Rank Revealing QR Methods for Sparse Block Low Rank Solvers

Esragul Korkmaz ${ }^{1}$, Mathieu Faverge ${ }^{1}$, Grégoire Pichon ${ }^{2}$, Pierre Ramet ${ }^{1}$ 06 July 2021
${ }^{1}$ Inria Bordeaux - Sud-Ouest, Bordeaux INP, CNRS (Labri UMR 5800), University of Bordeaux
${ }^{2}$ Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP

Table of contents

1. Background
2. Compression Methods
3. Numerical Results

Background

Project - Funded by ANR SaSHiMi

- With: Mathieu Faverge, Pierre Ramet, Grégoire Pichon
- General Picture: Solve linear equations $A x=b$ for large sparse systems
- Full Rank Format: Too much memory usage
- Block Low Rank Format: Compression is possible, so less storage and faster
- Hierarchical Format: Even less computational complexity and memory consumption

Block Low Rank Structure

$$
A \in \mathbb{R}^{m \times n} ; U \in \mathbb{R}^{m \times r} ; V \in \mathbb{R}^{n \times r}
$$

- Compression reduces memory and cost of computations
- Fixed block size $\leq 300 \xrightarrow{\text { Future }}$ variable and larger
- All algorithms were existent
- In PaStiX: $\left\|A-U V^{T}\right\|_{F} \leq \epsilon\|A\|_{F}$

Background Information - Singular Value Decomposition(SVD)

Main Features

- SVD has the form: $A_{m \times n}=U_{m \times m} \Sigma_{m \times n} V_{n \times n}$
- Two options for the threshold:
- $\sigma_{k+1} \leq \epsilon \times$
- $\sqrt{\sum_{i=k+1}^{n} \sigma_{i}^{2}} \leq \epsilon$

Discussions

Lowest ranks
Too costly

Motivation:

- Rank Revealing QR methods $(A=Q R)$

Left Looking vs Right Looking Algorithms

Right Looking
A

Left Looking
A

- Red parts are read / Green parts are updated
- Right Looking: Unnecessary updates but more suitable for parallelism
- Left Looking: Eliminated unnecessary updates but more storage needed

Pivoting vs Rotating

- Rank revealing: gather important data and omit the remainings
- Two ways of data gathering methods:
- Pivoting: $A P=Q_{A P} R_{A P}$
- Rotation: $A Q_{\text {Rot }}=Q_{A Q} R_{A Q}$
- Pivoting: gather important data on the leftmost matrix
- Rotation: gather important data on the diagonal

Compression Methods

Rank Revealing QR Methods

- Partial QR with Column Pivoting (PQRCP)
- LAPACK xGEQP3 modified by Buttari A.(MUMPS)
- Randomized QR with Column Pivoting (RQRCP)
- Duersch J. A. and Gu M. (2017)
- Martinsson P. G. (2015)
- Xiao J., Gu M. and Langou J. (2017)
- Truncated Randomized QR with Column Pivoting (TRQRCP)
- Duersch J. A., Gu M. (2017)
- Randomized QR with Rotation (RQRRT)
- Martinsson P. G. (2015)

1) Partial QR with Column Pivoting (PQRCP)

Main Features

- Column pivoting: column with max 2-norm is the pivot
- $A=U V^{T}$ compression with column pivoting:
- $A P=Q_{A P} R_{A P}$ is computed, where P is the permutation matrix
- $U=Q_{A P}$ and $V^{T}=R_{A P} P^{T}$
- Right Looking

Discussions

$-\because$
Need larger rank than SVD for the same accuracy
-
Not fast enough

- To reduce the cost of pivot selection
- Randomized method with pivoting

2) Randomized QR with Column Pivoting (RQRCP)

Main Features

- Create independent and identically distributed Gaussian matrix Ω of size $b \times m$, where $b \ll m$
- Compute the sample matrix $B=\Omega A$ of size $b \times n$
- Find pivots on B where the row dimension is much smaller than A
- Less communication and computations
- Apply this pivoting to A like in PQRCP
- Right Looking
- Sample matrix updated

Discussions

Similar accuracy to PQRCPNot fast enough

- To eliminate the cost of trailing matrix update:
- Truncated randomized method with pivoting

3) Truncated Randomized QR with Column Pivoting (TRQRCP)

Main Features

- Left Looking
- Trailing matrix is not needed
- Extra storage: Reflector accumulations
- More efficient on large matrices with small ranks

Discussions

Fastest in sequential
$-\Theta$
Similar accuracy to previous algorithms
Can be improved to give closer ranks to SVD

- Instead of pivoting, apply a reasonable rotation to gather important information to the diagonal blocks
- Randomized method with rotation

4) Randomized QR with Rotation (RQRRT)

Main Features

- Similar to RQRCP except:
- Rotation applied to A
- Resampling
- In Randomized QR with Column Pivoting (RQRCP):
- $B P_{B}=Q_{B} R_{B}$
- $A P_{B}=Q_{A P} R_{A P}$
- $U=Q_{A P}$ and $V^{T}=R_{A P} P_{B}^{T}$
- In Randomized QR with Rotation (RQRRT):
- $B^{T}=Q_{B} R_{B}$
- $A Q_{B}=Q_{A Q} R_{A Q}$
- $U=Q_{A Q}$ and $V^{T}=R_{A Q} Q_{B}^{T}$
- Right Looking

Discussions

Ranks closest to SVD
Slower and updates whole trailing matrix at each iteration

Complexities

- Blue: No change, Green: Reduced cost, Red: More costly
- Matrix size $\mathrm{n} \times \mathrm{n}$, block size b, rank k

Methods	Features
SVD: $\mathcal{O}\left(n^{3}\right)$	
PQRCP: $\mathcal{O}\left(n^{2} k\right)$	pivot finding $\mathcal{O}\left(n^{2}\right)$ trailing matrix update $\mathcal{O}\left(n^{2} k\right)$
PQRCP: $\mathcal{O}\left(n^{2} k\right) \xrightarrow{\text { Randomization }}$ RQRCP: $\mathcal{O}\left(n^{2} k\right)$	```sample matrix generation (beginning) \mathcal{O}(\mp@subsup{n}{}{2}b) pivot finding }\mathcal{O}(nb update of sample matrix B O}(n\mp@subsup{b}{}{2} trailing matrix update }\mathcal{O}(\mp@subsup{n}{}{2}k```
RQRCP: $\mathcal{O}\left(n^{2} k\right) \xrightarrow{\text { Truncation }}$ TRQRCP: $\mathcal{O}\left(n k^{2}\right)$	```sample matrix generation (beginning) \mathcal{O}(\mp@subsup{n}{}{2}b) pivot finding }\mathcal{O}(nb update of current panel }\mathcal{O}(n\mp@subsup{k}{}{2} update of sample matrix B O}(n\mp@subsup{b}{}{2}```
RQRCP: $\mathcal{O}\left(n^{2} k\right) \xrightarrow{\text { Rotation }}$ RQRRT: $\mathcal{O}\left(n^{2} k\right)$	```resampling (each iteration)\mathcal{O}(\mp@subsup{n}{}{2}b) rotation finding O}(\mp@subsup{n}{}{2}k rotation of A \mathcal{O}(\mp@subsup{n}{}{2}k) trailing matrix update }\mathcal{O}(\mp@subsup{n}{}{2}k```

- Flops cost ($<$ is less flops):

$$
\text { TQRCP } \ll \mathrm{PQRCP}<\mathrm{RQRCP}<\mathrm{RQRRT} \ll \mathrm{SVD}
$$

Conclusion

- SVD: Smallest rank but too costly
- PQRCP: Right looking. Randomization is suggested for pivoting cost
- RQRCP: Unnecessary trailing matrix update. Truncation is introduced
- TRQRCP: Lowest cost, similar accuracy.
- RQRRT: Closest ranks to SVD. Most costly QR variant. Promising for parallelism
- In PaStiX, the smallest rank is decided numerically at an user defined precision

Numerical Results

Test Cases - Singular Values

Spectral Norms

5 different generated matrices:

- Matrix Size 500
- Rank 100
- Generation Precision
$\epsilon=10^{-8}$
- $A=U D V^{T}$
- D is a diagonal matrix with singular values
- U and V are orthonormal random matrices

Stability - First Test Case Residual Norms

Index vs Error

For all Methods:

- For Z-shape
- Matrix is fully factorized without any stopping criterion
- Residual: $\frac{\left\|A-U_{K} V_{K}^{T}\right\|_{F}}{\|A\|_{F}}$
- K stands for index values of the matrix

Stability - All Test Cases Residual Norms

Index vs Error

Performance - First Test Case Gflops

Matrix Size vs GFlop/s

For all Methods:

- For Z-shape
- Rank $=$ Matrix_size $\times \frac{20}{100}$
- Different matrix sizes are checked
- Compression Precision $\epsilon=10^{-8}$
- Threshold is applied

Performance - All Test Cases Gflops

Matrix Size vs GFlop/s

Compression Ranks - First Test Case Relative Rank

Matrix Size vs Relative Rank

For all Methods:

- For Z-shape
- Rank $=$ Matrix_size $\times \frac{20}{100}$
- Different matrix sizes are checked
- Compression precision $\epsilon=10^{-8}$
- RelativeRank $=\frac{\text { comp_rank }_{\text {method }}}{\text { comp_rank }_{\text {SVDF }}}$
- Threshold is applied

Compression Ranks - All Test Cases Relative Rank

Matrix Size vs Relative Rank

Time profiles of Real Case Matrices

For all Methods:

- 810 real case matrices
- Dimensions < 2000
- Compression precision $\epsilon=10^{-8}$
- time ratio $=\frac{\text { time }_{\text {method }}}{\text { time }_{\text {min }}}$
- Threshold is applied

Conclusion / Future Work

- Tuning according to matrix features
- For block low rank format, PQRCP is better
- For the hierarchical format, TRQRCP is promising
- RQRRT has the worst QR performance, but it is promising for parallel environment

References

Duersch, J. A.; Gu, M. "Randomized QR with column pivoting", SIAM J. Sci. Comput., vol. 39, no. 4, pp. C263-C291, 2017.

Xiao, J.; Gu, M.; Langou J. "Fast Parallel Randomized QR with Column Pivoting Algorithms for Reliable Low-Rank Matrix Approximations" 2017 IEEE 24th International Conference on High Performance Computing (HiPC), Jaipur, 2017, pp. 233-242, doi: 10.1109/HiPC.2017.00035.

Martinsson, P. G. (2015). "Blocked Rank-revealing QR Factorizations: how randomized sampling can be used to avoid single-vector pivoting".

THANK YOU!

