

Rank Revealing QR Methods for Sparse Block Low Rank Solvers

Esragul Korkmaz¹, Mathieu Faverge¹, Grégoire Pichon², Pierre Ramet¹ 06 July 2021

¹Inria Bordeaux - Sud-Ouest, Bordeaux INP, CNRS (Labri UMR 5800), University of Bordeaux

²Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP

Table of contents

- 1. Background
- 2. Compression Methods
- 3. Numerical Results

Background

Project - Funded by ANR SaSHiMi

- With: Mathieu Faverge, Pierre Ramet, Grégoire Pichon
- General Picture: Solve linear equations Ax=b for large sparse systems
- Full Rank Format: Too much memory usage
- Block Low Rank Format: Compression is possible, so less storage and faster
- Hierarchical Format: Even less computational complexity and memory consumption

Block Low Rank Structure

$$A \in \mathbb{R}^{m \times n}$$
; $U \in \mathbb{R}^{m \times r}$; $V \in \mathbb{R}^{n \times r}$

- Compression reduces memory and cost of computations
- Fixed block size \leq 300 \xrightarrow{Future} variable and larger
- All algorithms were existent
- In Pastix: $||A UV^T||_F \le \epsilon ||A||_F$

Background Information - Singular Value Decomposition(SVD)

Main Features

- SVD has the form: $A_{m imes n} = U_{m imes m} \Sigma_{m imes n} V_{n imes n}$
- Two options for the threshold:
 - $\sigma_{k+1} < \epsilon \times$
 - $\sqrt{\sum_{i=k+1}^{n} \sigma_i^2} \le \epsilon$

Discussions

- U Lowest r
- Too costly

Motivation:

• Rank Revealing QR methods (A = QR)

Left Looking vs Right Looking Algorithms

- Red parts are read / Green parts are updated
- Right Looking: Unnecessary updates but more suitable for parallelism
- Left Looking: Eliminated unnecessary updates but more storage needed

Pivoting vs Rotating

- Rank revealing: gather important data and omit the remainings
- Two ways of data gathering methods:
 - Pivoting: $AP = Q_{AP}R_{AP}$
 - Rotation: $AQ_{Rot} = Q_{AQ}R_{AQ}$
- Pivoting: gather important data on the leftmost matrix
- Rotation: gather important data on the diagonal

Compression Methods

Rank Revealing QR Methods

- Partial QR with Column Pivoting (PQRCP)
 - LAPACK xGEQP3 modified by Buttari A.(MUMPS)
- Randomized QR with Column Pivoting (RQRCP)
 - Duersch J. A. and Gu M. (2017)
 - Martinsson P. G. (2015)
 - Xiao J., Gu M. and Langou J. (2017)
- Truncated Randomized QR with Column Pivoting (TRQRCP)
 - Duersch J. A., Gu M. (2017)
- Randomized QR with Rotation (RQRRT)
 - Martinsson P. G. (2015)

1) Partial QR with Column Pivoting (PQRCP)

Main Features

- Column pivoting: column with max 2-norm is the pivot
- $A = UV^T$ compression with column pivoting:
 - $AP = Q_{AP}R_{AP}$ is computed, where P is the permutation matrix
 - $U = Q_{AP}$ and $V^T = R_{AP}P^T$
- Right Looking

Discussions

- Weed larger rank than SVD for the same accuracy
- Not fast enough
- To reduce the cost of pivot selection
 - Randomized method with pivoting

2) Randomized QR with Column Pivoting (RQRCP)

Main Features

- Create independent and identically distributed Gaussian matrix Ω of size $b \times m$, where $b \ll m$
- Compute the sample matrix $B = \Omega A$ of size $b \times n$
- Find pivots on B where the row dimension is much smaller than A
 - Less communication and computations
- Apply this pivoting to A like in PQRCP
- Right Looking
- Sample matrix updated

Discussions

- Similar accuracy to PQRCP
- Not fast enough
- To eliminate the cost of trailing matrix update:
 - Truncated randomized method with pivoting

3) Truncated Randomized QR with Column Pivoting (TRQRCP)

Main Features

- Left Looking
 - Trailing matrix is not needed
- Extra storage: Reflector accumulations
- More efficient on large matrices with small ranks

Discussions

- Fastest in sequential
- 😉 Similar accuracy to previous algorithms
- 💝 Can be improved to give closer ranks to SVD
- Instead of pivoting, apply a reasonable rotation to gather important information to the diagonal blocks
 - Randomized method with rotation

4) Randomized QR with Rotation (RQRRT)

Main Features

- Similar to RQRCP except:
 - Rotation applied to A
 - Resampling
- In Randomized QR with Column Pivoting (RQRCP):
 - $BP_B = Q_B R_B$
 - $AP_B = Q_{AP}R_{AP}$
 - $U = Q_{AP}$ and $V^T = R_{AP}P_B^T$
- In Randomized QR with Rotation (RQRRT):
 - $B^T = Q_B R_B$
 - $AQ_B = Q_{AQ}R_{AQ}$
 - $U = Q_{AQ}$ and $V^T = R_{AQ}Q_B^T$
- Right Looking

Discussions

- . 🙂
- Ranks closest to SVD
- . (>

Slower and updates whole trailing matrix at each iteration

Complexities

- Blue: No change, Green: Reduced cost, Red: More costly
- Matrix size n × n, block size b, rank k

Methods	Features
SVD: $\mathcal{O}(n^3)$	
PQRCP: $\mathcal{O}(n^2k)$	pivot finding $\mathcal{O}(n^2)$
	trailing matrix update $\mathcal{O}(n^2k)$
$PQRCP: \mathcal{O}(n^2k) \xrightarrow{Randomization} RQRCP: \mathcal{O}(n^2k)$	sample matrix generation (beginning) $\mathcal{O}(n^2b)$
	pivot finding $\mathcal{O}(nb)$
	update of sample matrix B $\mathcal{O}(\mathit{nb}^2)$
	trailing matrix update $\mathcal{O}(n^2k)$
RQRCP: $\mathcal{O}(n^2k) \xrightarrow{\text{Truncation}} \text{TRQRCP: } \mathcal{O}(nk^2)$	sample matrix generation (beginning) $\mathcal{O}(n^2b)$
	pivot finding $\mathcal{O}(nb)$
	update of current panel $\mathcal{O}(nk^2)$
	update of sample matrix B $\mathcal{O}(nb^2)$
$RQRCP \colon \mathcal{O}(n^2k) \xrightarrow{Rotation} RQRRT \colon \mathcal{O}(n^2k)$	resampling (each iteration) $\mathcal{O}(n^2b)$
	rotation finding $\mathcal{O}(n^2k)$
	rotation of A $\mathcal{O}(n^2k)$
	trailing matrix update $\mathcal{O}(n^2k)$

Flops cost (< is less flops):
TQRCP << PQRCP < RQRCP < RQRRT << SVD

Conclusion

- SVD: Smallest rank but too costly
- PQRCP: Right looking. Randomization is suggested for pivoting cost
- RQRCP: Unnecessary trailing matrix update. Truncation is introduced
- TRQRCP: Lowest cost, similar accuracy.
- RQRRT: Closest ranks to SVD. Most costly QR variant. Promising for parallelism
- In $\mathrm{PaStiX},$ the smallest rank is decided numerically at an user defined precision

Numerical Results

Test Cases - Singular Values

5 different generated matrices:

- Matrix Size 500
- Rank 100
- Generation Precision $\epsilon = 10^{-8}$
- $A = UDV^T$
 - D is a diagonal matrix with singular values
 - U and V are orthonormal random matrices

Spectral Norms

Stability - First Test Case Residual Norms

For all Methods:

- For Z-shape
- Matrix is fully factorized without any stopping criterion
- Residual: $\frac{||A U_K V_K^T||_F}{||A||_F}$
- K stands for index values of the matrix

Index vs Error

Stability - All Test Cases Residual Norms

Performance - First Test Case Gflops

Matrix Size vs GFlop/s

For all Methods:

- For Z-shape
- Rank = Matrix_size $\times \frac{20}{100}$
- Different matrix sizes are checked
- Compression Precision $\epsilon = 10^{-8}$
- Threshold is applied

Performance - All Test Cases Gflops

Compression Ranks - First Test Case Relative Rank

For all Methods:

- For Z-shape
- Rank = Matrix_size $\times \frac{20}{100}$
- Different matrix sizes are checked
- Compression precision $\epsilon = 10^{-8}$
- $RelativeRank = \frac{comp_rank_{method}}{comp_rank_{SVDF}}$
- Threshold is applied

Matrix Size vs Relative Rank

Compression Ranks - All Test Cases Relative Rank

Matrix Size vs Relative Rank

Time profiles of Real Case Matrices

For all Methods:

- 810 real case matrices
- Dimensions < 2000
- Compression precision $\epsilon=10^{-8}$
- time ratio = $\frac{time_{method}}{time_{min}}$
- Threshold is applied

Conclusion / Future Work

- Tuning according to matrix features
 - For block low rank format, PQRCP is better
 - For the hierarchical format, TRQRCP is promising
- RQRRT has the worst QR performance, but it is promising for parallel environment

References

Duersch, J. A.; Gu, M. "Randomized QR with column pivoting", SIAM J. Sci. Comput., vol. 39, no. 4, pp. C263-C291, 2017.

Xiao, J.; Gu, M.; Langou J. "Fast Parallel Randomized QR with Column Pivoting Algorithms for Reliable Low-Rank Matrix Approximations" 2017 IEEE 24th International Conference on High Performance Computing (HiPC), Jaipur, 2017, pp. 233-242, doi: 10.1109/HiPC.2017.00035.

Martinsson, P. G. (2015). "Blocked Rank-revealing QR Factorizations: how randomized sampling can be used to avoid single-vector pivoting".

THANK YOU!