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Three objects behind a tensor

A ∈ E1 ⊗ . . .⊗ Ed ≡ Rn1×...nd

discretization
of a multivariate

function

joint law of
a statistical

model

array
of data
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Preliminaries
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CP and TT decomposition

CP decomposition

A =
r∑

α=1

xα ⊗ yα ⊗ zα ∈ Rn×n×n

rcp(A) = inf

{
r ∈ N | ∃ A =

r∑
α=1

. . .

}
3nr terms

TT decomposition

A[i , j , k] = u[i ].G [j ].v[k]

rtt : ui ∈ R1×r , Gj ∈ Rr×r , vk ∈ Rr×1

nr2 + 2nr terms
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Link between ranks

Lemma (can be generalized in a strightforward way)

Let

A ∈ E ⊗ F ⊗ G , with


dim E = m

dim F = n

dim G = p

Then
rtt(A) ≤ rcp(A) ≤ r2tt(A)

Proof

• Development on a basis and reorganisation for rcp ≤ r2tt
• Development with diagonal G matrix for rtt ≤ rcp
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Example

For example, if r = 2

A = x1 ⊗ y1 ⊗ z1 + x2 ⊗ y2 ⊗ z2

with x1 =
(
x
(1)
i

)
i
, y1 =

(
y
(1)
j

)
j
, . . .

Then

x
(1)
i y

(1)
j z

(1)
k + x

(2)
i y

(2)
j z

(2)
k =

(
x
(1)
i x

(2)
i

)(y (1)j z
(1)
k

y
(2)
j z

(2)
k

)

=
(
x
(1)
i x

(2)
i

)(y (1)j 0

0 y
(2)
j

)(
z
(1)
k

z
(2)
k

)
= ui .Gj .vk
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When rcp = rtt?

TT rank is a tensor property (whatever the basis), and

ui .Gj .vk = ui .(PP
−1).Gj .(QQ

−1).vk
= (ui .P)(P−1.Gj .Q)(Q−1.vk)
= u′iG

′
j v
′
k

Simultaneously diagonalizable matrices

• (Gj)1≤j≤n is a set of r × r diagonalizable matrices

Then, it is equivalent that

• ∀ (i , j), GiGj = GjGi

• There exists a basis P such that each Gj is diagonal in this basis
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Lemma (re�ned)

Let A ∈ Rm×n×p with aijk = ui .Gj .vk ,

Lemma

• rtt ≤ rcp ≤ r2tt

• rcp = rtt i� (Gj)j simultaneously diagonalisable

Take home message: very simple

If a tensor has low CP rank, then it has low TT rank.
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A tensor as discretisation of

a multivariate function

Alain Franc (INRAE & INRIA) Low rank and norms July 8, 2017 9 / 28



Three objects behind a function

Multivariate function (here d=2 for simplicity)

Let

R2 f−−−−→ R

Three implementations

f •

f ∈ H

f (x , y) = x2 + 2xy + y2

f (xi , yi ) = M[i , j ]
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Cartesian Mesh

1D mesh

x ∈ Rn, ∀ i , xi ∈ R

x = (x1, . . . , xn) with x1 < . . . < xn

D(f , x) = (f (x1), . . . , f (xn))

H×M D−−−−→ Rn

2D Cartesian Mesh

• Let us consider 2 meshes x, y in R of respective sizes m, n.
• Then x⊗m y in R2 can be de�ned as

x ⊗m y =


(x1, y1) (x1, y2) . . . (x1, yn)
(x2, y1) (x2, y2) . . . (x2, yn)

...
...

...
(xm, y1) (xm, y2) . . . (xm, yn)


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Discretization of product of functions

Product of functions: two variables

• (fg)(x) = f (x)g(x)
• (f ⊗ g)(x , y) = f (x)g(y)

Discretisation of product of functions

• D(fg , x) = D(f , x)�D(g , x)
• D(f ⊗ g , x⊗m y) = D(f , x)⊗D(g , y)

Consequence

If u = f ⊗ g [u(x , y) = f (x)g(y), separation of variables], the matrix
D(u, x⊗m y) of discretization of u on mesh x⊗m y has rank one too.
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Product of d functions

Generalization is straightforward ...

D

(∏
µ

fµ , x

)
=

⊙
D(fµ, x)

D

(⊗
µ

fµ , ⊗(m)
µ xµ

)
=

⊗
µ

D(fµ, xµ)
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An elementary lemma (can be extended to d > 2)

Let

H⊗H D−−−−→ Rm×n

ψ −−−−→ D(ψ , x⊗m y)

Let (rank r CP−decomposition)

ψ =
r∑

α=1

uα ⊗ vα with uα, vα ∈ H

Then
∀m, n, rcp (D(ψ , x⊗m y)) ≤ rcp(ψ)

As consequence ...

∀m, n, rtt (D(ψ , x⊗m y)) ≤ rcp(ψ)
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Discretization of polynomials (1/2)

Let us de�ne

R 1x−−−−→ R

x −−−−→ 1

Bivariate polynomial

P(x , y) = x2 + 2xy + y2

Then
P = x2 ⊗ 1y + 2 x ⊗ y + 1x ⊗ y2

and
rcp(P) ≤ 3

and
∀m, n ∈ N, rtt(D(P, x⊗m y)) ≤ rcp(D(P, x⊗m y)) ≤ 3
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Discretization of polynomials (2/2)

Any polynomial

P(x1, . . . , xd ) =
∑
n

an1...nd x
n1
1 . . . xndd , N terms

Then
P =

∑
n

an1...nd x
n1
1 ⊗ . . .⊗ x

nd
d , CP rank = N

and
∀m1, . . . ,md ∈ N, rtt (D(P, x1 ⊗m . . .⊗m xd )) ≤ N

• mµ is the size of the Cartesian Grid for mode µ.

a remark

In general, N =
∏
µ nµ

=⇒ rank is high if d is signi�cant
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Extension to continuous functions

Stone-Weierstrass theorem

• C (S) = {f : S −→ R, f continuous}
• A ⊂ C (S) s.t. f , g ∈ A⇒ fg ∈ S

• x 6= y =⇒ ∃ f ∈ A : f (x) 6= f (y)
Then

∀ ε > 0, ∀f ∈ C (S), ∃ ϕ ∈ A : ∀ x ∈ S , |f (x)− ϕ(x)| < ε

• Any continuous function can be approximated with norm `∞ as close
as wished by a polynomial, i.e. a low rank function
• This is automatially transported to approximation by low rank
discretization on Cartesian grids
• And from CP to TT approximation (for working with TT toolbox)
• A well developed theory has been elaborated for `2 norm as well
(development on basis of orthogonal polynomials, leading to Tucker
approximations).
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Take home message

There is a sound and standard algebraic theory for showing that tensors as
discretization of multivariate functions are

exactly low rank for polynomials

well approximated by low rank tensors (CP, TT, Tucker) for
continuous functions

Some details still deserve attention

Better understanding of the link between CP et TT decomposition

Why CP is numerically unstable sometimes and TT not ?

at which boundaries ?

is it expandable to non Cartesian meshes?
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A tensor as a joint law
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A tensor as a joint law

Setting

• Let us have a discrete set Λ
• d random variables Xµ with values in Λ
De�ne

T[i1, . . . , id ] = ti1...id ∝ P(X1 = i1, . . . ,Xd = id )

• T is a d−modes tensor with elements ≥ 0

Classical examples

• Ising model
• Graphical models
• . . .
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Partition function

De�nition

In statistical physics, and statistical modeling, one is led to compute

Z (T) =
∑
i1

. . .
∑
id

ti1...id

• requires nd additions, with d > 103 often .... see Novikov & al. (2014)
for large d .

Alexander Novikov & al. (2014) - Putting MRFs on a Tensor Train.
Proceedings of the 31 st International Conference on Machine Learning,
Beijing, China.
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When does it work?

When T is written in TT format

ti1...id = G1(i1)× . . .× Gµ(iµ)× . . .× Gd (id )

with Gµ(iµ) ∈ Rrµ−1×rµ . Then, if Bµ =
∑

iµ
Gµ(iµ)

Z (T) = B1B2 . . .Bd

(Novikov & al., 2014)

When T has low CP-rank

T = x⊗ y ⊗ z + x′ ⊗ y′ ⊗ z′

Observation

• All terms in T are ≥ 0 Then

Z (T) = ‖T‖1 (norm `1)
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Variational approach

General approach

• a quantity f (T) on a tensor (like Z (T)) is di�cult to compute in
general, but easy in a (closed) subset A ⊂ Rn1×...×nd

• Then, one computes T̂ ∈ A such that, for a selected distance δ

δ(T, T̂) is minimal

• and approximates
f (T) ≈ f (T̂)

•
T

A

approaching Z (T) with `1 norm
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Low rank approximation of matrices for `1 norm

Setting the problem

• given A ∈ Rm×n

• �nd Â with rank(Â) = r

• such that ‖A− Â‖1 minimal

State of the art

• Di�culty: it has been shown to be NP-hard (Gillis & Vavasis, 2015)
• Available algorithm with "provable approximation guarantees" (Song,
Woodru� & Zhong, 2018)
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What about tensors?

• Let A ∈ E ⊗ F ⊗ G

• Let AE be its �rst matricization

F ⊗ G
AE−−−−→ E

• Then ‖AE‖1 = ‖A‖1

Proposed heuristics

for all matricizations A of A do

computes the best rank one approximation Abest of A with norm `1

computes δ(A) = ‖A− Abest‖
select A such that δ(A) is minimal
computes Z (Abest) (easy)
return Z (Abest) ≈ Z (A)
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Take home message

The theory behind best low rank approximation of a tensor as joint
distribution is not as mature than links between multilinear algebra,
PDE, functional analysis

A di�culty is that a wider diversity of norms is relevant

Kullback-Leibler for mutual information

`1 for partition function

...

which do not rely on Euclidean geometry

Alain Franc (INRAE & INRIA) Low rank and norms July 8, 2017 26 / 28



To be taken into account: di�erent levels of complexity

Discretized functions

Data structure

Statistical modeling

Randomness

rank

high

medium

low

Kolmogorov
complexity

high

medium

low
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