Quantitative stability for Optimal Transport

- a complex geometric approach

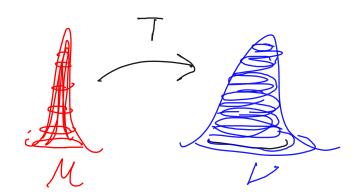
(Inra, 9/2-2022)

Robert Berman

OT setup

Assume given two probability measures on \mathbb{R}^n μ and $\underline{\nu}$ which have

- compact support
- ullet densities wrt dx



A map T from \mathbb{R}^n to \mathbb{R}^n is called a *transport* map if

$$T*\mu = \nu, \quad T \in L^{\infty}_{loc}$$

The optimal transport map minimizes

$$\min_{T} \int_{\mathbb{R}^{n}} |T(x) - x|^{2} \mu =: \mathcal{W}_{2}(\mu, \nu)^{2}$$

It is unique and denoted by $T_{\mu,\nu}$.

Stability

The optimal transport map $T_{\mu,\nu}$ is stable wrt variations of the source μ :

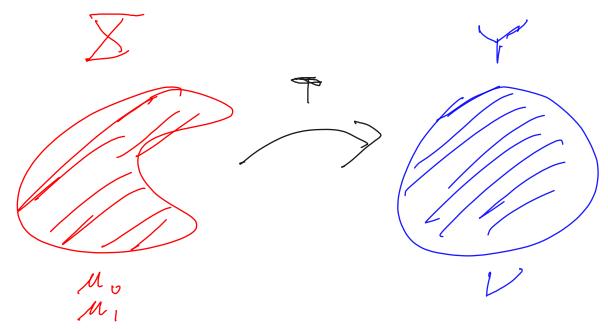
$$\mu_0 - \mu_1 \to 0 \implies T_{\mu_0,\nu} - T_{\mu_1,\nu} \to 0$$

(in the weak topology).

Can we make this stability *quantitative* (with a rate):

$$||T_{\mu_0,\nu} - T_{\mu_1,\nu}||_{L^2(X,dx)} \leq \mathcal{W}_1(\mu_0,\mu_1)^{\alpha}$$

for some $\alpha > 0$?



Throughout the talk we will assume

- \bullet "sources" μ_0 and μ_1 are supported in the same bounded domain X
- \bullet The support of the "target" $\underline{\nu}$ is a convex body \underline{Y}
- $\inf_{Y} \frac{\nu}{dy} > 0$

Result (regular case)

There exists a constant c_0 such that

$$||T_{\mu_0,\nu} - T_{\mu_1,\nu}||_{L^2(X,dx)} \le c_0 \mathcal{W}_1(\mu_0,\mu_1)^{1/2}$$

if μ_0 is "regular" (defined later on).

The general case

There exists a constant c such that

$$||T_{\mu_0,\nu} - T_{\mu_1,\nu}||_{L^2(X,dx)} \le cW_1(\mu_0,\mu_1)^{1/2^n}$$

The constant c only depends on

- ullet upper bounds on the the $\emph{diameters}$ of X and Y
- positive lower bounds on the *volume* of Y and $\delta(:=\sup_{Y}(\nu/dy))$

Comparison with other results

- Previous result by Ambrosio 2011 (but variations wrt the target in a regular setting):
- Subsequent general result by Delalande-Mérigot 2021: universal exponent independent of n (!)(but worse when n is small)

• ...

Monge-Ampère formulation

Recall: the exists a *convex* function ϕ on \mathbb{R}^n such that

$$T_{\mu,\nu} = \nabla \phi, \qquad \overline{(\nabla \phi)(\mathbb{R}^n)} = Y$$

It is uniquely determined (mod \mathbb{R}) by the transport condition:

$$(\nabla \phi)^{-1} \nu = \mu$$

Thus ϕ solves the following MA-equation on \mathbb{R}^n :

$$MA_{\nu}(\phi) = \mu, \qquad \overline{(\nabla \phi)(\mathbb{R}^n)} = Y$$

$$MA_{\nu}(\phi) = \mu, \qquad \overline{(\nabla \phi)(\mathbb{R}^n)} = Y$$

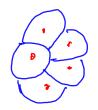
- ullet Now μ need not be absolute continuous wrt dx.
- The quantitative stability now becomes

$$\|\nabla\phi_0 - \nabla\phi_1\|_{L^2(X,dx)} \preceq \mathcal{W}_1(\mu_0, \mu_1)^{\alpha}$$

• The regularity assumption on μ_0 is:

$$\nabla^2 \phi_0 \ge \epsilon I, \quad \epsilon > 0$$

(in the weak sense)



Application to discretizations

$$MA_{\nu}(\phi) = \mu, \qquad \overline{(\nabla \phi)(\mathbb{R}^n)} = Y$$

Discretize μ with a point cloud: and dud tesselation C_i

Denote by h the "spatial resolution"

$$h := \max_{i \le N} \operatorname{diam}(C_i)$$

for the cells C_i in a dual tesselation of X and by ϕ_h the corresponding solution. Then

$$\|\nabla \phi - \nabla \phi_h\|_{L^2(X, dx)} \le h^{1/2}$$

in the "regular case" and in general

$$\|\nabla \phi - \nabla \phi_h\|_{L^2(X, dx)} \le h^{1/2^n}$$

The key new analytic inequalities

Henceforth, consider only smooth convex functions ϕ on \mathbb{R}^n such that

$$\overline{(
abla \phi)(\mathbb{R}^n)} = Y \ \ (:= \text{support of } \nu)$$

In the "regular case", $\nabla^2 \phi_0 \ge \epsilon I$,

$$\int_{X} |\nabla \phi_{0} - \nabla \phi_{1}|^{2} dx \le c_{0} \int (\phi_{1} - \phi_{0}) \left(M A(\phi_{0}) - M A(\phi_{1}) \right)$$

In general, need to raise the lhs to 2^{n-1} .

- ullet In the rhs can integrate over X or \mathbb{R}^n
- OT stability follows from

$$\left|\int_{\mathbb{R}^n} (\phi_1 - \phi_0) \left(\mu_0 - \mu_1\right)\right| \leq \operatorname{diam}(Y) \mathcal{W}_1(\mu_0, \mu_1)$$
 using Kantorovich duality formula for $\mathcal{W}_1(\mu_0, \mu_1)$

Proof using complex geometry

Why?

- Can leverage the exterior algebra of complex forms (= multi-linemty)
- ullet Can "compactify" \mathbb{R}^n to avoid boundary terms in integration by parts

Starting point

It is enough to consider the case when

$$\nu = 1_Y dx$$

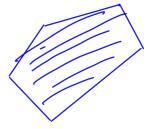
(not explained today...). Then

$$MA_{\nu}(\phi) = \det\left(\nabla^2\phi\right)dx$$

Moreover, may assume:

 \underline{Y} is a convex <u>polytope</u> with rational vertices

(by approximation)



Warm-up: n = 1

$$Y = [0, 1], \quad MA(\phi) = \left(\nabla^2 \phi\right) dx.$$

In this case the key inequality is an equality:

$$\int_{\mathbb{R}} |\nabla \phi_0 - \nabla \phi_1|^2 dx = \int_{\mathbb{R}} (\phi_1 - \phi_0) \left(\nabla^2 \phi_0 - \nabla^2 \phi_1 \right) dx.$$

Indeed, integration by parts gives "boundary terms":

$$(\phi_1 - \phi_0) (\nabla \phi_0 - \nabla \phi_1) (\pm \infty).$$

But, by assumption,

$$\int \overline{(\nabla \phi)(\mathbb{R}^n)} = [0,1] \implies (\nabla \phi_0 - \nabla \phi_1)(\pm \infty) = 0$$
 and $(\phi_1 - \phi_0) = O(1)$.

The "regular case" when n>1

We will focus on the "regular case" $\nabla^2 \phi_0 \ge \epsilon I$ and show

$$\|\nabla\phi_{0} - \nabla\phi_{1}\|_{L^{2}(X,dx)}^{2} \leq c_{0} \int (\phi_{0} - \phi_{1}) \left(MA(\phi_{1}) - MA(\phi_{0})\right)^{2} dA(\phi_{0})$$

Start with the rhs.

• Will leverage complex exterior algebra:

$$MA(\phi) := \det\left(\nabla^2\phi\right) dx \sim (\partial \bar{\partial}\phi)^n.$$

- Will first proceed formally
- ullet To simplify notation will consider \mathbb{R}^2

Caveat

To simplify the notation will leave out all factors of $2,\pi$ etc!

$$a^2 - b^2$$

$$= (a - b)(a + b)$$

$$MA(\phi_1) - MA(\phi_0) = (\partial \bar{\partial}\phi_1)^2 - (\partial \bar{\partial}\phi_0)^2 =$$

$$= (\partial \bar{\partial}\phi_1 - \partial \bar{\partial}\phi_0) \wedge (\partial \bar{\partial}\phi_1 + \partial \bar{\partial}\phi_0).$$

Hence,

$$\int_{\mathbb{R}^{2}} (\phi_{0} - \phi_{1}) (MA(\phi_{1}) - MA(\phi_{0})) =$$

$$\int (\phi_{0} - \phi_{1}) (\partial \bar{\partial} \phi_{1} - \partial \bar{\partial} \phi_{0}) \wedge (\partial \bar{\partial} \phi_{1} + \partial \bar{\partial} \phi_{0}) =$$

$$\int \partial (\phi_{0} - \phi_{1}) \wedge \bar{\partial} (\phi_{0} - \phi_{1}) \wedge (\partial \bar{\partial} \phi_{1} + \partial \bar{\partial} \phi_{0}) \geq$$

$$\int \partial (\phi_{0} - \phi_{1}) \wedge \bar{\partial} (\phi_{0} - \phi_{1}) \wedge \partial \bar{\partial} \phi_{0} \geq$$

$$\epsilon \|\nabla (\phi_{0} - \phi_{1})\|_{L^{2}(X, dx)}^{2}$$

Details on complexification

$$z := x + iy \in \mathbb{C}^n := \mathbb{R}^n + i\mathbb{R}^n$$

Decompose real exterior derivative d wrt dz_i and $d\bar{z}_i$:

$$\partial := \sum_{i=1}^{n} \frac{\partial \cdot}{\partial z} dz^{\wedge}, \quad \bar{\partial} := \sum_{i=1}^{n} \frac{\partial \cdot}{\partial \bar{z}} d\bar{z}^{\wedge}$$

Hence,

In particular, if $\phi = \phi(x)$, then

As a consequence,

$$\partial \bar{\partial} \phi = \sum_{i=1}^{n} \frac{\partial^{2} \phi}{\partial x_{j} \partial \bar{x}_{j}} dz_{i} \wedge d\bar{z}_{j} \Longrightarrow$$

$$(\partial \bar{\partial} \phi)^{n} = \det \left(\frac{\partial^{2} \phi}{\partial x_{j} \partial \bar{x}_{j}} \right) dx \wedge dy = \underline{M} \underline{A}(\phi) \wedge dy$$

$$\text{Moreover, if } u = u(x) \text{ and } \phi_{0} = |x|^{2}/2, \text{ then}$$

$$\partial u \wedge \bar{\partial} u \wedge (\partial \bar{\partial} \phi_{0})^{n-1} = \left(|\nabla u|^{2} dx \right) \wedge dy$$

$$u = \ell_{o} - \ell_{o}$$

This justifies the formal proof, except the integration by parts.

It is handled by a compactification argument:

$$\int_{\mathbb{R}^n} (\phi_0 - \phi_1) \left(MA(\phi_1) - MA(\phi_0) \right) =$$

$$= \int_{X_Y} (\phi_0 - \phi_1) \left((\partial \bar{\partial} \phi_1)^n - (\partial \bar{\partial} \phi_0)^n \right)$$

on a certain compact complex manifold X_Y (without boundary!) such that

$$(\partial \bar{\partial} \phi_i) \quad \text{and} \quad \phi_0 - \phi_1$$
 extend to X_Y .

Compactification

Recall: starting with $x \in \mathbb{R}^n$, we consider $z = x + iy \in \mathbb{C}^n$.

Step 1: "compactify" the y-direction by replacing

$$i\mathbb{R}^n \rightsquigarrow i(\mathbb{R}/2\pi\mathbb{Z})^n$$
.

In complex terms: set

$$z_i = \log w_i \in \mathbb{C}, \quad w \in (\mathbb{C}^*)^n$$

Hence,

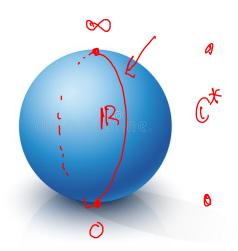
$$x_i = \log|w_i|$$

and

$$\int_{\mathbb{R}^n} (\phi_0 - \phi_1) \left(MA(\phi_1) - MA(\phi_0) \right) =$$

$$\int_{(\mathbb{C}^*)^n} (\phi_0 - \phi_1) \left((\partial \bar{\partial} \phi_1)^n - (\partial \bar{\partial} \phi_0)^n \right)$$

using that $\int_{\mathbb{R}/2\pi\mathbb{Z}} dy = 1/(2\pi)^n$.



Step 2: compactify $(\mathbb{C}^*)^n$

Motivation (n = 1):

$$\mathbb{C}^* \hookrightarrow \mathbb{P}^1_\mathbb{C} (:= \mathbb{C}^* igcup \{0,\infty\},$$

where $\mathbb{P}^1_{\mathbb{C}}$ is a complex compact manifold (the Riemann sphere).

If

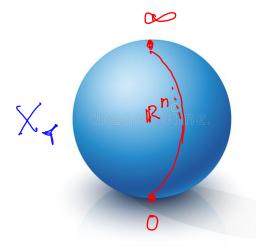
$$(\nabla \phi)(\mathbb{R}) = [0, 1],$$

then

$$1 = \int_{\mathbb{R}} \nabla^2 \phi dx = \frac{i}{2\pi} \int_{\mathbb{C}^*} \partial \bar{\partial} \phi = \int_{\mathbb{R}^*} \partial \bar{\partial} \phi$$

Moreover,

$$\int_{\mathbb{R}} |\nabla (\phi_1 - \phi_0)|^2 dx = \frac{i}{2\pi} \int_{\mathbb{P}^1_{\mathbb{C}}} \partial (\phi_1 - \phi_0) \wedge \bar{\partial} (\phi_1 - \phi_0)$$



In higher dimensions, if

$$(\nabla \phi)(\mathbb{R}^n) = Y$$

for a convex bounded rational polytope Y. Then

$$(\mathbb{C}^*)^n \hookrightarrow X_Y$$
 (dense image)

for a compact complex manifold (without boundary!) such that

$$\partial \bar{\partial} \phi$$
 extends from $(\mathbb{C}^*)^n$ to X_Y

and likewise for differences $\phi_0-\phi_1$

Ex:

• for $Y = [0,1]^2 \subset \mathbb{R}^2$ get $X_Y = \mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}$.

ullet for Y a simplex in \mathbb{R}^n get $X_Y=\mathbb{P}^n_{\mathbb{C}}$

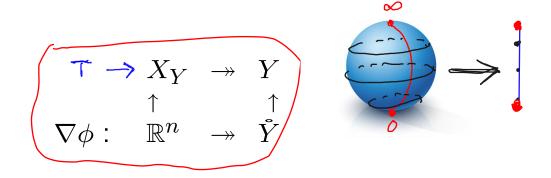
In general, X_Y is a *toric variety*, i.e. an equivariant compactication of the complex torus \mathbb{C}^{*n} .

This proves the regular case.

Questions?

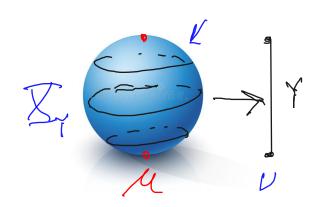
Crensal case from Blocki's ineq.
(Cauly-Schwefz)

Symplectic intepretation



- $\dim X_Y = 2n$
- ullet The fibers of X_Y over \mathring{Y} are n-dimensional tori T^n
- Some of the torus-dimensions shrink over the boundary of Y.

Jec : = 0)



ullet The torus T^n acts on X_Y

- ullet Can identify μ with a T^n- invariant measure on X_Y
- ullet Finding $abla \phi$ amounts to finding a symplectic two-form $\underline{\omega}$ on X_Y such that

$$\widehat{\omega^n/n!} = \mu.$$

• Then $\nabla \phi$ lifts to the *moment map* for the T^n -action on (X,ω) :

$$X_Y \rightarrow Y \subset \text{Lie}(T^n)^* = \mathbb{R}^n$$
 (action/angle coord.)

ullet The moment map pushes forward $\left(\frac{\omega^n}{n!}\right)$ to dy on Y :

$$(\nabla \phi)_* \left(\frac{\omega^n}{n!}\right) = (\nabla \phi)_* \mu = 1_Y dy,$$

$$Co = i so f$$

• In complex notation:

$$\omega = i\partial \bar{\partial} \phi$$