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OT setup

Assume given two probability measures on R"
p and v which have

—

e compact support

e densities wrt dx

L

A map T from R™ to R" is called a transport
map if

The optimal transport map minimizes

: Tl — 212, —: 2
min [ |T() = aPu=: Wa(p,)

It is unique and denoted by T}, .



Stability

‘The optimal transport map 7y, is stable wrt
variations of the source u :

om0 = Thou T 20

(in the weak topology).

Can we make this stability quantitative (with

a rate):

for some a > 07
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A
Throughout the talk we will assume

e “sources” ug and py are supported in the
same bounded domain X

e The support of the "target” v is a convex
body Y

° iﬂfy%>o
=



Result (regular case)

There exists a constant cg such that

C”TMO’” ~ T wllr2(xam) < coWilpo, p)'/?
if po is “regular” (defined later on).




The general case

There exists a constant ¢ such that

@“0’” - Tlul”/”LQ(X,dx) < Wi (po, M1)1/2

The constant ¢ only depends on

e upper bounds on the the diameters of X
and Y

e positive lower bounds on the volume of Y
and d(:=supy(v/dy))



Comparison with other results

e Previous result by Ambrosio 2011 (but vari-
ations wrt the target in a regular setting):

e Subsequent general result by Delalande-Mérigot
2021: universal exponent independent of n
(D (but worse when n is small)



Monge-Ampére formulation

Recall: the exists a convex function ¢ on R"
such that

C T =Ve,  (THEY =Y

It is uniquely determined (mod R) by the trans-
port condition:

C o=

Thus ¢ solves the following MA-equation on
R™ :

MAy(¢) = p, (Vo)(R™) =Y
> = —_——




(Ve)(R™) =Y

e Now p need not be absolute continuous
wrt dx.

e [ he quantitative stability now becomes

Voo = Voullp2(x gry X Wilro, )"

| | N W)
e The regularity assumption on pg is: 7V

(in the weak sense)




Application to discretizations \J

@(@ =, (VOERH=Y

Discretize p with a point cloud: od 4

N
My —"?/(/L an#zﬁéfﬂi — 1 {weakly) ¥; = M (C :')
i=1 |

Denote by h the ‘spatial resolution”

hi=m ' :
I;Qaj\>7<d|am(Cz)

for the cells C; in a dual tesselation of X and
by ¢; the corresponding solution. Then

C 98 = Vol gy 3077

in theﬁgular case”_and in general

@%h”ﬂ%x,d@ < nt/2

sk G




The key new analytic inequalities

Henceforth, consider only smooth convex func-
tions ¢ on R™ such that

(Vo)(R?) =Y (:= support of v)
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In the “regular case”, V2¢pg > el,
@Vcbo — V¢1|?dz < cg /(¢1—¢o) (MAV(qﬁo) — M@

In general, need to raise the Ihs to 271,

e In the rhs can integrate over X or R"

e OT stability follows from

%ﬂ(m — ¢0) (o — M1)| < diam(Y)W@

using K\intorovich duality formula for Wy (uo, 1t1)

hotih £ (
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Proof using complex geometry

Why?

e Can leverage the exterior algebra of com-
plex forms (= wulb flmémb[)

e Can “compactify” R"™ to avoid boundary
terms in integration by parts
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Starting point

It is enough to consider the case when

(not explained today...). Then

Moreover, may assume:

A

Y is a convex polytope with rational vertices
- ———

(by approximation) %/



Warm-up: n=1

wn, MA(¢) = (v%) dz.

In this case the key inequality is an equality:

@Wo — V1| de = /IR(¢1—¢/(Q_LV20 - @

Indeed, integration by parts gives “boundary
terms’’:

( (61— 60) (Voo — Vibr) (o).

But, by assumption,

2 (Vo)(R™") = [0,1] == (V¢o — V1) (£o0) =0

and (¢1 — ¢o) = O(1). ¢ \//‘[: 1459

3

X

N
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The “regular case” wher
n>1

We will focus on the “regular case” VZ2¢g > el
and show

\
<||V¢o = Vo1l 7a(x a0 < €0 [ (b0—01) (MA(61) — MA(g

Start with the rhs.

e Will leverage complex exterior algebra:

< (_,\@SS‘(. AN

e Will first proceed formally

e To simplify notation will consider R2
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Caveat

To simplify the notation will leave out all fac-
tors of 2,7 etc!
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@A(%) — MA(¢g) = (3@1)2 - (3?__20)2 =
= (00¢1 — 09¢0) A (0961 + 0Deo) .

Hence,

ﬂ (90— #1) (MA(61) — MA(d0)) =

[ (60 — 61) (0961 — 9960) A (9961 + 9960)

/3_(% — 1) N O (¢ — P1) A (% + 859150) >

————

€|V (¢o — ¢1)||/%2(X,da;)
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Details on complexification

and dz; : n n
i=040 on RX R
n a _ n a
0:=> —di*, 9:=> ——dz"
i=19% i=197
Hence,
n 2
@_éqb(z) = Z 0 ¢_ dz; N\ dgj
‘=1 0207,

In particular, if ¢ = qsga;g, then

_ no92¢ = Q
— N 9P ooAgz 9N
@ Elaxjaa?-’z@) (7 xP

J
AS a consequence, )
9 PZ ’_’0
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_—— V‘

©
_ 92
(00¢)" = det <8:1: ({;;) dz N dy = MA(¢) /\gdy )
h—-—L ']

Moreover, if u = u(x) and ¢g = |z|%/2, then

Ou A du A (09¢g)" 1 = (|Vu|2d:c) A dy
—_——— pe————

W~ ng" Q[
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This justifies the formal proof, except the in-
tegration by parts.
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It is handled by a compactification argument:

[ (60— 1) (MA(61) — MA(S0)) =

_ / (40— é1) ((08¢1)™ — (890)")

on a certain compact complex manifold Xy
(without boundary!) such that

(Q?i@) and ¢g — ¢1
|

\
extend to Xy.

P\
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Compactification

Recall: starting with z € R"™, we consider z =
x4+ 1y € C™.

Step 1: ‘‘compactify” the y—direction by re-
placing

iR"™ ~ i(R/277Z)".
—

In complex terms: set

QZ-: logw; € C, w e (C*)"

Hence,
z; = log |w;|

/Rn(% — ¢1) (MA(¢1) — MA(¢o)) =

Tl

Jrcoyn (00 = 91) ((9391)" ~ (9350)")

using that fR/Qﬂ'Z d’y = 1/(27.(.)77,

and
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Step 2: compactify (C*)"

Motivation (n =1):

et A= CT (g o),

where IP’%j is a complex compact manifold (the
Riemann sphere).

If
(Ve)(R) = [0, 1],
then ﬁ);
_ 2, _ b 50—/ a5
i [ o= g 000
Moreover,

Jp 191 =90 da = 5 [, (61-60)73(61-60)




In higher dimensions, if

V@)=Y

for a convex bounded rational polytope Y. Then

(C*)" — Xy /(dense image)

for a compact complex manifold (without bound-
ary!) such that

8’@5 extends from (C*)"™ to Xy

and likewise for differences ¢g — @1
—
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EX:

’@\ o for Y =[0,1]2 C R? get Xy = P{ x P{.

e for Y a simplex in R" get Xy = P

In general, Xy is a toric variety, i.e. an equiv-
ariant compacfication of the complex torus C*™.
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This proves the regular case.

Questions?

G o5l >0 pun %{BC/V/E(ﬁ L%cf/\}‘

L ( U] - SC/VWFZL>
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Svymplectic intepretation

o dim Xy = 2n

e The fibers of Xy over Y are n—dimensional
tori T

e Some of the torus-dimensions shrink over
the boundary of Y.

27



(60 - %% ]

e The torus T™ acts on Xy ‘

e Can identify u with a T"—invariant measure
on Xy

e Finding V¢ amounts to finding a symplec-
tic two-form w on Xy such that

e Then Vo lifts to the moment map for the
T"—action on (X,w) :

@CLie(T@(action/angle coord.)

e The moment map pushes forward (sz
dy on 'Y :

@* (%T) — (Vo)en = Lydy,




e In complex notation:

w = 100¢



