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The H(div) geodesic problem

Notation:
» M C RY is a compact domain
> po is the normalized Lebesgue measure pg(M) =1
Diff (M) is the diffeomorphism group and Id € Diff (M) is the identity map
SDiff(M) volume-preserving, i.e. wupo0 = po
A (deterministic) flow on M is a curve on Diff(M), i.e. ¢ : [0, T Xx M — M.

v

v

v

Deterministic CH problem: Given h € Diff(M) and a, b > 0, find the flow ¢ that

minimizes the action .
/ / al|lue||® + b|divue|2dt dpo .
MJo

with uy = ¢r o <pt_1, and verifying po = Id, o7 = h.

For d =1 —  Camassa-Holm equation: approximation of ideal fluid with free
boundary in shallow water
For d =2 =  higher-dimensional generalization (Kruse, Scheurle, and Du, 2001)

2/18



Geodesics on the group of diffeomorphisms

The
>
>

>

L2 case:
Degenerate metric on Diff(M) (Michor and Mumford, 2005)
On SDiff(M) the geodesic equations are the incompressible Euler equations

Non-degeneracy and local well-posedness: for data h in H°, s > d/2+ 1, and
close to Id (Ebin and Marsden, 1970)

Relaxation: Brenier introduced relaxation based on generalized incompressible
flows, i.e. measure on the space of continuous paths (Brenier, 1989)

Tightness: no for d = 2, yes for d = 3 (Shnirelman, 1994)

H(div) case:

For d = 1 Camassa-Holm equation: completely integrable, bi-Hamiltonian
Peakons: (weak) travelling wave solutions

Collision of peakons — blow up; solution not unique afterwards

Non-degeneracy and local well-posedeness: (Michor and Mumford, 2005;
Mumford and Michor, 2012)

Correct definition for minimizing flows? Occurrence of blow up? Need for
relaxation? Tightness? ...
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A Lagrangian formulation on the cone

Given a flow ¢ : [0, T] x M — M define

A =+/Jac(p): [0, T] Xx M = Rso

Then the H(div) action with a =1 and b = 1/4, can be written as

T .
A([<p,/\]):/M/o X232 + A2t dpo

This can be seen as the L2 metric on the cone C = (M x Rx0)/(M x {0}) restricted
to the subset Aut(C) C Diff(C), i.e. maps in the form (p,A) : C — C,

(@, A)([x; r]) = [(x), AC)r]
Note:
> The CH problem consists in minimizing A([p, A]) with ¢xA2pg = po (Gallouét
and Vialard, 2017)

> As for incompressible Euler, having an L2 metric allows to decouple particle
trajectories in the minimization problem = generalized flows
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Generalized compressible flows

Notation:
» Q= Co%0, T];C), i.e. z€ Q then z: t € [0, T| = [x¢, rt] € C continuous path

> M(R) and P(R): positive finite Borel measures and probability measures, resp.,
on space of paths

Deterministic to generalized: We can associated to any (¢, A) € Aut(C) a
probability measure p = (p, A)zpo, i.e. for any F € C2(Q)

[ F@aut) = [ Flet). 260 dnol)
where p(x) : t = @¢(x) and A(x) : t = Ae(x).

Marginal constraint: The constraint A = y/Jac(p) can be expressed as: for any
fe Coo, Tl x M)

// f(t,xe)r2 dtdp(z // f(t, x) dt dpo(x) @)

which corresponds to change of variable formula

A generalized compressible flow is a probability measure p € P(Q) satisfying (1).
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Compactness

The action of a generalized compressible flow w is given by

fOT r2||%¢||? 4 72 dt  if z is abs. continuous
“+oo otherwise

Ap) = /Q £(z)dul(z), 5(z)—{

Lemma
The set of generalized compressible flows with uniformly bounded action A(pn) < C is
relatively sequentially compact for the narrow topology.

Proof (sketch).

Use Prokhorov's theorem: we need to prove tightness.

1. Consider the set of paths Qg C Q bounded in the radial direction (r: < R). We
have

Qrk =QrN{z€Q; A(z < K)} is contained in a compact subset of Q

by Ascoli-Arzela theorem.
2. p(Q\ Qr) < C/R? using A(p) < C
3. Ve >0 3K, R > 0 such that u(Q\ Qg k) <€
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Generalized problem and boundary conditions

Generalized CH problem: Find the generalized compressible flow g minimizing the
action A(p) with what boundary conditions?

In the deterministic CH problem we are looking for paths such that ¢ = Id and
p1 = h € Diff(Q2). In the generalized setting this corresponds to

Strong coupling:
(eo, eT)xp = [(Id, 1), (h, v/ Jac(h))]xpo

where e;(z) = z is the evaluation map at time t on paths. That is, Vf € CJ(C x C)

[ oz duate) = [ Al 10 10). VTG dpolx)

Taking these boundary conditions:
> Assuming finite action, by compactness, there is a minimizing sequence p, — p*

> ™ might not be a generalized compressible flow: marginal constraint not stable
under narrow convergence

» Paths with unboundedly large r (Jacobian) can be charged
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Homogeneous coupling and rescaling

A function f : C" is p-homogeneous (in the radial direction) iff for every o > 0,
f([xi, ari]) = aPf([x;, ar])

Homogeneous coupling: V 2-homogeneous f € C°(C x C)

[ oz i) = [ (1,10 10). VTG dpo(x)
Given a functional 6 : Q — R, define the dilation map by

dilp » = prode#(92p,), where prody(z) = (t — [x¢, rt/0(z)])

Lemma (rescaling)
Consider a measure p € M(2) and a 1-homogeneous functional o : Q — R such that

o(z) > 0 for p-almost every path z. Assume C = ( [q o? du)l/2 < +oo . Then
i =dil,/cop € P(Q) satisfies

> V 2-homogeneous functionals F, [, Fdu = [, Fdj
> i({z€Q;0(z)=C})=1

Ex: if u({z € Q; ro = 0}) = 0 then for 0 = ry, C =1 (marginal constraint) and
dilsy 24 is concentrated on path such that rp = C = 1.
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Existence of minimizers

Theorem

Provided that there exists a generalized flow p* such that A(p*) < +oo, the
minimum of the action among generalized compressible flows satisfying the
homogeneous coupling constraint is attained.

Proof (sketch).
Consider a minimizing sequence p,
1. rescale support using dilation
2. action and constraints preserved: compactness = limit in narrow topology

3. check uniform integrability constraints (now holds on rescaled support)

Note:
> This proves existence for any h in the connected component of Diff(M)
> Solution allowed to charge cone apex (r = 0): shocks, vanishing Jacobian

> Is coupling meaningful?

0/18



A decomposition result for deterministic boundary conditions

Lemma
For all measures p € M() satisfying the homogeneous coupling constraint

() p({zrp=0})=0 <= (+) p({zno=rr=0})=0

Proof.

If (*), ut = dil,y 2p is concentrated on paths with ro = 1. Then,
[ 7 = VIR0 aut@) = [ (17 = oy/Taclh0))? ) =0

Therefore ! satisfies the strong coupling and (**) holds. O

There exists a decomposition

p=p+i
with
> iit=p L {zr07# 0and rr # 0} : can be rescaled to satisfy strong coupling
» 1% =p L {z;r0=rr =0}: meaning?
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Smooth solutions are minimizers

Euler-Lagrange equations in terms of (¢, A):

Ag+27g+ IAVPop =0,
A= M@l +APop=0,

where P : M — R is the pressure: Lagrange multiplier for constraint A = \/Jac(yp).

Theorem
On M = S}, unit radius circle, if for all t € [0, T]

2P+ (V)2P VP
(vP)T 2P

then (¢, A)xpo is a minimizer and it is unique (up to dilation) if the inequality is strict.

272
< Tz (2)
2

Note:
> for M = S} we identify C with R?
> result holds on M C R? compact, but on shorter time for given P

> proof uses Poincaré inequality as for incompressible Euler also to prove that
10 = 0 (paths starting at the apex not charged)

» P < 7w2/T? is sharp for uniqueness
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Rotation on the circle: non-uniqueness and a non-deterministic solution

Generalized CH problem on S}, circle of radius R, with coupling given in polar
coordinates by
h:0 €ER/Zor — 0+

so that Jac(h) = 1.

Theorem
When R = 1 the dynamic plan

L1 1
=51, C)gpo + S (¥ Hgro,

with

¢0) = V2sin(VPTr), GHO) = VE|cos(VPTO)], 4H(0) { b n it

as well as the dynamic plan induced by constant speed rotation are minimizers
corresponding to the constant pressure P* = (m/T)?; when R > 1 the constant speed
rotation is not a minimizer.

Next, we show that for no rotation (11 = Id) this flow arises as narrow limit of
deterministic flows.
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Peakon collisions

> Peakon collision means we can compress particles to occupy the same position in

finite time and at finite cost
> At small scales the optimal way to do this is using linear peakons collision

61(0)

9.2(0)

o
nI
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Peakon collisions

> Peakon collision means we can compress particles to occupy the same position in

finite time and at finite cost

> At small scales the optimal way to do this is using linear peakons collision

T+ e
T ) ‘

O 1 \
3

= 27

o
ol
3

» Jacobian is piecewice constant, collision for e — 0

> Marginals on the cone at fixed time (¢, At)4po: at collision concentrated on
circle of radius V2
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An approximation result on the circle

Concatenating peakon collisions in space and time yields a sequence of deterministic
flows convergenging to a non-deterministic generalized compressible flow

T

b

o
N

2
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An approximation result on the circle

Concatenating peakon collisions in space and time yields a sequence of deterministic
flows convergenging to a non-deterministic generalized compressible flow

T

Note: same fixed-time marginals if we rescale the paths to have rr/4 = 1.

Theorem
There exists a sequence ¢" such that pu" = (", \/Jac(p"))xpo can be rescaled to
A" — p* (def. as before with no rotation) and A(i") — A(p*) = 72/ T.

» Paths starting at and reaching the apex correspond to creation of voids
(unbounded Jacobian) in the limit

» Cannot reach final configuration due to topology of St (it would be very
inexpensive to rotate most of points at T/2)
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Rotation on the torus: a non-deterministic solution

Generalized CH problem on T12’R = 511 X Sk,, with coupling in polar coordinates

h:(0,0) €R*/Z3, — (0+7,¢+)
so that Jac(h) = 1.

Theorem
The dynamic plan

1 1
= 5014, ppo + S (81 Mypo s
with (2 = ﬁsin(\/ﬁt), ¢t = V2| cos(\/ﬁtﬂ where P* = (n/T)?, and
1 _ (97¢) t S T/27
wt(a’d)){ O+mp+m) t>T/2,

is a minimizer, whereas the constant speed rotation is not a minimizer.
Note:

> we can prove the result since the action for the rotation on T12R is larger than
that on S} (where we know the minimizer's action)
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An approximation result on the torus

Adapting 1d construction = approximation result holds on the torus with rotation

Theorem

There exists a sequence " such that pu" = (¢", \/Jac("))xpo can be rescaled to
f1" — p* (minimizer for double rotation) and A(fi") — A(p*) = n2/T.

Proof (sketch).

Rotate n stripes in the domain separately when they occupy small area. For 1 stripe:

21 4 21 4
T A T A
0 T 0 T
0 g 27 0 g 27
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Some open questions

\{

; 1
Sharper estimate on pressure for general case (M # 5;)?

> Is non-deterministic rotation the unique minimizer (on S} or T2 )?

v

Conditions for occurrence of blow up in the general case?

v

Pressure always exists as a distribution independently of blow up (Gallouét,
Natale, and Vialard, 2018). Regularity?

v

Tightness? In 2d no topological impediment at least for rotation. General case?
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