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Introduction 
• DL performs well on data with Euclidean 

structure 

 

 

 

• But in many applications, densities: 
appropriate objects to perform ML on 



State of the art 

• Point sets 
 Unordered, permutation invariance/equivariance, 

locality 

• Characterization of layers equivariant w.r.t permutations / 
groups of transformations: S. Ravanbakhsh et al (2016,2017) 

• Pairwise interactions come in handy: Mallat et al (2014, 
2016), N. Guttenberg et al (2016): 

 

• Augment training data by permutations or find « best » 
ordering: O. Vinyals et al (2015) 

• PointNet and PointNet++ (C. Qi):  

 



State of the art 

• As graphs: Mémoli, Sapiro (2005), Bronstein et al (2006) to 
Bruna et al (2015), Y. Li (2015), Bronstein et al (2017) 

 

• Wasserstein metrics in DL: 

– Generative purposes: Bottou et al (2017), Genevay et al 
(2017) 

– Dynamic networks: Frogner et al (2015), Hashimoto et al 
(2016) 
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General Formalism 



Aim 

Layer 
Input Measure 

Code Vector 

or 

Is it a cat ? 

New Measure 



Proposed Layer 

Elementary 
Block 



Proposed Architectures 

E.B. E.B. E.B. E.B. 



Main Building Blocks 

Push-forward. 

Modification of support 
while maintaining 

geometry 
 

Integration. 

Mass modification of 
support (mass 

destruction or creation) 
 

Modulation. 

Agglomerate information 
and enforce permutation 
invariance/equivariance 

Tensorization. 

Generates interactions 
between points. 

 



Combining Building Blocks 

E.B. 

⊗ ⊗ … 
  



Combining Building Blocks 

E.B. 

⊗𝐿 
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Building Blocks Properties 

Proposition. 

Proposition. 

Proposition. 



Approximation Property 

Theorem (Approximation property). 
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Numerical procedure 

Classification. Generation/Dynamic Networks. 

Stochastic 
Gradient 
Descent 

Loss 
Computation 

Backpropagation 
Autodiff 

+ 



Applications in classification 

MNIST – Digits 
10 classes, 100 points 

 
2 Elementary Blocks + 3 f.c. layers 

 
Accuracy: 97.5% 

ModelNet10 – 3D shapes 
10 classes, 1024 points 

 
2 Elementary Blocks + 3 f.c. layers 

 
Accuracy: 91.2% 



Generative networks 



Generative networks 

Some examples generated 
With 2 elementary blocks + 3 f.c. layers 



Dynamic networks 

Prediction of positions at t=2 
of particles following a Cucker-Smale 

flocking model 
 

3 Elementary Blocks 



Perspectives 

• Dynamics prediction on a real dataset 

• Understand roles of each block 

• Investigate rotation/translation equivariance 

• Further theoretical results 
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