Sensitivity vs Rank of CPD.
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NN Compression via CPD: Sensitivity

Our method minimizes sensitivity of CPD making factorized layer stable during fine-tuning.

Julia Gusak, y.gusak@skoltech.ru Tensor Methods for NNs Speed-Up and Compression July, 2021 17 / 39



Results: NN Compression via CPD-EPC

CPD-EPC results in a significantly higher accuracy than the standard CPD.
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Figure: Evaluation of ResNet-18 with decomposed layer4.1.conv1 by CPD-EPC and original CPD after
single layer fine-tuning, ILSVRC-12 dataset.
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Results: NN Compression via CPD-EPC

Our method achieves the best performance in terms of compression-accuracy drop trade-off
among all the considered results.

Table: Comparison of different model compression methods on ILSVRC-12 validation dataset. The
baseline models are taken from Torchvision.

Model Method ↓ FLOPs ∆ top-1 ∆ top-5

VGG-16
Asym. (Zhang&al., ’16) ≈ 5.00 - -1.00
TKD+VBMF(Kim&al.,’16) 4.93 - -0.50
Our (EPS1=0.005) 5.26 -0.92 -0.34

ResNet-18

Channel Gating NN(Hua &al., ’18) 1.61 -1.62 -1.03
Discr.-aware Ch.Pr.(Zhuang &al.,’18) 1.89 -2.29 -1.38
FBS(Gao &al.,’18) 1.98 -2.54 -1.46
MUSCO (Our’19) 2.42 -0.47 -0.30
Our (EPS1=0.00325) 3.09 -0.69 -0.15

ResNet-50 Our (EPS1=0.0028) 2.64 -1.47 -0.71

1 EPS: accuracy drop threshold. Rank of the decomposition is chosen to maintain the
drop in accuracy lower than EPS.
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Results: NN Compression via CPD-EPC

Table: Inference time and acceleration for ResNet-50 on different platforms.

Platform
Model inference time

Original Compressed
Intel® Xeon®Silver 4114 CPU 2.20 GHz 3.92 ± 0.02 s 2.84 ± 0.02 s
NVIDIA®Tesla®V100 102.3 ± 0.5 ms 89.5 ± 0.2 ms
Qualcomm®Snapdragon™845 221 ± 4 ms 171 ± 4 ms
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Python package: musco-pytorch

MUSCO is a Python library for NNs compression via tensor/matrix approximation of weight
tensors.

Supported layers: convolutional (1D, 2D), fully-connected.

Supported decompositions: SVD, different types of CPD, Tucker decomposition.

Supported rank selection: manual, constant compression rate, Bayesian (VBMF).

Supports multi-stage compression.

Source code: https://github.com/musco-ai/musco-pytorch/tree/develop
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Python package: musco-pytorch

Steps to perform model compression using MUSCO package.

Load a pre-trained model.

Compute model statistics.

Define a model compression schedule.

Create a Compressor.

Compress.
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Python package: musco-pytorch

For detailed instructions check README.md and docs at
https://github.com/musco-ai/musco-pytorch/tree/develop
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NNs Compression via Weight Approximation: Conclusion

Tensor based NN speedup can be improved by using
Multi-stage instead of one-stage compression,
CPD-EPC instead of standard CPD.

Further research:
Joint low-rank tensor approximation and quantization for model compression.
Architectures that have both inputs and weights represented in a factorized format
(potentially useful for efficient processing of very large models).
Robust tensorized architectures.
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NNs Compression via Weight Approximation: Links with Efficient NNs

There is a tight link between efficient DL blocks and layers that arise after applying
different tensor decompositions to the standard convolutional kernels.

CP decomposition → MobileNet block,
Tucker decomposition → ResNet Bottleneck block,
Block Term decomposition → ResNext block.

Hence, neural architecture search might be considered as a search for optimal
decomposition.
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Reduced-Order Modelling of Network (RON): Multi-Layer Perceptron
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RON: Illustration
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RON: From K -layer Network to a Faster (K + 1)-layer Network
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RON: Convolutional Networks
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RON: Residual Networks
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RON: Results

Accuracy depending on FLOP reduction for models accelerated using Reduced-Order
modelling of Neural Networks (RON).
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RON: Remarks

The method can be applied on top of other acceleration methods and process the
majority of popular network architectures.

The resulting network is a simple multi-layer perceptron.

In general, this method is for acceleration, not for compression.

Further research: build a faster network as a convolutional one, that will require keeping
high-order structure of layers’ outputs when performing dimesionality reduction.

Julia Gusak, y.gusak@skoltech.ru Tensor Methods for NNs Speed-Up and Compression July, 2021 34 / 39



Recent Research

1 Low-rank tensor approximation of weight tensors to speed up and compress pre-trained
NNs:

multi-stage compression (ICCVW, 2019, link),
stable low-rank approximation(ECCV, 2020, link).

2 Dimensionality reduction of activations (layers’ outputs) to speed up and compress
pre-trained NNs:

faster NNs using maximum volume algorithm (Computational Mathematics and Mathematical
Physics Journal, 2021, link),
smaller NNs using active subspaces (SIAM Journal on Mathematics of Data Science, 2020,
link).

Julia Gusak, y.gusak@skoltech.ru Tensor Methods for NNs Speed-Up and Compression July, 2021 35 / 39

https://openaccess.thecvf.com/content_ICCVW_2019/papers/LPCV/Gusak_Automated_Multi-Stage_Compression_of_Neural_Networks_ICCVW_2019_paper.pdf
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123740511.pdf
https://arxiv.org/pdf/1910.06995.pdf
https://epubs.siam.org/doi/pdf/10.1137/19M1296070


NNs Compression using Active Subspaces

Active Subspace method uses the covariance matrix of gradient to find a projection matrix.
PCE states for polynomial chaos expansion.
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Resume

Tensors have a great potential to improve DL pipelines. Tensors
Incorporate higher-order correlations and multi-model data effectively.
Provide structural priors in DL.
Have been shown to impove DL applications (NNs speed-up/compression, one-shot
learning, domain adaptation, incremental learning, fusion of features, etc.)

Further research:
Joint low-rank approximation and quantization for model compression.
Architectures that have both inputs and weights represented in a factorized format.
Robust tensorized architectures.
Multi-modal feature fusion (e.g., images/video-point clouds, images-speech).
Combine reduced-order modeling technique (RON) and tensor methods to build a faster
convolutional network.
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Thank you!
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