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Introduction

Core result
A link between:
• Regret minimization

a sequential decision framework with known links with first-order optimization.

• Fixed point iterations
iterative methods for solving fixed point problems.

Application
• Define novel fixed point iterations

based on regret minimizing methods, with guarantees transposed from regret bounds.

• In particular, AdaGrad-based iterations
with adaptive guarantees.



Summary

• Reminder: Fixed point problems and iterations
a very general approach for designing iterative methods

• Reminder: Regret minimization
a classical sequential decision problem

• Link between regret minimization and fixed point iterations
a core lemma

• Reminder: AdaGrad for regret minimization and optimization
with an adaptive character and good properties, both theoretical and practical

• AdaGrad-based fixed point iterations
novel iterations with adaptive guarantees



Fixed point problems

Let F : X → X where X ⊂ V (vector space).

Goal

Find x∗ ∈ X such that F (x∗) = x∗.

Numerous applications
• Linear systems (Richardson, Gauss-Seidel, Jacobi)
• Ordinary/partial differential equations
• Dynamic programming and reinforcement learning (Q-learning)
• Optimization (Sinkhorn, gradient descent, forward-backward, ADMM,

Chambolle-Pock, etc.)
• Statistics (EM algorithm)



Examples
EM Algorithm (Dempster et al., 1977)

for latent variable models

(Y ,Z) ∼ pθ(y , z), Y observed, Z latent.

θt+1 = argmax
θ∈Θ

EZ∼pθt ( · |Y ) [log pθ(Y ,Z )] ,

looks for a fixed point of operator:
θ 7→ arg max

θ′∈Θ

EZ∼pθ ( · |Y ) [log pθ′ (Y , Z)] .

Sinkhorn’s algorithm (Cuturi, 2013)
for entropic optimal transport

ε > 0, a ∈ ∆m, b ∈ ∆n, U(a, b) transport plans, C cost matrix, K = e−C/ε , H
negative entropy.

min
P∈U(a,b)

{〈P,C〉 − εH(P)} .

Equivalent to finding u ∈ Rm
+ and v ∈ Rn

+ such that:

u =
a

Kv and v =
b

K>u .

Corresponding fixed point iterations:

ut+1 =
a

Kvt
and vt+1 =

b
K>ut+1

.



Fixed point iterations with contractive operators

Theorem (Banach, 1922)
Let (X , d) be a complete metric space, F : X → X a L-Lipschitz map
with 0 ⩽ L < 1. Then,
• F admits a unique fixed point x∗ ∈ X,
• for all x1 ∈ X and

xt+1 = F (xt), t ⩾ 1,

it holds that

d(xT , x∗) ⩽ LT−1d(x1, x∗), T ⩾ 1.

(geometric convergence)



Example: Linear systems

Let A ∈ Rd×d , b ∈ Rd .

Ax = b
m

x + (b − Ax)︸ ︷︷ ︸
=:F (x)

= x

m
x + γ(b − Ax)︸ ︷︷ ︸

=:Fγ(x)

= x

(Richardson iteration, 1910)

xt+1 = F (xt)

= xt + (b − Axt)

xt+1 = Fγ(xt)

= xt + γ(b − Axt)

• Needs γ ̸= 0 such that Fγ = I + γ(F − I) is a contraction
• There are other types of iterations for specific classes of matrices (Jacobi,

Gauss–Seidel, etc.).



Fixed point iterations with nonexpansive operators
Let F : X → X be nonexpansive (i.e. 1-Lipschitz).

• F may have no fixed point.
for e.g. a translation

• Even if a fixed point exists, iteration xt+1 = F (xt) may not converge.
for e.g. a rotation

Krasnoselskii–Mann iterations (1953)
Assume that a fixed point x∗ exists, that X is convex. Let x1 ∈ X and

xt+1 =
xt + F (xt)

2 , t ⩾ 1.

Theorem (Baillon–Bruck, 1996; Cominetti–Sotto–Vaisman, 2014)
In finite dimension, (xt)t⩾1 converges to a fixed point and

‖F (xT )− xT‖2 ⩽ ‖x1 − x∗‖2
2
√
πT

, T ⩾ 1.



What if F is not nonexpansive?

• For γ 6= 0,
F and Fγ := I + γ(F − I)

have the same fixed points.
• If Fγ is nonexpansive for some γ 6= 0, KM with Fγ guarantees

‖F (xT )− xT‖2 ⩽ ‖x1 − x∗‖2
2γ

√
πT

.

• Ideally, we want the largest such γ.
• But even if a such γ exists, it may be unknown.
• Related to the choice of step-size (aka learning rate) in optimization

and ML/DL.



Example: First-order optimization

min
x∈Rd

f (x) (f differentiable)

∇f (x) = 0
m

x − γ∇f (x) = x
(γ 6= 0)

Gradient descent
xt+1 = xt − γ∇f (xt)

• Needs γ ̸= 0 such that I − γ∇f is contractive or nonexpansive.

Theorem (Baillon–Haddad, 1977)
If f is convex and ∇f is L-Lipschitz,

I − γ∇F is nonexpansive for all 0 < γ < 2/L.

• In practice, L may be unknown and difficult to estimate.
for e.g. logistic regression

• Gradient descent is very sensitive to γ
Small γ gives slow convergence, does not converge for large γ.

• Well-known to MD/DL practionniers
Tuning is compuationnaly heavy



Regret minimization
Sequential decision problem involving a Player against Nature

Introduced by (Hannan, 1957)

Online linear optimization (OLO)
(Zinkevich, 2003)

X ⊂ Rd convex compact, U ⊂ Rd

For t ⩾ 1,
• Player chooses xt ∈ X
• Nature chooses ut ∈ U
• Player gets payoff 〈ut , xt〉

Regret = 1
T

(
max
x∈X

T∑
t=1

〈ut , x〉 −
T∑

t=1
〈ut , xt〉

)

= max
x∈X

1
T

T∑
t=1

〈ut , x − xt〉

• If U is bounded, possible to minimize the regret as O(1/
√

T ).



Example of regret minimizing algorithms

Online gradient descent
(Zinkevich, 2003)

xt+1 = ΠX (xt + γtut), t ⩾ 1.

Online mirror descent
(Shalev-Shwartz, 2007)

with squared Mahalanobis distances

xt+1 = ΠX ,B(xt + γtB−1ut), t ⩾ 1.

Exponential weights algorithm
(Littlestone–Warmuth, 1994)

X = ∆d =

{
x ∈ Rd

+,
d∑

i=1
xi = 1

}

xt =

 exp
(
ηt
∑t−1

s=0 us,i

)
∑d

j=1 exp
(
ηt
∑t−1

s=0 us,j

)


1⩽i⩽d

, t ⩾ 0.



Links between regret minimization and other problems

Regret can be used as a theoretical tool to define and analyze algorithms
is various problems.

• First-order optimization
Gradient descent, mirror descent (Nemirovsky–Yudin, 1983), dual averaging (Nesterov, 2009),
Nesterov’s acceleration (1983), etc.

• Two-player zero-sum games
Regret matching (Hart–Mas-Colell, 2000), counterfactual regret minimization (Zinkevich,
2007), first superhuman poker algorithm (Tammelin et al., 2015).

max
x∈∆m

min
y∈∆n

〈x ,Ay〉 (A ∈ Rm×n)

• Variational inequalities with Lipschitz monotone operators
Extragradient (Korpelevich, 1976), mirror-prox (Nemirovsky, 2004), dual extrapolation
(Nesterov, 2007).

max
x∈X

〈G(x∗), x − x∗〉 ⩾ 0.



A link between regret minimization and fixed point problems

From now on, X ⊂ Rd is nonempty and convex, F : X → X , and x∗ ∈ X
a fixed point of F .

Lemma (K., 2025)
Let γ > 0 and assume that Fγ = I + γ(F − I) is nonexpansive. Then for
any sequences (xt)t⩾1 in X,

T∑
t=1

‖F (xt)− xt‖2
2 ⩽ 2

γ

T∑
t=1

〈F (xt)− xt , x∗ − xt〉︸ ︷︷ ︸
regret wrt ((F (xt) − xt))t⩾1

, T ⩾ 1.

• No need to know γ to minimize the RHS.



AdaGrad

AdaGrad
(McMahan–Streeter 2010)

(Duchi–Hazan–Singer, 2011)

• 3 main versions: AdaGrad-Norm, AdaGrad-Diagonal, AdaGrad-Full.
• A family of regret minimizing algorithms with adaptive guarantees.
• Time-dependent step-sizes based on previous data.
• Important breakthrough. Good theoretical properties and good

behavior in practice.
• Lot of on-going research and new variants with improved properties.



AdaGrad-Norm: definition and regret bound

xt+1 = xt +
η√∑t

s=0 ‖us‖2
2

ut .

• Online gradient descent with adaptive step-size
based on previously observed vectors

• Large vectors decrease subsequent step-sizes

Theorem (Regret bound for AdaGrad-Norm)
For all T ⩾ 1,

T∑
t=1

〈ut , x∗ − xt〉 ⩽ Dη,T

√√√√ T∑
t=1

‖ut‖2
2

(
where Dη,T = η +

max1⩽t⩽T ∥xt − x∗∥2
2

2η

)



Adaptivity and robustness of AdaGrad-Norm in smooth convex optimization

min
x∈Rd

f (x) differentiable, x∗ a minimizer

xt+1 = xt −
η√∑t

s=0 ‖∇f (xs)‖2
2

∇f (xt), t ⩾ 1.

Theorem (Levy et al. 2018)
Let L > 0. If f is convex and ∇f is L-Lipschitz, for all T ⩾ 1,

min
1⩽t⩽T

f (xt)− f (x∗) ⩽ D2
η,T

L
T .

• GD must choose step-size 1/L, AdaGrad-Norm is adaptive to L.

• Local character of AdaGrad: L can be replaced by LT := max
1⩽t⩽T

∥∇f (xt)∥2

f (xt)− f (x∗)
.

• AdaGrad-Norm is also adaptive to the noise level in stochastic convex optimization



Nonexpansiveness and co-coercivity

Let L > 0.
Definition
An operator G : X → Rn is L-co-coercive if for all x , x ′ ∈ X ,

〈G(x ′)− G(x), x ′ − x〉 ⩾ 1
L ‖G(x ′)− G(x)‖2

2 .

Proposition
Let F : X → X and G = (I − F )/2.
• The fixed points of F are the zeros of G.
• F is nonexpansive iif G is 1-co-coercive,
• G is L-co-coercive iif F1/L = I − 2

L G is nonexpansive.



AdaGrad-Norm for fixed points: adaptive guarantee

xt+1 = xt + γ
F (xt)− xt√∑t

s=1 ‖F (xs)− xs‖2
2

.

Theorem (K., 2024)
If F1/L is nonexpansive (i.e. G = (I − F )/2 is L-co-coercive),

min
1⩽t⩽T

‖F (xt)− xt‖2 ⩽ 2Dγ,T L√
T

, T ⩾ 1.

• Adaptive to L.
• Adaptivity is local: L by can replaced by

LT := sup
1⩽t⩽T

∥F (xt)− xt∥2

2 ⟨F (xt)− xt , x∗ − xt⟩︸ ︷︷ ︸
local co-coercivity along trajectory wrt x∗

.



On conditionning
• For twice differentiable functions, optimality conditions at a

minimizer give
∇f (x∗) = 0 et ∇2f (x∗) � 0.

• As x → x∗:

f (x) = f (x∗) +
1
2 (x − x∗)>∇2f (x∗)(x − x∗)+o(‖x − x∗‖2).

• Local conditionning: κloc :=
λmax(∇2f (x∗))

λmin(∇2f (x∗))
∈ [1,+∞].

Small κloc: GD is fast
Well-conditionned case

Large κloc: GD is slow
Ill-conditionned case.

• A favorable change of coordinates x 7→ f (B−1x) would improve
conditionning



AdaGrad-Diagonal for optimization

xt+1 = xt − ηB−1
t ∇f (xt)

where Bt = diag


√√√√ t∑

s=1

(
∂f
∂xi

(xs)

)2


1⩽i⩽d

• Per-coordinate adaptive step-sizes.
• Partially addresses ill-conditionning

by an online change of coordinates restricted to diagonal matrices.

• Much better scalability than quasi-Newton methods
that maintain full matrices (thus needing d × d storage).

• Variants like RMSprop and Adam are state-of-the-art for DL.
Some objective function varies much more/less wrt to some coordinates: weights of first vs
last layers of a neural networks.



Generalized co-coercivity

Let B ∈ Rd×d be symmetric positive definite.
Definition
An operator G : X → Rd is co-coercive for B if for all x , x ′ ∈ X ,

〈G(x ′)− G(x), x ′ − x〉 ⩾ ‖G(x ′)− G(x)‖2
B−1 .

Proposition
G is co-coercive for B iif

I − 2B−1G is nonexpansive for ‖ · ‖B .



AdaGrad-Diagonal for fixed points: stronger adaptivity

xt+1 = xt + η

 (F (xt)− xt)i√∑t
s=1(F (xs)− xs)2

i


1⩽i⩽d

Theorem (K., 2025)
Let B � 0 be a diagonal matrix. If I − B−1(F − I) is nonexpansive for
‖ · ‖B ,

min
1⩽t⩽T

‖F (xt)− xt‖B−1 ⩽ D′
η,T

√
TrB
T .

where D′
η,T =

max1⩽t⩽T ∥xt − x∗∥2
∞

2η
+ η

• Much stronger adaptivity: wrt all diagonal positive definite matrices.
i.e. wrt the most favourable change of coordinates with diagonal matrices and not only wrt a
scalar scaling

• Local character of adaptivity
to be worked out



Numerical experiments: LASSO logistic regression with forward-backward
splitting

minimizer of f (x) + λ ‖x‖1 ⇐⇒ fixed point of Proxγλ‖ · ‖1
(x − γ∇f (x))



Questions and perspectives

• Additional adaptivity to contractive properties.
• Extension to stochastic approximations.

Stochastic approximation correspond to Krasnoselskii-Mann iterations with noisy operator
evalution. Interesting for reinforcement learning.

• Combine with Blackwell’s approachability.
Recent success in extensive form games (e.g. Poker) have been obtained with Blackwell-based
regret minimizers. On bounded domains only.

• Combine with AdaGrad-Full to obtain quasi-Newton-like methods for
fixed points.
AdaGrad-Full maintain full matrices and offer even strong adaptivity. For problems of
moderate size.

• Combine with successful AdaGrad variants e.g. RMSprop and Adam.
RMSprop and Adam are variants of AdaGrad with weaker theoretical understanding but
improved practical performance. Very sucessful in deep learning.

Thank you for your attention
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