
Memory Optimization with Rematerialization

when Training DNNs

Inria Skoltech Workshop

Alena Shilova,

with Olivier Beaumont, Lionel Eyraud-Dubois, Julien Herrmann, Alexis Joly

July 7 2021



DL training phase: computational DAG

1



Dl training phase: computational DAG

for instance,

fi = RELU(Wx + b)

Node of the DAG (layer)

Nodei , function fi

x (1)
(size in

1 )

W , b (size di )

x
(2) (si

ze
in2)

z
(1) (o

ut1)

z (2)
(out

2 )

2



Memory Issues



Source of memory problems

Heavy models
This problem occurs when the weights of the model take a lot of memory

space. That causes the problem in inference as well.

Heavy training
The problem occurs when the activations are too expensive to store,

e.g. batch-size or input sample are too big. The problem does not affect

inference stage.

3



Distributed DL: forward propagation and backward propagation

Nodei

W (size di )

x (1)
(size in

1 )

x
(2) (si

ze
in2)

z
(1) (o

ut1)

z (2)
(out

2 )

∇ z
(1)
f (o

ut1)

∇
z (2) f (out

2 )

∇
x (1) f (in

1 )

∇ x
(2)
f (in

2)

∇W f + update

• ∂f

∂x
(1)
i

= ∂f
∂z(1)

∂z(1)

∂x
(1)
i

+ ∂f
∂z(2)

∂z(2)

∂x
(1)
i

• ∂f

∂x
(2)
i

= ∂f
∂z(1)

∂z(1)

∂x
(2)
i

+ ∂f
∂z(2)

∂z(2)

∂x
(2)
i

• ∂f
∂Wi

= ∂f
∂z(1)

∂z(1)

∂Wi
+ ∂f

∂z(2)
∂z(2)

∂Wi

• Example

f (x) = σ(wx + b) = σ(z)

• ∂f
∂x = σ′(z)w

• ∂f
∂w = σ′(z)x

4



DL: forward propagation and backward propagation

• forward propagation

• propagate the input through the network to compute loss

• backward propagation

• compute gradients with respect to loss

• update the weights with gradients

lifetime of x1

F0 F1 · · · FL−2 FL−1 FL

B0 B1 B2 · · · BL−1 BL

x0 x1 x2
xL−2 xL−1 xL loss

yL+1 = 1yLyL−1y3y2y1y0

x0 x1 x2 xL−1 xLx1 x2
x3 xL−1

xL loss

Figure 1: Linearized view of neural network

Memory is consumed by activations throughout the entire training!

5



Memory consumption

ResNetx

image

width/height

x = 18 x = 34 x = 50 x = 101 x = 152

224 0.60 0.98 2.22 3.41 4.78

350 1.22 1.93 4.90 7.45 10.47

500 2.31 3.60 9.63 14.69 20.76

650 3.79 5.86 15.99 24.13 34.06

Table 1: Memory requirement for each model to keep all weights and

activations for the batch size = 8, the amount is given in GB. The shaded

values correspond to the cases where the model cannot fit into a 8GB memory.

6



Pl@ntNet

Value Proposition
An innovative citizen science platform making use of machine learning to

help people identify plants through their mobile phone

7



Two examples of memory-consuming tasks (in the context of

Pl@ntNet)

(i) Detection & counting of small

reproductive structures in digitized

herbarium

(ii) Early detection & classification of

weeds in precision agriculture

8



Two examples of memory-consuming tasks (in the context of

Pl@ntNet)

Performance with a state-of-the-art model and largest image size

fitting in GPU memory is strongly affected by object’s size

Model: Mask R-CNN

Image size:1200x2048

GPU memory: 16Gb

Mini-batch size: 1

Figure 3: Detection & classification of weeds

(performance by object’s size)

9



Memory saving techniques

Special neural networks:

• Memory efficient architectures:

• Reversible neural networks (RevNet);

• Quantized neural networks;

• MobileNet;

• ShuffleNet;

• Layer optimization:

• memory-efficient batch-normalization layer

Usage of several machines:

• Data parallelism;

• Model parallelism;

• Spatial parallelism;

10



Single Node Memory Saving Techniques

Efficient training on one node/GPU

• Rematerialization

• work more and stock less (discard some data and recompute it after);

• known as checkpointing in Automatic Differentiation;

• Offloading:

• Use lower memory hierarchy:

• train on GPU;

• send activations (or weights) to CPU

Pros & Cons

− Overhead cost: extra computations or occupation of the PCI Bus

+ Suitable for training any NN architecture with limited resources

11



Rematerialization



Rematerialization

F0 F1 · · · FL−2 FL−1 FL

B0 B1 B2 · · · BL−1 BL

x0 x1 x2 xL−2 xL−1 xL loss

yL+1 = 1yLyL−1y3y2y1y0

x0 x1 x2 xL−1 xLx̄1 x̄2 x̄3 x̄L−1 x̄L loss

Main idea
To work more and stock less: instead of keeping all activations we store

some of them and recompute others once we need them.

Analogous to Automatic Differentiation
This technique is very common in AD. The optimal schedule for

checkpointing can be found with the help of Dynamic Programming.

12



Single Adjoint Chain Computation problem

F0 · · · Fi−2 Fi−1 Fi · · · F`−1

B0 · · · Bi−2 Bi−1 Bi · · · B`−1 B`

x0 x1 xi−2 xi−1 xi xi+1 x`−1

x`

y`y`−1yi+1yiyi−1yi−2y1y0

x0 x1 xi−2 xi−1 xi xi+1 x`−1

Figure 4: The data dependencies in the AC chain.

Input: cost of one forward step uf , cost of one backward step ub, chain

length ` and total memory size m.

Opt0(`, 3) =
`(`+ 1)

2
uf + (`+ 1)ub

Opt0(0,m) = ub

Opt0(`,m) = min
1≤i≤`

{iuf + Opt0(`− i ,m − 1) + Opt0(i − 1,m)}

13



Single Adjoint Chain Computation problem

F0 · · · Fi−2 Fi−1 Fi · · · F`−1

B0 · · · Bi−2 Bi−1 Bi · · · B`−1 B`

x0 x1 xi−2 xi−1 xi xi+1 x`−1

x`

y`y`−1yi+1yiyi−1yi−2y1y0

x0 x1 xi−2 xi−1 xi xi+1 x`−1

Figure 4: The data dependencies in the AC chain.

Input: cost of one forward step uf , cost of one backward step ub, chain

length ` and total memory size m.

Opt0(`, 3) =
`(`+ 1)

2
uf + (`+ 1)ub

Opt0(0,m) = ub

Opt0(`,m) = min
1≤i≤`

{iuf + Opt0(`− i ,m − 1) + Opt0(i − 1,m)}

13



Extension to Heterogeneous chain

Opt(i , `,m): execution time for a heterogeneous chain from i to ` with

memory m.

Opt(i , i ,m) =

{
uBi for m ≥ xi + yi+1 + yi
∞, otherwise

Opt(i , `,m) =


min

j=i+1,...,`

{
j−1∑
k=i

uFk
+ Opt(j , `,m − xj) + Opt(i , j − 1,m)

}
∞ if m < max{xi+1, xi+1 + xi+2, . . . , x`−1 + x`}

Difference with Opt0(`,m):

• new parameter: position in the subchain (instead of length only)

• memory costs are not anymore unitary, but all values are integers

• it is not optimal anymore in general case (not memory persistent)

14



DNN frameworks rematerialization

F0 F1 · · · FL−2 FL−1 FL

B0 B1 B2 · · · BL−1 BL

x0 x1 x2 xL−2 xL−1 xL loss

yL+1 = 1yLyL−1y3y2y1y0

x0 x1 x2 xL−1 xLx̄1 x̄2 x̄3 x̄L−1 x̄L loss

Figure 5: The data dependencies in the Adjoint Computation graph in

PyTorch.

• extra dependencies (↓-edges)

• different ways of checkpointing: (recording or saving only input)

• new dynamic programming is required

• and it should be suitable for most part of the state-of-the-art models

15



Optimal checkpointing for general sequential models

OptBP (i , `,m) = min

{
Opt1(i , `,m)

Opt2(i , `,m)

Opt1(i , `,m) = min
j=i+1,...,`

j−1∑
k=i

uFk
+ OptBP (j , `,m − xj) + OptBP (i , j − 1,m)

Opt2(i , `,m) = uFi + OptBP (i + 1, `,m − x̄i+1) + uBi

Formulas are valid as long as memory constraints are not violated!

We implemented this dynprog in rotor (see Lionel’s talk)

This paper is under major revision in Transactions on Mathematical

Software (ACM TOMS).

16



Optimal checkpointing for general sequential models

OptBP (i , `,m) = min

{
Opt1(i , `,m)

Opt2(i , `,m)

Opt1(i , `,m) = min
j=i+1,...,`

j−1∑
k=i

uFk
+ OptBP (j , `,m − xj) + OptBP (i , j − 1,m)

Opt2(i , `,m) = uFi + OptBP (i + 1, `,m − x̄i+1) + uBi

Formulas are valid as long as memory constraints are not violated!

We implemented this dynprog in rotor (see Lionel’s talk)

This paper is under major revision in Transactions on Mathematical

Software (ACM TOMS).

16



Optimal checkpointing for general sequential models

OptBP (i , `,m) = min

{
Opt1(i , `,m)

Opt2(i , `,m)

Opt1(i , `,m) = min
j=i+1,...,`

j−1∑
k=i

uFk
+ OptBP (j , `,m − xj) + OptBP (i , j − 1,m)

Opt2(i , `,m) = uFi + OptBP (i + 1, `,m − x̄i+1) + uBi

Formulas are valid as long as memory constraints are not violated!

We implemented this dynprog in rotor (see Lionel’s talk)

This paper is under major revision in Transactions on Mathematical

Software (ACM TOMS).

16



Comparison of our implementation with other approaches i

Batch_Size: 1 Batch_Size: 2 Batch_Size: 4 Batch_Size: 8

1 2 3 1 2 3 4 5 6 2.5 5.0 7.5 10.0 12.54 6 8 10 12 14

5

7

9

Peak Memory Usage (GiB)

T
h
ro

u
g
h
p
u
t 
(I

m
a
g
e
s 

/ 
s)

Strategy Revolve Optimal PyTorch Sequential Checkmate

(i) Experimental results for the ResNet network with depth 101 and image size

1000.

17



Comparison of our implementation with other approaches ii

Batch_Size: 1 Batch_Size: 2 Batch_Size: 4 Batch_Size: 8

2.5 5.0 7.5 10.0 12.5 5 10 5 10 6 9 12

0.25

0.50

0.75

Peak Memory Usage (GiB)

T
h
ro

u
g
h
p
u
t 
(I

m
a
g
e
s 

/ 
s)

Strategy Revolve Optimal PyTorch Sequential

(ii) Experimental results for the ResNet network with depth 1001 and image

size 224.

18



Comparison of our implementation with other approaches iii

densenet

Depth: 121

Image_Size: 224

Batch_Size: 64

inception

Depth: 200

Image_Size: 500

Batch_Size: 64

resnet

Depth: 101

Image_Size: 224

Batch_Size: 64

resnet

Depth: 152

Image_Size: 1000

Batch_Size: 4

2 4 6 8 5.0 7.5 10.0 12.5 2.5 5.0 7.5 10.0 5 10

3

4

5

6

7

80

120

160

200

60

65

70

75

80

150

200

250

300

Peak Memory Usage (GiB)

T
h
ro

u
g
h
p
u
t 
(I

m
a
g
e
s 

/ 
s)

Strategy Revolve Optimal PyTorch Sequential Checkmate

(iii) Experimental results for several situations.

19



Offloading



Our work

Our goal
To find optimal approaches in identifying which activations to offload

Problem
We proved that it is NP-complete problem in the strong sense, when

activations are offloaded entirely with discards only when the entire

activation is on CPU

Possible relaxations

• Partial discards on GPU are possible → solved by Dynamic

Programming

• Partial discards on GPU are possible + partial offloading → solved

by Greedy algorithm

This work was published in EuroPar2020

20



Simulation results

resnet-34 resnet-50

inception-200 resnet-101 resnet-152 resnet-18

densenet-121 densenet-161 densenet-169 densenet-201

0.6 0.7 0.8 0.9 1.0 1.2 1.6 2.0 2.4

0.8 1.2 1.6 2 3 4 1 2 3 4 5 0.55 0.60 0.65 0.70

1 2 3 4 2 3 4 5 6 1 2 3 4 2 4 6
1.00
1.05
1.10
1.15
1.20

1.0

1.5

2.0

1.0

1.1

1.2

1.3

1.0

1.1

1.2

1.3

1.0

1.1

1.2

1.3

1.0
1.1
1.2
1.3
1.4

1.0

1.2

1.4

1.6

1.0

1.1

1.2

1.3

1.0
1.1
1.2
1.3
1.4

1.0

1.2

1.4

Peak Memory Usage (GiB)

R
el

at
iv

e 
m

ak
es

pa
n

Algorithm AutoSwap DynProg Greedy TFLMS VDNN

Figure 7: Experimental results for image size 224 and batch size 32

21



Comparison to Offloading

37.5 GB/s

densenet-169

37.5 GB/s

inception-200

37.5 GB/s

resnet-152

25 GB/s

densenet-169

25 GB/s

inception-200

25 GB/s

resnet-152

12.5 GB/s

densenet-169

12.5 GB/s

inception-200

12.5 GB/s

resnet-152

1 2 3 4 5 0.5 1.0 1.5 2.0 1 2 3 4 5 6

1 2 3 4 5 0.5 1.0 1.5 2.0 1 2 3 4 5 6

1 2 3 4 5 0.5 1.0 1.5 2.0 1 2 3 4 5 6

60

90

120

80

100

120

100

110

120

130

200

300

240

280

320

360

275
300
325
350
375

50

100

150

200

80

120

160

200

120
140
160
180
200

Peak Memory Usage (GiB)

Th
ro

ug
hp

ut
 (I

m
ag

es
 / 

s) Algorithm
DynProg

Greedy

LowerBound

Rematerialization

TFLMS

VDNN

Figure 8: Rematerialization vs Offloading.

22



Combination of Offloading and

Rematerialization



Our work

We did

• Merged dynprog for Rematerialization and Offloading in POFO;

• Proved its optimality;

• Proposed two heuristics autocapper and opportunist

• This work is submitted to NeurIPS 2021

resnet 101 resnet 152 resnet 200 resnet 50

densenet 121 densenet 161 densenet 169 inception 200

0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

1.0

1.1

1.2

1.3

1.0

1.1

1.2

1.3

Memory Ratio

O
ve

rh
e
a
d
 w

rt
 s

e
q
u
e
n
tia

l (
fo

r 
1
2
G

B
/s

 b
a
n
d
w

id
th

)

Algorithm

autocapper

offload

opportunist

POFO

rematerialization

23



Model Parallelism and Pipelining



PipeDream

Figure 9: Example PipeDream with 4 workers.

Left picture shows the pipelining. Right picture how the model is parallelized

and executed with 1F1B schedule.

Narayanan, Deepak, et al. ”PipeDream: generalized pipeline parallelism for DNN

training.” 2019.
24



Our Contribution

• Considered the limitations of the previous state-of-the-art

• Proved complexity results for load balancing and scheduling problems

• Designed the ILP to find non-contiguous allocations

• Proposed k-periodic schedules

• Proposed MADpipe (a dynamic programming that finds some

non-contiguous allocations)

Part of these contributions have been published in EuroPar 2021

25



Conclusion



Conclusion

• It is important to reduce memory consumption

• Rematerialization is a promising solution

• We implemented rematerialization for heterogeneous chains in

PyTorch (see Lionel’s talk)

• In practice, most suitable for long quasi-homogeneous chains

• Additionally,

• Offloading is another possible alternative

• Combination of Rematerialization and Offloading improves both

methods

• Model Parallelism is suitable for distributed setting

• Future work: we plan to consider offloading weights too

26


	Memory Issues
	Rematerialization
	Offloading
	Combination of Offloading and Rematerialization
	Model Parallelism and Pipelining
	Conclusion

