
Tensor Train decomposition 
with Jax mindset

Alexander Novikov, Dmitry Belousov, Ivan Oseledets



Tensor Train decomposition (aka MPS)

Allows to represent a big tensor as a product of small factors



Tensor Train decomposition (aka MPS)

Allows to represent a big tensor as a product of small factors

Supports arithmetic:

Can build factors of (A + B) or (A * B) or A.dot(B) from factors of A and B without 
ever materializing the full tensor

TT-rank controls the compression, and it increases after operations



Tensor Train decomposition (aka MPS)

Allows to represent a big tensor as a product of small factors

Supports arithmetic:

Can build factors of (A + B) or (A * B) or A.dot(B) from factors of A and B without 
ever materializing the full tensor

TT-rank controls the compression, and it increases after operations



Jax

A library for linear algebra, automatic differentiation, and machine learning

Supports ~any numpy functions

Jax is functional (i.e. functions can not have side effects)

Most operations are decorators (transformations of functions)

Allows to use cluster of GPUs / TPUs easily



Jax example



Jax example 2



TTAX basics

Tensor Train implemented on Jax



TTAX basics

Tensor Train implemented on Jax



TTAX basics

Tensor Train implemented on Jax



TTAX basics



Power iteration



Power iteration

What if matrix is 10^10 x 10^10 
but has structure?

Rakhuba, Maxim, Alexander Novikov, and Ivan Oseledets. "Low-rank Riemannian eigensolver for high-dimensional Hamiltonians." Journal of Computational Physics (2019)



Power iteration

TT power iteration Vanilla power iteration



Power iteration

TT power iteration

Vanilla power iteration



Power iteration

TT power iteration

Vanilla power iteration



Power iteration

TT power iteration

Vanilla power iteration

Can we do these two ops together more efficiently?



Power iteration

TT power iteration

Vanilla power iteration

Can we do these two ops together more efficiently?
No



Power iteration

TT power iteration

Vanilla power iteration

Can we do these two ops together more efficiently?
No, but



Power iteration



Power iteration

Can do together (asymptotically) faster than separately!



Power iteration

Can do together (asymptotically) faster than separately!

But hard to implement for every single combination like 
project(matmul)



Power iteration

Can do together (asymptotically) faster than separately!

But hard to implement for every single combination like 
project(matmul)

So we built an einsum compiler that does this automatically



Einsum compiler for asymptotic speedups



Einsum compiler for asymptotic speedups



Einsum compiler for asymptotic speedups



Riemannian optimization

– all tensors with fixed TT-rank (say 5)



Computing Riemannian gradient



Computing Riemannian gradient



Computing Riemannian gradient

If you need Riemannian Hessian-by-vector it’s going to be ...



Autodiff

Just do this!

Novikov, Alexander, Maxim Rakhuba, and Ivan Oseledets. "Automatic differentiation for Riemannian optimization on low-rank matrix and tensor-train manifolds." arXiv (2021)



Conclusion

● TTAX is a library for working with TT-decomposition written on Jax

● We built an einsum compiler which asymptotically speeds up your code by 
fusing a few operations into a single one

● We support Riemannian autodiff, which computes Riemannian gradient and 
Riemannian Hessian-by-vector product for an arbitrary given function with 
optimal asymptotics


