Tensor Train decomposition with Jax mindset

Alexander Novikov, Dmitry Belousov, Ivan Oseledets

Tensor Train decomposition (aka MPS)

Allows to represent a big tensor as a product of small factors

Tensor Train decomposition (aka MPS)

Allows to represent a big tensor as a product of small factors

Supports arithmetic:

Can build factors of $(A+B)$ or $\left(A^{*} B\right)$ or $A . d o t(B)$ from factors of A and B without ever materializing the full tensor

Tensor Train decomposition (aka MPS)

Allows to represent a big tensor as a product of small factors

Supports arithmetic:

Can build factors of $(A+B)$ or $\left(A^{*} B\right)$ or $A . d o t(B)$ from factors of A and B without ever materializing the full tensor

TT-rank controls the compression, and it increases after operations

Jax

A library for linear algebra, automatic differentiation, and machine learning

Supports ~any numpy functions

Jax is functional (i.e. functions can not have side effects)

Most operations are decorators (transformations of functions)

Allows to use cluster of GPUs / TPUs easily

Jax example

```
def f(x):
    return x**2
f_prime = jax.grad(f)
f_prime(1) # returns 2
```


Jax example 2

```
import jax.numpy as jnp
def f(x):
    values = jnp.linalg.svd(x, compute_uv=False)
    return jnp.sum(values)
f_prime = jax.grad(f)
```


TTAX basics

Tensor Train implemented on Jax

TTAX basics

Tensor Train implemented on Jax

```
import ttax
seed = jax.random.PRNGKey(42)
tt_matrix = ttax.random.matrix(seed, ((2, 3, 4), (5, 6, 7)), tt_rank=10)
tt_matrix
shape (24, 210), tt_rank 10
```


TTAX basics

Tensor Train implemented on Jax

```
import ttax
seed = jax.random.PRNGKey(42)
tt_matrix = ttax.random.matrix(seed, ((2, 3, 4), (5, 6, 7)), tt_rank=10)
tt_matrix
shape (24, 210), tt_rank 10
tt_vector = ttax.random.matrix(seed, ((5, 6, 7), (1, 1, 1)), tt_rank=3)
tt_vector
shape (210, 1), tt_rank 3
```


TTAX basics

```
import ttax
seed = jax.random.PRNGKey(42)
tt_matrix = ttax.random.matrix(seed, ((2, 3, 4), (5, 6, 7)), tt_rank=10)
tt_matrix
shape (24, 210), tt_rank 10
tt_vector = ttax.random.matrix(seed, ((5, 6, 7), (1, 1, 1)), tt_rank=3)
tt_vector
shape (210, 1), tt_rank 3
tt_product = tt_matrix & tt_vector
tt_product
shape (24, 1), tt_rank 30
```


Power iteration

```
matrix # Of size 10 x 10
vector = np.random.randn(10, 1)
for _ in range(100):
    vector = matrix & vector
    vector = vector / np.linalg.norm(vector)
```


Power iteration

What if matrix is $10^{\wedge} 10 \times 10^{\wedge} 10$ but has structure?

```
matrix # Of size 10 x 10
vector = np.random.randn(10, 1)
for in range(100):
    vector = matrix & vector
    vector = vector / np.linalg.norm(vector)
```


Power iteration

```
tt_matrix # Of size 10^5 x 10^5, tt_rank=10
shape = ((10, 10, 10, 10, 10), (1, 1, 1, 1, 1))
tt_vector = ttax.random.matrix(seed, shape, tt_rank=3)
for _ in range(3):
    tt_vector = tt_matrix @ tt_vector
    tt_vector = (1./norm(tt_vector)) * tt_vector
```

```
matrix # Of size 10 x 10
vector = np.random.randn(10, 1)
for _ in range(100):
    vector = matrix & vector
    vector = vector / np.linalg.norm(vector)
```

Vanilla power iteration

Power iteration

```
tt_matrix # Of size 10^5 x 10^5, tt_rank=10
shape = ((10, 10, 10, 10, 10), (1, 1, 1, 1, 1))
tt_vector = ttax.random.matrix(seed, shape, tt_rank=3)
for _ in range(3):
    tt_vector = tt_matrix @ tt_vector
    tt_vector = (1./norm(tt_vector)) * tt_vector
    print(tt_vector)
lol
```

```
matrix # Of size 10 x 10
vector = np.random.randn(10, 1)
for _ in range(100):
    vector = matrix & vector
    vector = vector / np.linalg.norm(vector)
```

Vanilla power iteration

TT power iteration

Power iteration

```
tt_matrix # Of size 10^5 x 10^5, tt_rank=10
shape = ((10, 10, 10, 10, 10), (1, 1, 1, 1, 1))
tt_vector = ttax.random.matrix(seed, shape, tt_rank=3)
for _ in range(100):
    tt_vector = tt_matrix & tt_vector
    tt_vector = ttax.round(tt_vector, max_tt_rank=3)
    tt_vector = (1./norm(tt_vector)) * tt_vector
    print(tt_vector)
```

TT power iteration

Vanilla power iteration

```
matrix # Of size 10 x 10
```

matrix \# Of size 10 x 10
vector = np.random.randn(10, 1)
vector = np.random.randn(10, 1)
for _ in range(100):
for _ in range(100):
vector = matrix \& vector
vector = matrix \& vector
vector = vector / np.linalg.norm(vector)

```
    vector = vector / np.linalg.norm(vector)
```

```
shape (100000, 1), tt_rank 3
```

shape (100000, 1), tt_rank 3
*) (100000, 1), tt__rank

```
*) (100000, 1), tt__rank
```


Power iteration

```
tt_matrix # Of size 10^5 x 10^5, tt_rank=10
shape = ((10, 10, 10, 10, 10), (1, 1, 1, 1, 1))
tt_vector = ttax.random.matrix(seed, shape, tt_rank=3)
for in range(100):
    tt_vector = tt_matrix @ tt_vector
    tt_vector = ttax.round(tt_vector, max_tt_rank=3)
    tt_vector = (1./norm(tt_vector)) * tt_vector
    print(tt_vector)
shape (100000, 1), tt_rank 3
shape (100000, 1), tt_rank 3
shape (100000, 1), tt_rank 3
```

```
matrix # Of size 10 x 10
```

vector = np.random.randn(10, 1)

```
vector = np.random.randn(10, 1)
for _ in range(100):
for _ in range(100):
    vector = matrix & vector
    vector = matrix & vector
    vector = vector / np.linalg.norm(vector)
```

```
    vector = vector / np.linalg.norm(vector)
```

```

Vanilla power iteration

TT power iteration
Can we do these two ops together more efficiently?

\section*{Power iteration}
```

tt_matrix \# Of size 10^5 x 10^5, tt_rank=10
shape = ((10, 10, 10, 10, 10), (1, 1, 1, 1, 1))
tt_vector = ttax.random.matrix(seed, shape, tt_rank=3)
for in range(100):
tt_vector = tt_matrix @ tt_vector
tt_vector = ttax.round(tt_vector, max_tt_rank=3)
tt_vector = (1./norm(tt_vector)) * tt_vector
print(tt_vector)
shape (100000, 1), tt_rank 3
shape (100000, 1), tt_rank 3
shape (100000, 1), tt_rank 3

```

TT power iteration
```

matrix \# Of size 10 x 10
vector = np.random.randn(10, 1)
for _ in range(100):
vector = matrix @ vector
vector = vector / np.linalg.norm(vector)

```

Vanilla power iteration

Can we do these two ops together more efficiently?

\section*{Power iteration}
```

tt_matrix \# Of size 10^5 x 10^5, tt_rank=10
shape = ((10, 10, 10, 10, 10), (1, 1, 1, 1, 1))
tt_vector = ttax.random.matrix(seed, shape, tt_rank=3)
for in range(100):
tt_vector = tt_matrix @ tt_vector
tt_vector = ttax.round(tt_vector, max_tt_rank=3)
tt_vector = (1./norm(tt_vector)) * tt_vector
print(tt_vector)

```
```

shape (100000, 1), tt_rank 3

```
shape (100000, 1), tt_rank 3
TT power iteration
```

```
matrix # Of size 10 x 10
```

matrix \# Of size 10 x 10
vector = np.random.randn(10, 1)
vector = np.random.randn(10, 1)
for _ in range(100):
for _ in range(100):
vector = matrix \& vector
vector = matrix \& vector
vector = vector / np.linalg.norm(vector)

```
    vector = vector / np.linalg.norm(vector)
```

```
Vanilla power iteration
```

Can we do these two ops together more efficiently? No, but

Power iteration

```
tt_matrix # Of size 10^5 x 10^5, tt_rank=10
shape = ((10, 10, 10, 10, 10), (1, 1, 1, 1, 1))
tt_vector = ttax.random.matrix(seed, shape, tt_rank=3)
for _ in range(100):
    intermidiate = tt matrix & tt vector
    intermidiate = ttax.project(intermidiate, tt_vector)
    tt_vector = ttax.round(intermidiate, max_tt_rank=3)
    tt_vector = (1./norm(tt_vector)) * tt_vector
```

```
matrix # Of size 10 x 10
```

matrix \# Of size 10 x 10
vector = np.random.randn(10, 1)
vector = np.random.randn(10, 1)
for _ in range(100):
for _ in range(100):
vector = matrix \& vector
vector = matrix \& vector
vector = vector / np.linalg.norm(vector)

```
    vector = vector / np.linalg.norm(vector)
```


Power iteration

```
tt_matrix # Of size 10^5 x 10^5, tt_rank=10
shape = ((10, 10, 10, 10, 10), (1, 1, 1, 1, 1))
tt_vector = ttax.random.matrix(seed, shape, tt_rank=3)
for _ in range(100):
    intermidiate = tt_matrix & tt_vector
    intermidiate = ttax.project(intermidiate, tt_vector)
    tt_vector = ttax.round(intermidiate, max_tt_rank=3)
    tt_vector = (1./norm(tt_vector)) * tt_vector
```

```
matrix # Of size 10 x 10
vector = np.random.randn(10, 1)
for _ in range(100):
    vector = matrix & vector
    vector = vector / np.linalg.norm(vector)
```

Can do together (asymptotically) faster than separately!

Power iteration

```
tt_matrix # Of size 10^5 x 10^5, tt_rank=10
shape = ((10, 10, 10, 10, 10), (1, 1, 1, 1, 1))
tt_vector = ttax.random.matrix(seed, shape, tt_rank=3)
for _ in range(100):
    intermidiate = tt_matrix & tt_vector
    intermidiate = ttax.project(intermidiate, tt_vector)
    tt_vector = ttax.round(intermidiate, max_tt_rank=3)
    tt_vector = (1./norm(tt_vector)) * tt_vector
```

```
matrix # Of size 10 x 10
vector = np.random.randn(10, 1)
for _ in range(100):
    vector = matrix & vector
    vector = vector / np.linalg.norm(vector)
```

Can do together (asymptotically) faster than separately!
But hard to implement for every single combination like project(matmul)

Power iteration

```
tt_matrix # Of size 10^5 x 10^5, tt_rank=10
shape = ((10, 10, 10, 10, 10), (1, 1, 1, 1, 1))
tt_vector = ttax.random.matrix(seed, shape, tt_rank=3)
for _ in range(100):
    intermidiate = tt_matrix & tt_vector
    intermidiate = ttax.project(intermidiate, tt_vector)
    tt_vector = ttax.round(intermidiate, max_tt_rank=3) {
    tt_vector = (1./norm(tt_vector)) * tt_vector
```

```
matrix # Of size 10 x 10
```

matrix \# Of size 10 x 10
vector = np.random.randn(10, 1)
vector = np.random.randn(10, 1)
for _ in range(100):
for _ in range(100):
vector = matrix \& vector
vector = matrix \& vector
vector = vector / np.linalg.norm(vector)

```
    vector = vector / np.linalg.norm(vector)
```

Can do together (asymptotically) faster than separately!
But hard to implement for every single combination like project(matmul)

So we built an einsum compiler that does this automatically

Einsum compiler for asymptotic speedups

```
def slow_project_matmul(matrix, vector):
    matvec = matrix & vector
    return ttax.project(matvec, vector)
fast_project_matmul = ttax.fuse(slow_project_matmul)
```


Einsum compiler for asymptotic speedups

```
def slow_project_matmul(matrix, vector):
    matvec = matrix @ vector
    return ttax.project(matvec, vector)
fast_project_matmul = ttax.fuse(slow_project_matmul)
tt_matrix = ttax.random.matrix(seed, matrix_shape, tt_rank=10)
tt_vector = ttax.random.matrix(seed, vector_shape, tt_rank=10)
benchmark(slow_project_matmul, tt_matrix, tt_vector)
100 loops, best of 5: 4 ms per loop
benchmark(fast_project_matmul, tt_matrix, tt_vector)
```

The slowest run took 1106.56 times longer than the fastest. This could mean that an intermediate result is being cache
1 loop, best of $5: 1.84 \mathrm{~ms}$ per loop

Einsum compiler for asymptotic speedups

```
def slow_project_matmul(matrix, vector):
    matvec = matrix & vector
    return ttax.project(matvec, vector)
fast_project_matmul = ttax.fuse(slow_project_matmul)
tt_matrix = ttax.random.matrix(seed, matrix_shape, tt_rank=20)
tt_vector = ttax.random.matrix(seed, vector_shape, tt_rank=20)
benchmark(slow_project_matmul, tt_matrix, tt_vector)
10 loops, best of 5:70.1 ms per loop
benchmark(fast_project_matmul, tt_matrix, tt_vector)
100 loops, best of 5:7.28 ms per loop
```


Riemannian optimization

\mathcal{M}_{r} - all tensors with fixed TT-rank (say 5)

Computing Riemannian gradient

```
# Loss(x): 0.5 * <x, A x>
def rimennian_gradient(x):
    return ttax.project(A @ x, x)
```


Computing Riemannian gradient

```
# Rayleigh quotient (loss for solving eigenvalue problems): <x, A x> / <x, x>
def rayleigh quotient(x):
    xAx = ttax.flat_inner(A & x, x)
    norm = ttax.norm(x)
    return xAx / norm
def rimennian gradient(x):
    Ax = A & x
    norm = ttax.norm(x)
    coef = 2 / norm
    first = ttax.project(coef * Ax, x)
    second = coef * rayleigh_quotient(x) * x
    return first - second
```


Computing Riemannian gradient

```
# Rayleigh quotient (loss for solving eigenvalue problems): <x, A x> / <x, x>
def rayleigh_quotient(x):
    xAx = ttax.flat_inner(A & x, x)
    norm = ttax.norm(x)
    return xAx / norm
```

If you need Riemannian Hessian-by-vector it's going to be ...

$$
\begin{aligned}
\nabla^{2} f(\mathbf{X}) \mathbf{Z} & =\frac{2}{\langle\mathbf{X}, \mathbf{X}\rangle} \mathrm{A} \mathbf{Z}-2 \frac{f(\mathbf{X})}{\langle\mathbf{X}, \mathbf{X}\rangle} \mathbf{Z}-4 \frac{\langle\mathrm{~A} \mathbf{X}, \mathbf{Z}\rangle}{\langle\mathbf{X}, \mathbf{X}\rangle^{2}} \mathbf{X} \\
& -4 \frac{\langle\mathbf{X}, \mathbf{Z}\rangle}{\langle\mathbf{X}, \mathbf{X}\rangle^{2}} \mathrm{~A} \mathbf{X}+8 f(\mathbf{X}) \frac{\langle\mathbf{X}, \mathbf{Z}\rangle}{\langle\mathbf{X}, \mathbf{X}\rangle^{2}} \mathbf{X}
\end{aligned}
$$

Autodiff

```
# Rayleigh quotient (loss for solving eigenvalue problems): <x, A x> / <x, x>
def rayleigh quotient(x):
    xAx = ttax.flat_inner(A & x, x)
    norm = ttax.norm(x)
    return xAx / norm
```


Just do this!

```
riemannian_gradient = ttax.grad(rayleigh_quotient)
riemannian_hessian_by_vector = ttax.hessian_by_vector(rayleigh_quotient)
```


Conclusion

- TTAX is a library for working with TT-decomposition written on Jax
- We built an einsum compiler which asymptotically speeds up your code by fusing a few operations into a single one
- We support Riemannian autodiff, which computes Riemannian gradient and Riemannian Hessian-by-vector product for an arbitrary given function with optimal asymptotics

