Generalized H(div) geodesics and solutions of the Camassa-Holm equation

Andrea Natale

MOKAPLAN

July 10, 2018

Joint work with FX Vialard and T Gallouët

The H(div) geodesic problem

Notation:

- $lackbox{ iny } M\subset \mathbb{R}^d$ is a compact domain
- ρ_0 is the normalized Lebesgue measure $\rho_0(M) = 1$
- ▶ Diff(M) is the diffeomorphism group and $Id \in Diff(M)$ is the identity map
- ▶ SDiff(*M*) volume-preserving, i.e. $\varphi_{\#}\rho_{0} = \rho_{0}$
- ▶ A (deterministic) flow on M is a curve on Diff(M), i.e. φ : $[0, T] \times M \to M$.

Deterministic CH problem: Given $h \in \mathrm{Diff}(M)$ and a, b > 0, find the flow φ that minimizes the action

$$\int_M \int_0^T a||u_t||^2 + b|\operatorname{div} u_t|^2 dt d\rho_0.$$

with $u_t = \dot{\varphi}_t \circ \varphi_t^{-1}$, and verifying $\varphi_0 = \operatorname{Id}$, $\varphi_T = h$.

For $d=1 \implies$ Camassa-Holm equation: approximation of ideal fluid with free boundary in shallow water

For $d = 2 \implies$ higher-dimensional generalization (Kruse, Scheurle, and Du, 2001)

Geodesics on the group of diffeomorphisms

The L^2 case:

- Degenerate metric on Diff(M) (Michor and Mumford, 2005)
- ightharpoonup On $\mathrm{SDiff}(M)$ the geodesic equations are the incompressible Euler equations
- Non-degeneracy and local well-posedness: for data h in H^s , s>d/2+1, and close to Id (Ebin and Marsden, 1970)
- Relaxation: Brenier introduced relaxation based on generalized incompressible flows, i.e. measure on the space of continuous paths (Brenier, 1989)
- ▶ Tightness: no for d = 2, yes for d = 3 (Shnirelman, 1994)

The H(div) case:

- ightharpoonup For d=1 Camassa-Holm equation: completely integrable, bi-Hamiltonian
- ▶ Peakons: (weak) travelling wave solutions
- ► Collision of peakons ⇒ blow up; solution not unique afterwards
- Non-degeneracy and local well-posedeness: (Michor and Mumford, 2005; Mumford and Michor, 2012)
- Correct definition for minimizing flows? Occurrence of blow up? Need for relaxation? Tightness? ...

A Lagrangian formulation on the cone

Given a flow $\varphi : [0, T] \times M \rightarrow M$ define

$$\lambda = \sqrt{\operatorname{Jac}(\varphi)} : [0, T] \times M \to \mathbb{R}_{>0}$$

Then the H(div) action with a=1 and b=1/4, can be written as

$$\mathcal{A}([\varphi,\lambda]) = \int_{M} \int_{0}^{T} \lambda^{2} ||\dot{\varphi}||^{2} + |\dot{\lambda}|^{2} dt d\rho_{0}$$

This can be seen as the L^2 metric on the cone $\mathcal{C} = (M \times \mathbb{R}_{\geq 0})/(M \times \{0\})$ restricted to the subset $\operatorname{Aut}(\mathcal{C}) \subset \operatorname{Diff}(\mathcal{C})$, i.e. maps in the form $(\varphi,\lambda): \mathcal{C} \to \mathcal{C}$,

$$(\varphi, \lambda)([x, r]) = [\varphi(x), \lambda(x)r]$$

Note:

- ▶ The CH problem consists in minimizing $\mathcal{A}([\varphi,\lambda])$ with $\varphi_{\#}\lambda^{2}\rho_{0}=\rho_{0}$ (Gallouët and Vialard, 2017)
- As for incompressible Euler, having an L² metric allows to decouple particle trajectories in the minimization problem ⇒ generalized flows

Generalized compressible flows

Notation:

- ▶ $\Omega = C^0([0, T]; C)$, i.e. $z \in \Omega$ then $z : t \in [0, T] \rightarrow [x_t, r_t] \in C$ continuous path
- \blacktriangleright $\mathcal{M}(\Omega)$ and $\mathcal{P}(\Omega)$: positive finite Borel measures and probability measures, resp., on space of paths

Deterministic to generalized: We can associated to any $(\varphi, \lambda) \in \operatorname{Aut}(\mathcal{C})$ a probability measure $\mu = (\varphi, \lambda)_{\#} \rho_0$, i.e. for any $\mathcal{F} \in C_0^{\mathfrak{h}}(\Omega)$

$$\int_{\Omega} \mathcal{F}(z) d\mu(z) = \int_{\Omega} \mathcal{F}([\varphi(x), \lambda(x)]) d\rho_0(x)$$

where $\varphi(x): t \to \varphi_t(x)$ and $\lambda(x): t \to \lambda_t(x)$.

Marginal constraint: The constraint $\lambda = \sqrt{\operatorname{Jac}(\varphi)}$ can be expressed as: for any $f \in C^0([0,T] \times M)$

$$\int_{\Omega} \int_{0}^{T} f(t, x_{t}) r_{t}^{2} dt d\mu(z) = \int_{\Omega} \int_{0}^{T} f(t, x) dt d\rho_{0}(x)$$
 (1)

which corresponds to change of variable formula

A generalized compressible flow is a probability measure $\mu \in \mathcal{P}(\Omega)$ satisfying (1).

Compactness

The action of a generalized compressible flow μ is given by

$$\mathcal{A}(\mu) = \int_{\Omega} \mathcal{E}(\mathbf{z}) \, \mathrm{d}\mu(\mathbf{z}) \,, \quad \mathcal{E}(\mathbf{z}) = \left\{ \begin{array}{ll} \int_{0}^{T} r_{t}^{2} \|\dot{x}_{t}\|^{2} + \dot{r}_{t}^{2} \, \mathrm{d}t & \text{if } \mathbf{z} \text{ is abs. continuous} \\ +\infty & \text{otherwise} \end{array} \right.$$

Lemma

The set of generalized compressible flows with uniformly bounded action $\mathcal{A}(\mu) \leq C$ is relatively sequentially compact for the narrow topology.

Proof (sketch).

Use Prokhorov's theorem: we need to prove tightness.

1. Consider the set of paths $\Omega_R \subset \Omega$ bounded in the radial direction $(r_t \leq R)$. We have

$$\Omega_{R,K}=\Omega_R\cap\{z\in\Omega\,;\,\mathcal{A}(z\le K)\}\text{ is contained in a compact subset of }\Omega$$

by Ascoli-Arzelá theorem.

- 2. $\mu(\Omega \setminus \Omega_R) \leq C/R^2$ using $A(\mu) \leq C$
- 3. $\forall \epsilon > 0 \; \exists \; K_{\epsilon}, R_{\epsilon} > 0 \; \text{such that} \; \mu(\Omega \setminus \Omega_{R_{\epsilon}, K_{\epsilon}}) \leq \epsilon$

6/18

Generalized problem and boundary conditions

Generalized CH problem: Find the generalized compressible flow μ minimizing the action $\mathcal{A}(\mu)$ with what boundary conditions?

In the deterministic CH problem we are looking for paths such that $\varphi_0 = \operatorname{Id}$ and $\varphi_T = h \in \operatorname{Diff}(\Omega)$. In the generalized setting this corresponds to

Strong coupling:

$$(e_0, e_T)_{\#} \mu = [(\mathrm{Id}, 1), (h, \sqrt{\mathrm{Jac}(h)})]_{\#} \rho_0$$

where $e_t(\mathrm{z})=z_t$ is the evaluation map at time t on paths. That is, $\forall\, f\in\mathcal{C}_b^0(\mathcal{C}\times\mathcal{C})$

$$\int_{\Omega} f(z_0,z_T) \,\mathrm{d}\mu(\mathbf{z}) = \int_{M} f([x,1],[h(x),\sqrt{\mathrm{Jac}(h(x))}]) \,\mathrm{d}\rho_0(x)$$

Taking these boundary conditions:

- lacktriangle Assuming finite action, by compactness, there is a minimizing sequence $\mu_n
 ightharpoonup \mu^*$
- $ightharpoonup \mu^*$ might not be a generalized compressible flow: marginal constraint not stable under narrow convergence
- ▶ Paths with unboundedly large r (Jacobian) can be charged

Homogeneous coupling and rescaling

A function $f:\mathcal{C}^n$ is p-homogeneous (in the radial direction) iff for every $\alpha>0$, $f([x_i,\alpha r_i])=\alpha^p f([x_i,\alpha r_i])$

Homogeneous coupling: \forall 2-homogeneous $f \in C^0(\mathcal{C} \times \mathcal{C})$

$$\int_{\Omega} f(z_0,z_T) \,\mathrm{d}\mu(\mathbf{z}) = \int_{M} f([x,1],[h(x),\sqrt{\mathrm{Jac}(h(x))}]) \,\mathrm{d}\rho_0(x)$$

Given a functional $\theta:\Omega\to\mathbb{R}$, define the **dilation** map by

$$\mathrm{dil}_{\theta,2} = \mathrm{prod}_{\theta\#}(\theta^2 \mu)$$
, where $\mathrm{prod}_{\theta}(z) = (t \mapsto [x_t, r_t/\theta(z)])$

Lemma (rescaling)

Consider a measure $\mu \in \mathcal{M}(\Omega)$ and a 1-homogeneous functional $\sigma: \Omega \to \mathbb{R}$ such that $\sigma(z)>0$ for μ -almost every path z. Assume $C=\left(\int_{\Omega}\sigma^2\,\mathrm{d}\mu\right)^{1/2}<+\infty$. Then $\tilde{\mu}=\mathrm{dil}_{\sigma/C,2}\mu\in\mathcal{P}(\Omega)$ satisfies

- ightharpoonup 2-homogeneous functionals \mathcal{F} , $\int_{\Omega} \mathcal{F} d\mu = \int_{\Omega} \mathcal{F} d\tilde{\mu}$
- $\tilde{\mu}(\{z \in \Omega; \, \sigma(z) = C\}) = 1$

Ex: if $\mu(\{z\in\Omega\colon r_0=0\})=0$ then for $\sigma=r_0$, C=1 (marginal constraint) and $\mathrm{dil}_{r_0,2}\mu$ is concentrated on path such that $r_0=C=1$.

Existence of minimizers

Theorem

Provided that there exists a generalized flow μ^* such that $\mathcal{A}(\mu^*) < +\infty$, the minimum of the action among generalized compressible flows satisfying the homogeneous coupling constraint is attained.

Proof (sketch).

Consider a minimizing sequence μ_n

- 1. rescale support using dilation
- 2. action and constraints preserved: compactness \implies limit in narrow topology
- 3. check uniform integrability constraints (now holds on rescaled support)

Note:

- ▶ This proves existence for any *h* in the connected component of Diff(*M*)
- ▶ Solution allowed to charge **cone apex** (r = 0): shocks, vanishing Jacobian
- ▶ Is coupling meaningful?

A decomposition result for deterministic boundary conditions

Lemma

For all measures $\mu \in \mathcal{M}(\Omega)$ satisfying the homogeneous coupling constraint

$$(*) \quad \boldsymbol{\mu}(\{\mathbf{z}, r_0 = 0\}) = 0 \quad \Longleftrightarrow \quad (**) \quad \boldsymbol{\mu}(\{\mathbf{z}, r_0 = r_T = 0\}) = 0$$

Proof.

If (*), $\mu^1 = \mathrm{dil}_{r_0,2}\mu$ is concentrated on paths with $r_0 = 1$. Then,

$$\int_{\Omega} (r_T - \sqrt{\operatorname{Jac}(h)(x_0)})^2 \, \mathrm{d} \boldsymbol{\mu}^1(z) = \int_{\Omega} (r_T - r_0 \sqrt{\operatorname{Jac}(h)(x_0)})^2 \, \mathrm{d} \boldsymbol{\mu}^1(z) = 0$$

Therefore μ^1 satisfies the strong coupling and (**) holds.

There exists a decomposition

$$\mu = \mu^0 + \tilde{\mu}$$

with

- $ilde{\mu} = \mu \mathrel{oxdot} \{ ext{z}; r_0
 eq 0 \text{ and } r_T
 eq 0\}$: can be rescaled to satisfy strong coupling
- ▶ $\mu^0 = \mu \perp \{z; r_0 = r_T = 0\}$: meaning?

Smooth solutions are minimizers

Euler-Lagrange equations in terms of (φ, λ) :

$$\begin{cases} \lambda \ddot{\varphi} + 2\dot{\lambda}\dot{\varphi} + \frac{1}{2}\lambda\nabla P \circ \varphi = 0, \\ \ddot{\lambda} - \lambda ||\dot{\varphi}||^2 + \lambda P \circ \varphi = 0, \end{cases}$$

where $P:M \to \mathbb{R}$ is the pressure: Lagrange multiplier for constraint $\lambda = \sqrt{\operatorname{Jac}(\varphi)}$.

Theorem

On $M = S_1^1$, unit radius circle, if for all $t \in [0, T]$

$$\left\| \begin{pmatrix} 2P + (\nabla)^2 P & \nabla P \\ (\nabla P)^T & 2P \end{pmatrix} \right\|_2 \le \frac{2\pi^2}{T^2} \tag{2}$$

then $(\varphi, \lambda)_{\#} \rho_0$ is a minimizer and it is unique (up to dilation) if the inequality is strict.

Note:

- for $M = S_1^1$ we identify \mathcal{C} with \mathbb{R}^2
- lacktriangleright result holds on $M\subset\mathbb{R}^d$ compact, but on shorter time for given P
- ightharpoonup proof uses Poincaré inequality as for incompressible Euler also to prove that $\mu^0=0$ (paths starting at the apex not charged)
- $P < \pi^2/T^2$ is sharp for uniqueness

Rotation on the circle: non-uniqueness and a non-deterministic solution

Generalized CH problem on S_R^1 , circle of radius R, with coupling given in polar coordinates by

$$h: \theta \in \mathbb{R}/\mathbb{Z}_{2\pi} \to \theta + \pi$$

so that Jac(h) = 1.

Theorem

When R = 1 the dynamic plan

$$\mu^* = \frac{1}{2} (\mathrm{Id}, \zeta^0)_{\#} \rho_0 + \frac{1}{2} (\psi^1, \zeta^1)_{\#} \rho_0,$$

with

$$\zeta_t^0(\theta) = \sqrt{2}\sin(\sqrt{P^*}t)\,,\quad \zeta_t^1(\theta) = \sqrt{2}|\cos(\sqrt{P^*}t)|\,,\quad \psi_t^1(\theta) = \left\{ \begin{array}{ll} \theta & t \leq T/2\,,\\ \theta + \pi & t > T/2\,, \end{array} \right.$$

as well as the dynamic plan induced by constant speed rotation are minimizers corresponding to the constant pressure $P^* = (\pi/T)^2$; when R > 1 the constant speed rotation is not a minimizer.

Next, we show that for no rotation ($\psi_1^1=\mathrm{Id}$) this flow arises as narrow limit of deterministic flows.

Peakon collisions

- Peakon collision means we can compress particles to occupy the same position in finite time and at finite cost
- ▶ At small scales the optimal way to do this is using linear peakons collision

Peakon collisions

- Peakon collision means we can compress particles to occupy the same position in finite time and at finite cost
- At small scales the optimal way to do this is using linear peakons collision

- ▶ Jacobian is piecewice constant, collision for $\epsilon \to 0$
- ▶ Marginals on the cone at fixed time $(\varphi_t, \lambda_t)_{\#} \rho_0$: at collision concentrated on circle of radius $\sqrt{2}$

An approximation result on the circle

Concatenating peakon collisions in space and time yields a sequence of deterministic flows convergenging to a non-deterministic generalized compressible flow

An approximation result on the circle

Concatenating peakon collisions in space and time yields a sequence of deterministic flows convergenging to a non-deterministic generalized compressible flow

Note: same fixed-time marginals if we rescale the paths to have $r_{T/4} = 1$.

Theorem

There exists a sequence φ^n such that $\mu^n = (\varphi^n, \sqrt{\operatorname{Jac}(\varphi^n)})_\# \rho_0$ can be rescaled to $\tilde{\mu}^n \rightharpoonup \mu^*$ (def. as before with no rotation) and $\mathcal{A}(\tilde{\mu}^n) \to \mathcal{A}(\mu^*) = \pi^2/T$.

- Paths starting at and reaching the apex correspond to creation of voids (unbounded Jacobian) in the limit
- ▶ Cannot reach final configuration due to topology of S^1 (it would be very inexpensive to rotate most of points at T/2)

Rotation on the torus: a non-deterministic solution

Generalized CH problem on $T_{1,R}^2=S_1^1\times S_R^1$, with coupling in polar coordinates

$$h: (\theta, \phi) \in \mathbb{R}^2/\mathbb{Z}_{2\pi}^2 \to (\theta + \pi, \phi + \pi)$$

so that Jac(h) = 1.

Theorem

The dynamic plan

$$\mu^* = \frac{1}{2} (\mathrm{Id}, \zeta^0)_{\#} \rho_0 + \frac{1}{2} (\psi^1, \zeta^1)_{\#} \rho_0 \,,$$

with $\zeta_t^0 = \sqrt{2}\sin(\sqrt{P^*}t)$, $\zeta_t^1 = \sqrt{2}|\cos(\sqrt{P^*}t)|$ where $P^* = (\pi/T)^2$, and

$$\psi_t^1(\theta,\phi) = \begin{cases} (\theta,\phi) & t \le T/2, \\ (\theta+\pi,\phi+\pi) & t > T/2, \end{cases}$$

is a minimizer, whereas the constant speed rotation is not a minimizer.

Note:

• we can prove the result since the action for the rotation on $T_{1,R}^2$ is larger than that on S_1^1 (where we know the minimizer's action)

Adapting 1d construction \implies approximation result holds on the torus with rotation

Theorem

There exists a sequence φ^n such that $\mu^n = (\varphi^n, \sqrt{\operatorname{Jac}(\varphi^n)})_\# \rho_0$ can be rescaled to $\tilde{\mu}^n \to \mu^*$ (minimizer for double rotation) and $\mathcal{A}(\tilde{\mu}^n) \to \mathcal{A}(\mu^*) = \pi^2/T$.

Proof (sketch).

Adapting 1d construction \implies approximation result holds on the torus with rotation

Theorem

There exists a sequence φ^n such that $\mu^n = (\varphi^n, \sqrt{\operatorname{Jac}(\varphi^n)})_\# \rho_0$ can be rescaled to $\tilde{\mu}^n \rightharpoonup \mu^*$ (minimizer for double rotation) and $\mathcal{A}(\tilde{\mu}^n) \to \mathcal{A}(\mu^*) = \pi^2/T$.

Proof (sketch).

Adapting 1d construction \implies approximation result holds on the torus with rotation

Theorem

There exists a sequence φ^n such that $\mu^n = (\varphi^n, \sqrt{\operatorname{Jac}(\varphi^n)})_\# \rho_0$ can be rescaled to $\tilde{\mu}^n \rightharpoonup \mu^*$ (minimizer for double rotation) and $\mathcal{A}(\tilde{\mu}^n) \to \mathcal{A}(\mu^*) = \pi^2/T$.

Proof (sketch).

Adapting 1d construction \implies approximation result holds on the torus with rotation

Theorem

There exists a sequence φ^n such that $\mu^n = (\varphi^n, \sqrt{\operatorname{Jac}(\varphi^n)})_\# \rho_0$ can be rescaled to $\tilde{\mu}^n \rightharpoonup \mu^*$ (minimizer for double rotation) and $\mathcal{A}(\tilde{\mu}^n) \to \mathcal{A}(\mu^*) = \pi^2/T$.

Proof (sketch).

Adapting 1d construction \implies approximation result holds on the torus with rotation

Theorem

There exists a sequence φ^n such that $\mu^n = (\varphi^n, \sqrt{\operatorname{Jac}(\varphi^n)})_\# \rho_0$ can be rescaled to $\tilde{\mu}^n \rightharpoonup \mu^*$ (minimizer for double rotation) and $\mathcal{A}(\tilde{\mu}^n) \to \mathcal{A}(\mu^*) = \pi^2/T$.

Proof (sketch).

Adapting 1d construction \implies approximation result holds on the torus with rotation

Theorem

There exists a sequence φ^n such that $\mu^n = (\varphi^n, \sqrt{\operatorname{Jac}(\varphi^n)})_\# \rho_0$ can be rescaled to $\tilde{\mu}^n \rightharpoonup \mu^*$ (minimizer for double rotation) and $\mathcal{A}(\tilde{\mu}^n) \to \mathcal{A}(\mu^*) = \pi^2/T$.

Proof (sketch).

Adapting 1d construction \implies approximation result holds on the torus with rotation

Theorem

There exists a sequence φ^n such that $\mu^n = (\varphi^n, \sqrt{\operatorname{Jac}(\varphi^n)})_\# \rho_0$ can be rescaled to $\tilde{\mu}^n \rightharpoonup \mu^*$ (minimizer for double rotation) and $\mathcal{A}(\tilde{\mu}^n) \to \mathcal{A}(\mu^*) = \pi^2/T$.

Proof (sketch).

Adapting 1d construction \implies approximation result holds on the torus with rotation

Theorem

There exists a sequence φ^n such that $\mu^n = (\varphi^n, \sqrt{\operatorname{Jac}(\varphi^n)})_\# \rho_0$ can be rescaled to $\tilde{\mu}^n \rightharpoonup \mu^*$ (minimizer for double rotation) and $\mathcal{A}(\tilde{\mu}^n) \to \mathcal{A}(\mu^*) = \pi^2/T$.

Proof (sketch).

Adapting 1d construction \implies approximation result holds on the torus with rotation

Theorem

There exists a sequence φ^n such that $\mu^n = (\varphi^n, \sqrt{\operatorname{Jac}(\varphi^n)})_\# \rho_0$ can be rescaled to $\tilde{\mu}^n \rightharpoonup \mu^*$ (minimizer for double rotation) and $\mathcal{A}(\tilde{\mu}^n) \to \mathcal{A}(\mu^*) = \pi^2/T$.

Proof (sketch).

Adapting 1d construction \implies approximation result holds on the torus with rotation

Theorem

There exists a sequence φ^n such that $\mu^n = (\varphi^n, \sqrt{\operatorname{Jac}(\varphi^n)})_\# \rho_0$ can be rescaled to $\tilde{\mu}^n \rightharpoonup \mu^*$ (minimizer for double rotation) and $\mathcal{A}(\tilde{\mu}^n) \to \mathcal{A}(\mu^*) = \pi^2/T$.

Proof (sketch).

Adapting 1d construction \implies approximation result holds on the torus with rotation

Theorem

There exists a sequence φ^n such that $\mu^n = (\varphi^n, \sqrt{\operatorname{Jac}(\varphi^n)})_\# \rho_0$ can be rescaled to $\tilde{\mu}^n \rightharpoonup \mu^*$ (minimizer for double rotation) and $\mathcal{A}(\tilde{\mu}^n) \to \mathcal{A}(\mu^*) = \pi^2/T$.

Proof (sketch).

Adapting 1d construction \implies approximation result holds on the torus with rotation

Theorem

There exists a sequence φ^n such that $\mu^n = (\varphi^n, \sqrt{\operatorname{Jac}(\varphi^n)})_\# \rho_0$ can be rescaled to $\tilde{\mu}^n \rightharpoonup \mu^*$ (minimizer for double rotation) and $\mathcal{A}(\tilde{\mu}^n) \to \mathcal{A}(\mu^*) = \pi^2/T$.

Proof (sketch).

Adapting 1d construction \implies approximation result holds on the torus with rotation

Theorem

There exists a sequence φ^n such that $\mu^n = (\varphi^n, \sqrt{\operatorname{Jac}(\varphi^n)})_\# \rho_0$ can be rescaled to $\tilde{\mu}^n \rightharpoonup \mu^*$ (minimizer for double rotation) and $\mathcal{A}(\tilde{\mu}^n) \to \mathcal{A}(\mu^*) = \pi^2/T$.

Proof (sketch).

Adapting 1d construction \implies approximation result holds on the torus with rotation

Theorem

There exists a sequence φ^n such that $\mu^n = (\varphi^n, \sqrt{\operatorname{Jac}(\varphi^n)})_\# \rho_0$ can be rescaled to $\tilde{\mu}^n \rightharpoonup \mu^*$ (minimizer for double rotation) and $\mathcal{A}(\tilde{\mu}^n) \to \mathcal{A}(\mu^*) = \pi^2/T$.

Proof (sketch).

Adapting 1d construction \implies approximation result holds on the torus with rotation

Theorem

There exists a sequence φ^n such that $\mu^n = (\varphi^n, \sqrt{\operatorname{Jac}(\varphi^n)})_\# \rho_0$ can be rescaled to $\tilde{\mu}^n \rightharpoonup \mu^*$ (minimizer for double rotation) and $\mathcal{A}(\tilde{\mu}^n) \to \mathcal{A}(\mu^*) = \pi^2/T$.

Proof (sketch).

Adapting 1d construction \implies approximation result holds on the torus with rotation

Theorem

There exists a sequence φ^n such that $\mu^n = (\varphi^n, \sqrt{\operatorname{Jac}(\varphi^n)})_\# \rho_0$ can be rescaled to $\tilde{\mu}^n \rightharpoonup \mu^*$ (minimizer for double rotation) and $\mathcal{A}(\tilde{\mu}^n) \to \mathcal{A}(\mu^*) = \pi^2/T$.

Proof (sketch).

Adapting 1d construction \implies approximation result holds on the torus with rotation

Theorem

There exists a sequence φ^n such that $\mu^n = (\varphi^n, \sqrt{\operatorname{Jac}(\varphi^n)})_\# \rho_0$ can be rescaled to $\tilde{\mu}^n \rightharpoonup \mu^*$ (minimizer for double rotation) and $\mathcal{A}(\tilde{\mu}^n) \to \mathcal{A}(\mu^*) = \pi^2/T$.

Proof (sketch).

Some open questions

- ▶ Sharper estimate on pressure for general case $(M \neq S_1^1)$?
- ▶ Is non-deterministic rotation the unique minimizer (on S_R^1 or $T_{1,R}^2$)?
- ► Conditions for occurrence of blow up in the general case?
- Pressure always exists as a distribution independently of blow up (Gallouët, Natale, and Vialard, 2018). Regularity?
- ► Tightness? In 2d no topological impediment at least for rotation. General case?

References

Brenier, Yann (1989). "The least action principle and the related concept of generalized flows for incompressible perfect fluids". In: *Journal of the American Mathematical Society* 2.2, pp. 225–255.

Ebin, David G and Jerrold Marsden (1970). "Groups of diffeomorphisms and the motion of an incompressible fluid". In: Annals of Mathematics, pp. 102–163.

Gallouët, Thomas, Andrea Natale, and François-Xavier Vialard (2018). "Generalized compressible fluid flows and solutions of the Camassa-Holm variational model". In: arXiv preprint arXiv:1806.10825.

Gallouët, Thomas and François-Xavier Vialard (2017). "The Camassa-Holm equation as an incompressible Euler equation: A geometric point of view". In: *Journal of Differential Equations*.

Kruse, H-P, J Scheurle, and W Du (2001). "A two-dimensional version of the Camassa-Holm equation". In: Symmetry and Perturbation Theory: SPT 2001. World Scientific, pp. 120–127.

Michor, Peter W and David Mumford (2005). "Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms". In: Doc. Math 10, pp. 217–245.

Mumford, David and Peter W Michor (2012). "On Euler's equation and EPDiff". In: arXiv preprint arXiv:1209.6576.

Shnirelman, Alexander I (1994). "Generalized fluid flows, their approximation and applications". In: Geometric & Functional Analysis GAFA 4.5, pp. 586–620.