
Sampling zeros of a sparse tensor

Bora Uçar

CNRS and LIP, ENS Lyon, France

Molière Workshop 6-8 July 2021

Joint work with:

Jules Bertrand
ENS de Lyon

Fanny Dufossé
DataMove, Inria

1/22 Sampling zeros

Introduction Background Proposed data structure and algorithms Experiments Conclusion

Problem

Given a d-dimensional sparse tensor T , set up data structures to answer
queries of the form

“is ti1,i2,...,id zero or nonzero?”

Specifications/Requirements:

Small memory overhead

Fast construction

Query response in O(d) time.

2/22 Sampling zeros

Introduction Background Proposed data structure and algorithms Experiments Conclusion

Context and motivation

Kolda and Hong propose a stochastic, iterative method for efficient GCP
decomposition of both dense and sparse tensors.

Stratified sampling

The nonzeros and the zeros are sampled separately in each iteration.

How to sample zeros: Sort, then use binary search for queries.

Other sampling approaches investigated, and the stratified sampling
approach is demonstrated to be more useful numerically.

Motivation

Increase efficiency of the stratified sampling approach by developing data
structures and algorithms for quickly detecting whether a given position
in a tensor is zero or not.

3/22 Sampling zeros

Introduction Background Proposed data structure and algorithms Experiments Conclusion

What is available?

Coordinate format, each nonzero is listed with its d indices (and value).
Z nonzeros.

Radix-sort

O(dZ) construction time X
O(Z) storage X
O(d logZ) query response time in the worst case ×

Static hashing

Minimal perfect hash functions (MPHFs): static data structures that
map a given set of Z elements to {0, . . . ,Z − 1}.

Use of an MPHF: store an id for a nonzero in a space of size Z and
answer queries in constant time in the worst case.

The efficient ones fit the bill: fast construction, small memory overhead,
and O(d) response time.

4/22 Sampling zeros

Introduction Background Proposed data structure and algorithms Experiments Conclusion

Our approach

Adapt static hashing of Fredman, Komlós, & Szeremédi,’84 (FKS).

Key properties:

two computations of the form

(kT x mod p) mod Z

to hash a nonzero (a d-tuple).

O(Z) memory

Worst case O(d) query response time

Fast construction

5/22 Sampling zeros

Introduction Background Proposed data structure and algorithms Experiments Conclusion

Review of FKS static hashing method

Universe (of integers) U = {0, . . . , u − 1}, and S ⊆ U with |S | = n be
the set to be represented. A prime number p > u − 1.

The first level hash function for a k , hk(x) = (kx mod p) mod n .

(assigns x to bucket Bhk (x).)

The second level hash function hk(i)(x) = (k(i)x mod p) mod b2i for Bi

with bi > 0 elements.

∑
i b

2
i should be O(n) so that the method uses linear space

(the first level hash function defines)

Each k(i) should be an injection for the respective bucket
(the second level hash function)

6/22 Sampling zeros

Introduction Background Proposed data structure and algorithms Experiments Conclusion

FKS: Construction and query

The values k and k(i) are found by random sampling and trials.

First level: Sample k , if
∑

i b
2
i ≤ 3n, accept it. Otherwise, retry.

Bi : Sample k(i); if hk(i)(·) is an injection accept. Otherwise, retry.

Efficient construction: O(n) in expectation

Accept
∑

i b
2
i ≤ 5n and use 2b2i space for each bucket Bi .

At least one half of the potential k and k(i) values guarantee that the
two requirements are met.

Query: Compute the bucket with the first level hash, then within a
bucket check the unique possible location with the second level hash.

7/22 Sampling zeros

Introduction Background Proposed data structure and algorithms Experiments Conclusion

Direct adaptations of FKS

Each nonzero is a d-tuple: linearize and use a unique integer for each
nonzero (e.g., [x0, x1, x2] is x0 + s0 × (x1 + s1 × x2), where si is the size of
the tensor on dimension i).

For large tensors, the numbers are too big

8/22 Sampling zeros

Introduction Background Proposed data structure and algorithms Experiments Conclusion

Direct adaptations of FKS

The universe U: all d-tuples [x0, . . . , xd−1] where 0 ≤ xi < p.

The first level hash function for a k: h(x) = (kT x mod p) mod Z . The
nonzero x is in bucket Bi where i = h(x).

Lemma

For any given set E ⊆ U of Z nonzeros, there is a k ∈ U such that with
the hash function (kT x mod p) mod Z, we have

∑Z−1
i=0 b2i < 4Z.

Corollary

For any E ⊆ U, a set of Z nonzeros, with at least half of the potential
k ∈ U, we have

∑Z−1
i=0 b2i < 7Z.

The linear space requirement is met for storing ids.

9/22 Sampling zeros

Introduction Background Proposed data structure and algorithms Experiments Conclusion

Direct adaptations of FKS

Lemma

For each bucket Bi with bi > 0 elements, there is a k′ ∈ U such that the
function (k′

T
x mod p) mod b2i is an injection for p � b2i .

Corollary

Let Bi be a bucket with bi > 0 elements. For at least half of the d-tuples
k′ ∈ U, it holds that the function (k′

T
x mod p) mod 2b2i defines an

injection for the elements of Bi for p � b2i .

O(d) look-up time is met.

In expected linear time, O(dZ), we can find k and all k(i).

10/22 Sampling zeros

Introduction Background Proposed data structure and algorithms Experiments Conclusion

A lean variant of FKS

Previous lemma sand corollaries show that we can use the FKS method.

There is catch: there are Ω(Z) buckets, and storing a d-tuple k(i) per
bucket means Ω(dZ) storage, equivalent to the tensor itself. This is too
much, and grows with d .

11/22 Sampling zeros

Introduction Background Proposed data structure and algorithms Experiments Conclusion

A lean variant of FKS

Share the second level hash functions among the buckets.

0

0

1

2

3

id

0

1B0

B1

BZ-1

id/kidbi
0

d-1

0

0 2 22-1×

id0 id1

id

id1id0 id2

1

r

2 32-1×

k1k0 kr

k

For each bucket Bi :

the number bi of
nonzeros.

If bi is 1, the id of the
nonzero mapping to i
is stored.

If bi is larger than 1,
then the index of a
d-tuple in K is stored,
and a space of size
2b2

i to hold the ids of
bi nonzeros assigned
to Bi .

12/22 Sampling zeros

Introduction Background Proposed data structure and algorithms Experiments Conclusion

A lean variant of FKS

Theorem

In expectation O(log2 Z) different k ′ ∈ K suffice.

Construction: O(dZ log2 Z) a worst-case bound

Memory: 2Z −m +
∑

i,bi>1 2b2i . The set K adds another O(d log2 Z)
space. Provable O(Z).

Query response: O(d) in the worst case.

13/22 Sampling zeros

Introduction Background Proposed data structure and algorithms Experiments Conclusion

Experiments

Compare the proposed FKSlean with

HashàlaFKS: the standard average-case constant time hashing method
available in C++std as unordered map, with which we
propose to use the first level hash function
(kT x mod p) mod Z of FKSlean. HashàlaFKS will be used
as the baseline.

BBH: a minimal perfect hash function (2017).

RecSplit: another minimal perfect hash function (2020).

PTHash: the most recent minimal perfect hash function to the best
of our knowledge (2021).

Tensors from FROSTT, random Erdös–Renyi-like random tensors,
R(d , s,Z). Also matrices from The SuiteSparse Matrix Collection.

14/22 Sampling zeros

Introduction Background Proposed data structure and algorithms Experiments Conclusion

Construction time: Real-life data

uRecSplit uBBH uPTHash
name HashàlaFKS (8,100) (5,5) (1) (5) (1) (2) (3) (4) FKSlean
kmer A2a 591.28 1.64 0.47 1.74 0.71 0.66 0.42 0.93 0.53 0.63
queen 4147 495.18 1.76 0.46 1.72 0.71 0.64 0.40 0.88 0.52 0.73
com-Orkut 355.32 1.73 0.45 1.53 0.69 0.61 0.39 0.84 0.51 0.61
nell-1 213.19 1.75 0.42 1.28 0.75 0.62 0.41 0.81 0.51 0.73
delicious-3d 196.96 1.83 0.43 1.28 0.74 0.63 0.40 0.82 0.51 0.64
delicious-4d 201.39 1.81 0.44 2.00 1.07 0.70 0.47 0.89 0.59 0.78
flickr-3d 163.38 1.78 0.40 1.22 0.71 0.61 0.39 0.78 0.50 0.61
flickr-4d 163.54 1.78 0.41 1.84 1.01 0.66 0.45 0.84 0.56 0.61
nell-2 111.59 1.74 0.38 1.18 0.62 0.58 0.38 0.73 0.48 0.59
enron 72.88 1.90 0.41 1.80 0.89 0.64 0.44 0.79 0.55 0.68
vast-2015-mc1-3d 34.71 1.87 0.38 1.20 0.49 0.52 0.36 0.65 0.44 0.74
vast-2015-mc1-5d 33.40 1.97 0.41 1.99 0.84 0.60 0.43 0.73 0.52 0.72
chicago-crime 5.77 2.29 0.43 1.99 0.76 0.62 0.46 0.72 0.56 0.68
uber 3.17 2.57 0.48 2.21 0.84 0.66 0.50 0.75 0.60 0.75
lbnl-network 1.29 3.23 0.59 2.99 1.15 0.67 0.54 0.76 0.62 0.87

geo-mean 1.94 0.43 1.67 0.78 0.63 0.43 0.79 0.53 0.69

Table: The construction time. HashàlaFKS in seconds, others as ratios to that
of HashàlaFKS.

15/22 Sampling zeros

Introduction Background Proposed data structure and algorithms Experiments Conclusion

Query response time: Real-life data

uRecSplit uBBH uPTHash
name HashàlaFKS (8,100) (5,5) (1) (5) (1) (2) (3) (4) FKSlean
kmer A2a 0.78 1.08 1.17 2.45 1.82 0.54 0.60 0.74 0.56 0.49
queen 4147 0.74 1.13 1.14 2.61 1.99 0.54 0.61 0.73 0.56 0.50
com-Orkut 0.73 1.03 1.07 1.70 1.31 0.51 0.56 0.71 0.53 0.47
nell-1 0.72 1.03 1.08 2.61 2.01 0.66 0.77 0.77 0.68 0.48
delicious-3d 0.71 1.08 1.11 2.63 2.07 0.59 0.69 0.67 0.62 0.45
delicious-4d 0.71 1.12 1.19 2.76 2.21 0.93 1.00 0.97 0.95 0.48
flickr-3d 0.71 0.97 0.99 2.14 1.69 0.62 0.73 0.72 0.64 0.46
flickr-4d 0.70 1.11 1.17 2.63 2.14 0.94 0.99 0.95 0.95 0.47
nell-2 0.66 0.98 0.98 2.22 1.86 0.65 0.76 0.76 0.67 0.46
enron 0.64 1.06 1.07 2.13 1.90 0.92 0.97 0.95 0.93 0.47
vast-2015-mc1-3d 0.61 0.95 0.92 1.54 1.36 0.66 0.75 0.76 0.67 0.48
vast-2015-mc1-5d 0.63 1.03 1.01 1.67 1.54 0.89 0.92 0.92 0.89 0.45
chicago-crime 0.56 0.88 0.86 1.16 0.94 0.75 0.78 0.80 0.75 0.47
uber 0.53 0.91 0.86 1.12 1.00 0.75 0.77 0.80 0.75 0.49
lbnl-network 0.46 0.90 0.85 1.20 1.13 0.76 0.79 0.81 0.77 0.54

geo-mean 1.01 1.02 1.94 1.61 0.70 0.77 0.80 0.71 0.48

Table: The query response time for 106 queries. HashàlaFKS in seconds, others
as ratio to that of HashàlaFKS.

16/22 Sampling zeros

Introduction Background Proposed data structure and algorithms Experiments Conclusion

Random data (to see the trend with increasing Z)

Query response time (106 queries) on the R(d = 4, s = 106,Z) family.

The same ranking of the methods: FKSlean is the fastest.

The query response time of all methods increases with Z .

17/22 Sampling zeros

Introduction Background Proposed data structure and algorithms Experiments Conclusion

Random data (to see the trend with increasing d)

The construction and query response time (106 queries) on R(d , s,Z)
where d = {4, 8, 16}, s = 106, and Z = 2× 107.

(a) Construction time (b) Query response time

The same ranking of the methods (FKSlean middle of the pack for
construction, and the fastest for query response).

18/22 Sampling zeros

Introduction Background Proposed data structure and algorithms Experiments Conclusion

Space utilization of FKSlean

Z Z Z Z

m: # empty buckets: 0.36 ≤ m ≤ 0.37.∑
b2
i observed to be ≤ 2.

The total space requirement 2Z −m +
∑

i,bi>1 2b2
i ≤ 5Z .

Maximum value of a bucket size is 13 in all experiments.

The number of d-tuples in K is between 0.36 log2 Z and 0.42 log2 Z .

19/22 Sampling zeros

Introduction Background Proposed data structure and algorithms Experiments Conclusion

Summary of comparisons

Construction time: the proposed method is in the middle.
uRecSplit-(5,5) and uPTHash-(2) have the shortest construction time.

Query response time: The proposed FKSlean has the shortest time.

In the tensor application: FKSlean becomes the method of choice,
especially for large d , Z , or the number of queries q.

One aspect we did not look (while MPHFs strive to reduce): the
bits-per-key complexity (storage of hash functions). FKSlean is much
worse than others, Ω(log2 log2 Z) vs around 3 bits for others.

20/22 Sampling zeros

Introduction Background Proposed data structure and algorithms Experiments Conclusion

Concluding remarks

FKSlean: a perfect hashing method with provable space bounds.

Experimental results: less than 5Z plus an additional O(d log2 Z) term
for storing the shared hash functions.

Comparisons with recent MPHFs: FKSlean has the shortest query
response time among all alternatives while having a construction time in
the middle of the pack.

Future work:

The dynamic case where nonzeros come and go.

Tighter analysis of the memory requirements.

21/22 Sampling zeros

Introduction Background Proposed data structure and algorithms Experiments Conclusion

Further information

Thank you for your attention.

Technical report and codes available:
https://hal.inria.fr/hal-03127673

More information: http://perso.ens-lyon.fr/bora.ucar

22/22 Sampling zeros

https://hal.inria.fr/hal-03127673
http://perso.ens-lyon.fr/bora.ucar

Introduction Background Proposed data structure and algorithms Experiments Conclusion

References I

J. Bertrand, F. Dufossé, Bora Uçar. Algorithms and data structures for
hyperedge queries. [Research Report] RR-9390, Inria Grenoble
Rhône-Alpes. 2021.

T. A. Davis and Y. Hu. 2011. The University of Florida sparse matrix
collection. ACM Trans. Math. Software 38, 1 (2011), pp. 1:1–1:25.

E. Esposito, T. Mueller Graf, and S. Vigna, RecSplit: Minimal Perfect
Hashing via Recursive Splitting, in ALENEX) 2020, pp. 175–185.

L. Fredman, J. Komlós, and E. Szemerédi. Storing a Sparse Table with
O(1) Worst Case Access Time, J. ACM 31, 3 (1984), pp. 538–544.

T. G. Kolda and D. Hong, Stochastic Gradients for Large-Scale Tensor
Decomposition, SIAM Journal on Mathematics of Data Science 2 (2020),
pp. 1066–1095.

A. Limasset, G. Rizk, R. Chikhi, andP. Peterlongo. Fast and Scalable
Minimal Perfect Hashing for Massive Key Sets, in SEA 2017,
pp. 25:1–25:16.

23/22 Sampling zeros

Introduction Background Proposed data structure and algorithms Experiments Conclusion

References II

G. E. Pibiri and R. Trani. 2021. PTHash: Revisiting FCH Minimal Perfect
Hashing, In 44th SIGIR, International Conference on Research and
Development in Information Retrieval (to appear), 2021.

S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and G. Karypis.
2017. FROSTT: The Formidable Repository of Open Sparse Tensors and
Tools. Available at http://frostt.io/.

24/22 Sampling zeros

Introduction Background Proposed data structure and algorithms Experiments Conclusion

Dataset

name d size in each dimension Z

kmer A2a 2 170,728,175 ×170,728,175 360,585,172

queen 4147 2 4,147,110 × 4,147,110 329,499,288

com-Orkut 2 3,072,441 × 3,072,441 234,370,166

nell-1 3 2,902,330 × 2,143,368 ×
25,495,389

143,599,552

delicious-3d 3 532,924 × 17,262,471 ×
2,480,308

140,126,181

delicious-4d 4 532,924 × 17,262,471 ×
2,480,308 × 1,443

140,126,181

flickr-3d 3 319,686 × 28,153,045 ×
1,607,191

112,890,310

flickr-4d 4 319,686 × 28,153,045 ×
1,607,191 × 731

112,890,310

nell-2 3 12,092 × 9,184 × 28,818 76,879,419

enron 4 6,066 × 5,699 × 244,268 ×
1,176

54,202,099

vast-2015-mc1-3d 3 165,427 ×11,374 × 2 26,021,854

vast-2015-mc1-5d 5 165,427 × 11,374 × 2 × 100
× 89

26,021,945

chicago crime 4 6,186 × 24 × 77 × 32 5,330,673

uber 4 183 ×24 × 1,140 × 1,717 3,309,490

lbnl-network 5 1,605 × 4,198 × 1,631 ×
4,209 × 868,131

1,698,825

Table: Real-life test data used in the experiments.

25/22 Sampling zeros

	Main Talk
	Introduction
	Background
	Proposed data structure and algorithms
	Experiments
	Conclusion

