Mokameeting du 15 janvier: Luigi De Pascale et Beni Söllner

Le prochain Mokameeting aura lieu le mercredi 15 janvier 2020 à INRIA Paris (2 rue Simone Iff) en salle Jacques-Louis Lions à 10h30.

Nous aurons le plaisir d’écouter les exposés de Luigi De Pascale (Dipartimento di Matematica ed Informatica,  Firenze, Italy)   et Beni Söllner (Zentrum Mathematik, Technische Universität München, Germany).

 

Exposé de Luigi De Pascale

Titre : Relaxing the multi-marginal, Coulomb (repulsive) optimal transport cost.

Résumé : Motivated by some applications to Density Functional Theory for Coulomb Systems I will show the need to relax the multi-marginal, Coulomb optimal transport cost with respect to the weak convergence of measures.
I will then present a formula for the relaxed functional. This formula involves transport costs with smaller numbers of marginals. If time permits the problem of molecular dissociation in this setting will be discussed.

 

Exposé de Beni Söllner

Titre : An entropic regularized BDF2 method for the porous medium equation.

Résumé : Recently a variational form of the BDF2 method as an alternative to the commonly used minimizing movement scheme for time-discrete approximation of gradient flows in metric spaces has been introduced. On the other hand, entropic regularized optimal transport provides an efficient method for numerical solutions of the minimizing movement scheme.

This talk will be about the analysis of a scheme that combines BDF2 with entropic regularization. Specifically we study an implicit second order scheme for approximate solutions to the porous medium equation that allows for efficient numerical implementation. Our focus is on the convergence of the scheme.

Leave a Reply

Your email address will not be published.