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Nonvariational, nonlinear equations discrete and continuous

Common structure to problems in network flows, optimal
transport, optimal control, interface dynamics, submodular
functions...

detD u =2 fH(x,∇u) = f

Dates back to Rheinboldt ('70s)

−div(A∇u) = f

Ideal to prove comparison principles

Ric(g) = f∂ u =t −Q(u)

Persists through regularization and continuous ↔ discrete

Prelude

Natural algorithm: Jacobi
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1. Z-mapping

 is a Z-mapping if for all , for all ,Q u, u~ x

D E F I N I T I O N

⟹{ u

u(x)

≤ u~

= (x)u~
Q ( ) ≤x u

~ Q (u).x

Want to solve equations of the form

,     finite or 

Q(u) = 0,

u : X → R X X ⊆ Rd

Q : R →X RX X

Toy example: Q (u) =i 2u −i u −i+1 u .i−1



Examples

Square matrix , solve

Let . Then

A

Au = f

Q(u) = Au− f

Q is a Z-mapping  ⟺ a ≤ij 0 for all i = j. Z-matrix

x

y

M (u)xyOn a network ,(X,A)

−divM(u) = f

 "flow mapping" such that:

 increasing in  decreasing in .

M : R →X RA

M (u)xy uy ux Ex: ,

      

M (u) =xy u −y ux

M (u) =xy eu −uy x



Examples

If  is a Z-mapping then so is the spacetime mapping

∂ u =t −Q(u)

Q

(u) =Q̂t,x : +
τ

u − ut,x t−1,x
Q (u )x t

 is a Z-mapping.Q(u) =: u− T (u)

(Shortest path, stochastic shortest path, Markov Decision Process)

x

Dynamic programming principle:
u(x) = c(x, y) +

y
min u(y) =: T (u)

(Eikonal equation, Hamilton–Jacobi Bellman, viscosity solutions)



2. M-mappings

A Z-mapping  is an M-mapping if it satisfies
a comparison principle 

Q

Q(u) ≤ Q( ) ⟹u~ u ≤ u~

D E F I N I T I O N

Uniqueness of 

Maximum principle

Q(u) = f , Q( ) =u~   with  f ≤f
~

⟹f
~

u ≤ u~

Q(u) = f

Strong comparison principle: if  is a strongly connected
component of an M-mapping  then

V

Q

Q(u) ≤ Q( ) ⟹u~ u =   or  u <u~  on V .u~



T H E O R E M

Suppose that a Z-mapping  satisfies: for all ,

Then  is an M-mapping.

Q V ⊆ X

⟹{u
u

<  on Vu~

=  on X ∖ Vu~
Q (u) <

x∈V

∑ x Q ( )
x∈V

∑ x u~

Q

Berry, Gandhi, Haile '2013; Chen, Choo, Galichon, Weber '2021

Example: 

Works for quasilinear PDEs, Monge–Ampère, semi-discrete
optimal transport, entropic transport...

Q(u) = −div(a(x,u)∇u) − f , a(x,u) ≥ c >0 0

Q(u)dx =∫
V

a(x,u)⟨∇u, −n⟩∫
∂V

Proving a comparison principle

Basic idea: combine the Z-property and “some isotonicity”



3. The Jacobi algorithm

D E F I N I T I O N

The Jacobi transform  is defined byJ : R →X RX

Q (J (u),u ) =x x −x 0.

Jacobi algorithm

u =n+1 J(u )n

A L G O R I T H M

“coordinate update”
Also related: Gauss–Seidel

Q(u) = 0



Properties of Jacobi 

Let  be a continuous Z-mapping.

1. If  then

2.

Q

Q(u ) ≤n 0

Q(u ) ≤n+1 0 and  u ≤n un+1

u ≤n ⟹u~n u ≤n+1 u~n+1

P R O P O S I T I O N

1: Useful for algorithm or showing existence of solutions

 "method of subsolutions", "Perron's method"...

2: Useful when sandwich , thenv ≤0 u ≤0 w0

v ≤n u ≤n wn

Rheinbolt ’70



S ν =u# μ

Optimal transport (continuous/discrete/semi-
discret/entropic), generated Jacobian equations

S (y) =u : u(x) −
x

argmax c(x, y)

� Discrete:  is discontinuous  need regularization.

Real auction, or replace min by softmin: Entropic OT.

Q →

 is a Z-mappingQ(u) = S νu#

(X,μ) (Y , ν)

c(x, y)

� Algorithm: Jacobi  = Bertsekas' (naive) auction algorithm

4. Examples

� Monge–Ampère has a comparison principle

� Jacobi = Sinkhorn



Mean curvature motion

mean curvature motion =  gradient flow of

( ).   Heat content:

 
submodular, nonconvex

 is a Z-mapping.

L2

P (u) = ∣∇u∣ dx
2
1 ∫

Rd

u = 1K

P (u) =ε − G (x−
ε

1 ∬ ε y)u(x)(1 − u(y)) dxdy + χ(u(x)) dx∫

Q(u) = DP (u)

� Jacobi = MBO (Merriman–Bence–Osher ’92)



Thank you!


