Tensor Train decomposition with Jax mindset

Alexander Novikov, Dmitry Belousov, Ivan Oseledets

Tensor Train decomposition (aka MPS)

Allows to represent a big tensor as a product of small factors

Tensor Train decomposition (aka MPS)

Allows to represent a big tensor as a product of small factors

Supports arithmetic:

Can build factors of (A + B) or (A * B) or A.dot(B) from factors of A and B without ever materializing the full tensor

Tensor Train decomposition (aka MPS)

Allows to represent a big tensor as a product of small factors

Supports arithmetic:

Can build factors of (A + B) or (A * B) or A.dot(B) from factors of A and B without ever materializing the full tensor

TT-rank controls the compression, and it increases after operations

Jax

A library for linear algebra, automatic differentiation, and machine learning

Supports ~any numpy functions

Jax is functional (i.e. functions can not have side effects)

Most operations are decorators (transformations of functions)

Allows to use cluster of GPUs / TPUs easily

Jax example

def f(x):
 return x**2

f_prime = jax.grad(f)

f_prime(1) # returns 2

Jax example 2

```
import jax.numpy as jnp
def f(x):
 values = jnp.linalg.svd(x, compute uv=False)
 return jnp.sum(values)
f prime = jax.grad(f)
```

Tensor Train implemented on Jax

Tensor Train implemented on Jax

```
import ttax
seed = jax.random.PRNGKey(42)
tt_matrix = ttax.random.matrix(seed, ((2, 3, 4), (5, 6, 7)), tt_rank=10)
tt_matrix
shape (24, 210), tt_rank 10
```

Tensor Train implemented on Jax

```
import ttax
seed = jax.random.PRNGKey(42)
tt_matrix = ttax.random.matrix(seed, ((2, 3, 4), (5, 6, 7)), tt_rank=10)
tt_matrix
shape (24, 210), tt_rank 10
tt_vector = ttax.random.matrix(seed, ((5, 6, 7), (1, 1, 1)), tt_rank=3)
tt_vector
```

shape (210, 1), tt_rank 3

```
import ttax
seed = jax.random.PRNGKey(42)
tt_matrix = ttax.random.matrix(seed, ((2, 3, 4), (5, 6, 7)), tt_rank=10)
tt matrix
shape (24, 210), tt rank 10
tt_vector = ttax.random.matrix(seed, ((5, 6, 7), (1, 1, 1)), tt_rank=3)
tt vector
shape (210, 1), tt rank 3
tt product = tt matrix @ tt vector
tt product
shape (24, 1), tt rank 30
```

```
matrix # Of size 10 x 10
```

vector = np.random.randn(10, 1)

```
for _ in range(100):
    vector = matrix @ vector
    vector = vector / np.linalg.norm(vector)
```

What if matrix is 10¹⁰ x 10¹⁰ but has structure?

```
matrix # Of size 10 x 10
vector = np.random.randn(10, 1)
for _ in range(100):
    vector = matrix @ vector
    vector = vector / np.linalg.norm(vector)
```

Rakhuba, Maxim, Alexander Novikov, and Ivan Oseledets. "Low-rank Riemannian eigensolver for high-dimensional Hamiltonians." Journal of Computational Physics (2019)

```
tt_matrix # Of size 10^5 x 10^5, tt_rank=10
shape = ((10, 10, 10, 10, 10), (1, 1, 1, 1, 1))
tt_vector = ttax.random.matrix(seed, shape, tt_rank=3)
for _____in range(3):
```

```
tt_vector = tt_matrix @ tt_vector
tt_vector = (1./norm(tt_vector)) * tt_vector
```

```
matrix # Of size 10 x 10
vector = np.random.randn(10, 1)
for _ in range(100):
    vector = matrix @ vector
    vector = vector / np.linalg.norm(vector)
```

TT power iteration

Vanilla power iteration

```
tt_matrix # Of size 10^5 x 10^5, tt_rank=10
shape = ((10, 10, 10, 10, 10), (1, 1, 1, 1, 1))
tt_vector = ttax.random.matrix(seed, shape, tt_rank=3)
for _ in range(3):
    tt_vector = tt_matrix @ tt_vector
    tt vector = (1./norm(tt vector)) * tt vector
```

```
print(tt vector)
```

shape (100000, 1), tt_rank 30
shape (100000, 1), tt_rank 300
shape (100000, 1), tt_rank 3000

```
matrix # Of size 10 x 10
vector = np.random.randn(10, 1)
for _ in range(100):
    vector = matrix @ vector
    vector = vector / np.linalg.norm(vector)
```

Vanilla power iteration

TT power iteration

```
tt_matrix # Of size 10^5 x 10^5, tt_rank=10
shape = ((10, 10, 10, 10, 10), (1, 1, 1, 1, 1))
tt_vector = ttax.random.matrix(seed, shape, tt_rank=3)
for _ in range(100):
    tt_vector = tt_matrix @ tt_vector
    tt_vector = ttax.round(tt_vector, max_tt_rank=3)
    tt_vector = (1./norm(tt_vector)) * tt_vector
    print(tt_vector)
```

```
shape (100000, 1), tt_rank 3
shape (100000, 1), tt_rank 3
shape (100000, 1), tt_rank 3
```

TT power iteration

```
matrix # Of size 10 x 10
vector = np.random.randn(10, 1)
for _ in range(100):
  vector = matrix @ vector
  vector = vector / np.linalg.norm(vector)
```

Vanilla power iteration

```
tt matrix # Of size 10^5 x 10^5, tt rank=10
shape = ((10, 10, 10, 10, 10), (1, 1, 1, 1, 1))
tt vector = ttax.random.matrix(seed, shape, tt rank=3)
for in range(100):
 tt vector = tt matrix @ tt vector
 tt vector = ttax.round(tt vector, max tt rank=3)
 tt vector = (1./norm(tt vector)) * tt vector
 print(tt vector)
shape (100000, 1), tt rank 3
shape (100000, 1), tt rank 3
shape (100000, 1), tt rank 3
          TT power iteration
```

```
matrix # Of size 10 x 10
vector = np.random.randn(10, 1)
for _ in range(100):
   vector = matrix @ vector
   vector = vector / np.linalg.norm(vector)
```

Vanilla power iteration

Can we do these two ops together more efficiently?

```
tt matrix # Of size 10^5 x 10^5, tt rank=10
shape = ((10, 10, 10, 10, 10), (1, 1, 1, 1, 1))
tt vector = ttax.random.matrix(seed, shape, tt rank=3)
for in range(100):
 tt vector = tt matrix @ tt vector
 tt_vector = ttax.round(tt_vector, max_tt_rank=3)
 tt vector = (1./norm(tt vector)) * tt vector
 print(tt vector)
shape (100000, 1), tt rank 3
shape (100000, 1), tt rank 3
shape (100000, 1), tt rank 3
          TT power iteration
```

```
matrix # Of size 10 x 10
vector = np.random.randn(10, 1)
for _ in range(100):
   vector = matrix @ vector
   vector = vector / np.linalg.norm(vector)
```

```
Vanilla power iteration
```

Can we do these two ops together more efficiently? **No**

```
tt matrix # Of size 10^5 x 10^5, tt rank=10
shape = ((10, 10, 10, 10, 10), (1, 1, 1, 1, 1))
tt vector = ttax.random.matrix(seed, shape, tt rank=3)
for in range(100):
 tt vector = tt matrix @ tt vector
 tt_vector = ttax.round(tt_vector, max_tt_rank=3)
 tt vector = (1./norm(tt vector)) * tt vector
 print(tt vector)
shape (100000, 1), tt rank 3
shape (100000, 1), tt rank 3
shape (100000, 1), tt rank 3
          TT power iteration
```

```
matrix # Of size 10 x 10
vector = np.random.randn(10, 1)
for in range(100):
 vector = matrix @ vector
 vector = vector / np.linalg.norm(vector)
```

Vanilla power iteration

Can we do these two ops together more efficiently? No, but

```
tt_matrix # Of size 10^5 x 10^5, tt_rank=10
shape = ((10, 10, 10, 10, 10), (1, 1, 1, 1, 1))
tt_vector = ttax.random.matrix(seed, shape, tt_rank=3)
for _ in range(100):
    intermidiate = tt_matrix @ tt_vector
    intermidiate = ttax.project(intermidiate, tt_vector)
    tt_vector = ttax.round(intermidiate, max_tt_rank=3)
    tt vector = (1./norm(tt vector)) * tt vector
```

```
matrix # Of size 10 x 10
vector = np.random.randn(10, 1)
for _ in range(100):
   vector = matrix @ vector
   vector = vector / np.linalg.norm(vector)
```

```
tt_matrix # Of size 10^5 x 10^5, tt_rank=10
shape = ((10, 10, 10, 10, 10), (1, 1, 1, 1, 1))
tt_vector = ttax.random.matrix(seed, shape, tt_rank=3)
for _ in range(100):
    intermidiate = tt_matrix @ tt_vector
    intermidiate = ttax.project(intermidiate, tt_vector)
    tt_vector = ttax.round(intermidiate, max_tt_rank=3)
    tt_vector = (1./norm(tt_vector)) * tt_vector
```

```
matrix # Of size 10 x 10
vector = np.random.randn(10, 1)
for _ in range(100):
   vector = matrix @ vector
   vector = vector / np.linalg.norm(vector)
```

Can do together (asymptotically) faster than separately!

```
tt_matrix # Of size 10^5 x 10^5, tt_rank=10
shape = ((10, 10, 10, 10, 10), (1, 1, 1, 1, 1))
tt_vector = ttax.random.matrix(seed, shape, tt_rank=3)
for _ in range(100):
    intermidiate = tt_matrix @ tt_vector
    intermidiate = ttax.project(intermidiate, tt_vector)
    tt_vector = ttax.round(intermidiate, max_tt_rank=3)
    tt_vector = (1./norm(tt_vector)) * tt_vector
```

```
matrix # Of size 10 x 10
vector = np.random.randn(10, 1)
for _ in range(100):
   vector = matrix @ vector
   vector = vector / np.linalg.norm(vector)
```

Can do together (asymptotically) faster than separately!

But hard to implement for every single combination like project(matmul)

```
tt_matrix # Of size 10^5 x 10^5, tt_rank=10
shape = ((10, 10, 10, 10, 10), (1, 1, 1, 1, 1))
tt_vector = ttax.random.matrix(seed, shape, tt_rank=3)
for _ in range(100):
    intermidiate = tt_matrix @ tt_vector
    intermidiate = ttax.project(intermidiate, tt_vector)
    tt_vector = ttax.round(intermidiate, max_tt_rank=3)
    tt_vector = (1./norm(tt_vector)) * tt_vector
```

```
matrix # Of size 10 x 10
vector = np.random.randn(10, 1)
for _ in range(100):
   vector = matrix @ vector
   vector = vector / np.linalg.norm(vector)
```

Can do together (asymptotically) faster than separately!

But hard to implement for every single combination like project(matmul)

So we built an einsum compiler that does this automatically

Einsum compiler for asymptotic speedups

```
def slow_project_matmul(matrix, vector):
   matvec = matrix @ vector
   return ttax.project(matvec, vector)
```

fast_project_matmul = ttax.fuse(slow_project_matmul)

Einsum compiler for asymptotic speedups

```
def slow_project_matmul(matrix, vector):
   matvec = matrix @ vector
   return ttax.project(matvec, vector)
```

fast_project_matmul = ttax.fuse(slow_project_matmul)

```
tt_matrix = ttax.random.matrix(seed, matrix_shape, tt_rank=10)
tt_vector = ttax.random.matrix(seed, vector_shape, tt_rank=10)
```

benchmark(slow_project_matmul, tt_matrix, tt_vector)

100 loops, best of 5: 4 ms per loop

benchmark(fast_project_matmul, tt_matrix, tt_vector)

The slowest run took 1106.56 times longer than the fastest. This could mean that an intermediate result is being cache 1 loop, best of 5: 1.84 ms per loop

Einsum compiler for asymptotic speedups

```
def slow_project_matmul(matrix, vector):
  matvec = matrix @ vector
  return ttax.project(matvec, vector)
```

fast_project_matmul = ttax.fuse(slow_project_matmul)

```
tt_matrix = ttax.random.matrix(seed, matrix_shape, tt_rank=20)
tt_vector = ttax.random.matrix(seed, vector_shape, tt_rank=20)
```

benchmark(slow_project_matmul, tt_matrix, tt_vector)

10 loops, best of 5: 70.1 ms per loop

benchmark(fast_project_matmul, tt_matrix, tt_vector)

100 loops, best of 5: 7.28 ms per loop

Riemannian optimization

 \mathcal{M}_r – all tensors with fixed TT-rank (say 5)

Computing Riemannian gradient

```
# Loss(x): 0.5 * <x, A x>
```

```
def rimennian_gradient(x):
    return ttax.project(A @ x, x)
```

Computing Riemannian gradient

Rayleigh quotient (loss for solving eigenvalue problems): <x, A x> / <x, x>

```
def rayleigh_quotient(x):
    xAx = ttax.flat_inner(A @ x, x)
    norm = ttax.norm(x)
    return xAx / norm
```

```
def rimennian_gradient(x):
Ax = A @ x
norm = ttax.norm(x)
coef = 2 / norm
first = ttax.project(coef * Ax, x)
second = coef * rayleigh_quotient(x) * x
return first - second
```

Computing Riemannian gradient

Rayleigh quotient (loss for solving eigenvalue problems): <x, A x> / <x, x>

```
def rayleigh_quotient(x):
    xAx = ttax.flat_inner(A @ x, x)
    norm = ttax.norm(x)
    return xAx / norm
```

If you need Riemannian Hessian-by-vector it's going to be ...

$$\begin{split} \nabla^2 f(\mathbf{X}) \,\, \mathbf{Z} &= \frac{2}{\langle \mathbf{X}, \mathbf{X} \rangle} \mathrm{A}\mathbf{Z} - 2 \frac{f(\mathbf{X})}{\langle \mathbf{X}, \mathbf{X} \rangle} \mathbf{Z} - 4 \frac{\langle \mathrm{A}\mathbf{X}, \mathbf{Z} \rangle}{\langle \mathbf{X}, \mathbf{X} \rangle^2} \mathbf{X} \\ &- 4 \frac{\langle \mathbf{X}, \mathbf{Z} \rangle}{\langle \mathbf{X}, \mathbf{X} \rangle^2} \mathrm{A}\mathbf{X} + 8 f(\mathbf{X}) \frac{\langle \mathbf{X}, \mathbf{Z} \rangle}{\langle \mathbf{X}, \mathbf{X} \rangle^2} \mathbf{X} \end{split}$$

Autodiff

```
# Rayleigh quotient (loss for solving eigenvalue problems): <x, A x> / <x, x>
```

```
def rayleigh_quotient(x):
    xAx = ttax.flat_inner(A @ x, x)
    norm = ttax.norm(x)
    return xAx / norm
```

Just do this!

```
riemannian_gradient = ttax.grad(rayleigh_quotient)
riemannian_hessian_by_vector = ttax.hessian_by_vector(rayleigh_quotient)
```

Novikov, Alexander, Maxim Rakhuba, and Ivan Oseledets. "Automatic differentiation for Riemannian optimization on low-rank matrix and tensor-train manifolds." arXiv (2021)

Conclusion

• TTAX is a library for working with TT-decomposition written on Jax

• We built an einsum compiler which asymptotically speeds up your code by fusing a few operations into a single one

• We support Riemannian autodiff, which computes Riemannian gradient and Riemannian Hessian-by-vector product for an arbitrary given function with optimal asymptotics