Z-mappings

for mathematicians

Flavien Léger

Ínria-

Joint work with Alfred Galichon (NYU)

Prelude

Nonvariational, nonlinear equations discrete and continuous

$$\partial_t u = -Q(u)$$
 $-\operatorname{div}(A
abla u) = f$ $\operatorname{Ric}(g) = f$ $H(x,
abla u) = f$ $\det D^2 u = f$

Common structure to problems in network flows, optimal transport, optimal control, interface dynamics, submodular functions...

Dates back to Rheinboldt ('70s)

Ideal to prove comparison principles

Natural algorithm: Jacobi

Persists through regularization and continuous ↔ discrete

Outline

- 1. Z-mappings
- 2. M-mappings
- 3. The Jacobi algorithm
- 4. Examples

1. Z-mapping

Want to solve equations of the form

$$Q(u) = 0,$$

 $u\colon X o \mathbb{R}$, X finite or $X\subseteq \mathbb{R}^d$

 $Q\colon \mathbb{R}^X o \mathbb{R}^X$

X

DEFINITION

Q is a Z-mapping if for all u, \tilde{u} , for all x,

$$egin{cases} u \leq ilde{u} \ u(x) = ilde{u}(x) \implies Q_x(ilde{u}) \leq Q_x(u). \end{cases}$$

Toy example: $Q_i(u) = 2u_i - u_{i+1} - u_{i-1}$.

Examples

Square matrix A, solve

$$Au = f$$

Let
$$Q(u) = Au - f$$
. Then

$$Q \ \mathrm{is} \ \mathrm{a} \ \mathrm{Z ext{-}mapping}$$

$$\iff$$

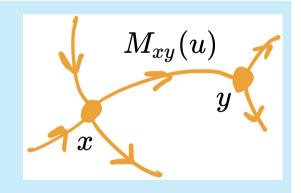
$$Q ext{ is a Z-mapping} \quad \Longleftrightarrow \quad a_{ij} \leq 0 ext{ for all } i \neq j. \quad extstyle extstyl$$

On a network (X, A),

$$-\mathrm{div}M(u)=f$$

 $M\colon \mathbb{R}^X o \mathbb{R}^A$ "flow mapping" such that:

 $M_{xy}(u)$ increasing in u_y decreasing in u_x .



Ex:
$$M_{xy}(u)=u_y-u_x$$
, $M_{xy}(u)=e^{u_y-u_x}$

Examples

$$\partial_t u = -Q(u)$$

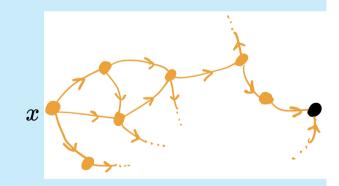
If Q is a Z-mapping then so is the spacetime mapping

$$\hat{Q}_{t,x}(u)\coloneqq rac{u_{t,x}-u_{t-1,x}}{ au}+Q_x(u_t)$$

Dynamic programming principle:

$$u(x) = \min_y c(x,y) + u(y) \eqqcolon T(u)$$

 $Q(u) \coloneqq u - T(u)$ is a Z-mapping.



(Shortest path, stochastic shortest path, Markov Decision Process) (Eikonal equation, Hamilton–Jacobi Bellman, viscosity solutions)

2. M-mappings

DEFINITION

A Z-mapping Q is an M-mapping if it satisfies a comparison principle

$$Q(u) \le Q(\tilde{u}) \implies u \le \tilde{u}$$

$$Q(u)=f,\ Q(ilde u)= ilde f\ ext{ with }\ f\le ilde f\ \Longrightarrow\ u\le ilde u$$
 Uniqueness of $Q(u)=f$ Maximum principle

Strong comparison principle: if V is a strongly connected component of an M-mapping Q then

$$Q(u) \leq Q(\tilde{u}) \implies u = \tilde{u} \text{ or } u < \tilde{u} \text{ on } V.$$

Proving a comparison principle

Basic idea: combine the Z-property and "some isotonicity"

THEOREM

Berry, Gandhi, Haile '2013; Chen, Choo, Galichon, Weber '2021

Suppose that a Z-mapping Q satisfies: for all $V \subseteq X$,

$$egin{cases} u < ilde{u} ext{ on } V \ u = ilde{u} ext{ on } X \setminus V \implies \sum_{x \in V} Q_x(u) < \sum_{x \in V} Q_x(ilde{u}) \end{cases}$$

Then Q is an M-mapping.

Example:
$$Q(u)=-\operatorname{div}(a(x,u)
abla u)-f,\quad a(x,u)\geq c_0>0$$

$$\int_V Q(u)dx=\int_{\partial V} a(x,u)\langle
abla u,-n\rangle$$

Works for quasilinear PDEs, Monge-Ampère, semi-discrete optimal transport, entropic transport...

3. The Jacobi algorithm

$$Q(u) = 0$$

DEFINITION

The Jacobi transform $J\colon \mathbb{R}^X o \mathbb{R}^X$ is defined by

$$Q_x(J_x(u), u_{-x}) = 0.$$

"coordinate update"

Also related: Gauss-Seidel

ALGORITHM

Jacobi algorithm

$$u_{n+1}=J(u_n)$$

Properties of Jacobi

PROPOSITION

Rheinbolt '70

Let Q be a continuous Z-mapping.

1. If $Q(u_n) \leq 0$ then

$$Q(u_{n+1}) \leq 0$$
 and $u_n \leq u_{n+1}$

2.

$$u_n \leq ilde{u}_n \implies u_{n+1} \leq ilde{u}_{n+1}$$

1: Useful for algorithm or showing existence of solutions

"method of subsolutions", "Perron's method"...

2: Useful when sandwich $v_0 \leq u_0 \leq w_0$, then

$$v_n \le u_n \le w_n$$

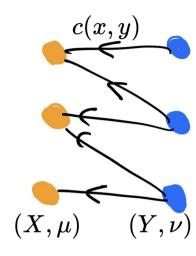
4. Examples

Optimal transport (continuous/discrete/semidiscret/entropic), generated Jacobian equations

$$S_u(y)\coloneqq rg\max_x u(x) - c(x,y)$$

$$S_{u\#}
u=\mu$$

$$Q(u) = S_{u\#} \nu$$
 is a Z-mapping



- ☐ Monge–Ampère has a comparison principle
- □ Algorithm: Jacobi = Bertsekas' (naive) auction algorithm
- \square Discrete: Q is discontinuous \rightarrow need regularization.
- Real auction, or replace min by softmin: Entropic OT. ☐ Jacobi = Sinkhorn

Mean curvature motion

mean curvature motion = L^2 gradient flow of

$$P(u) = rac{1}{2} \int_{\mathbb{R}^d} \! |
abla u| \, dx$$

 $(u=1_K)$. Heat content:

$$P_arepsilon(u) = -rac{1}{arepsilon} \iint G_arepsilon(x-y) u(x) (1-u(y)) \, dx dy + \int \chi(u(x)) \, dx$$

submodular, nonconvex

$$Q(u) = DP(u)$$
 is a Z-mapping.

Thank you!