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The H(div) geodesic problem

Notation:
I M ⊂ Rd is a compact domain
I ρ0 is the normalized Lebesgue measure ρ0(M) = 1
I Diff(M) is the diffeomorphism group and Id ∈ Diff(M) is the identity map
I SDiff(M) volume-preserving, i.e. ϕ#ρ0 = ρ0

I A (deterministic) flow on M is a curve on Diff(M), i.e. ϕ : [0,T ]×M → M.

Deterministic CH problem: Given h ∈ Diff(M) and a, b > 0, find the flow ϕ that
minimizes the action ∫

M

∫ T

0
a‖ut‖2 + b|divut |2dt dρ0 .

with ut = ϕ̇t ◦ ϕ−1
t , and verifying ϕ0 = Id, ϕT = h.

For d = 1 =⇒ Camassa-Holm equation: approximation of ideal fluid with free
boundary in shallow water

For d = 2 =⇒ higher-dimensional generalization (Kruse, Scheurle, and Du, 2001)
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Geodesics on the group of diffeomorphisms

The L2 case:
I Degenerate metric on Diff(M) (Michor and Mumford, 2005)
I On SDiff(M) the geodesic equations are the incompressible Euler equations
I Non-degeneracy and local well-posedness: for data h in Hs , s > d/2 + 1, and

close to Id (Ebin and Marsden, 1970)
I Relaxation: Brenier introduced relaxation based on generalized incompressible

flows, i.e. measure on the space of continuous paths (Brenier, 1989)
I Tightness: no for d = 2, yes for d = 3 (Shnirelman, 1994)

The H(div) case:
I For d = 1 Camassa-Holm equation: completely integrable, bi-Hamiltonian
I Peakons: (weak) travelling wave solutions
I Collision of peakons =⇒ blow up; solution not unique afterwards
I Non-degeneracy and local well-posedeness: (Michor and Mumford, 2005;

Mumford and Michor, 2012)
I Correct definition for minimizing flows? Occurrence of blow up? Need for

relaxation? Tightness? ...
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A Lagrangian formulation on the cone

Given a flow ϕ : [0,T ]×M → M define

λ =
√

Jac(ϕ) : [0,T ]×M → R>0

Then the H(div) action with a = 1 and b = 1/4, can be written as

A([ϕ, λ]) =

∫
M

∫ T

0
λ2‖ϕ̇‖2 + |λ̇|2dt dρ0

This can be seen as the L2 metric on the cone C = (M × R≥0)/(M × {0}) restricted
to the subset Aut(C) ⊂ Diff(C), i.e. maps in the form (ϕ, λ) : C → C,

(ϕ, λ)([x , r ]) = [ϕ(x), λ(x)r ]

Note:
I The CH problem consists in minimizing A([ϕ, λ]) with ϕ#λ

2ρ0 = ρ0 (Gallouët
and Vialard, 2017)

I As for incompressible Euler, having an L2 metric allows to decouple particle
trajectories in the minimization problem =⇒ generalized flows
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Generalized compressible flows

Notation:
I Ω = C0([0,T ]; C), i.e. z ∈ Ω then z : t ∈ [0,T ]→ [xt , rt ] ∈ C continuous path
I M(Ω) and P(Ω): positive finite Borel measures and probability measures, resp.,

on space of paths

Deterministic to generalized: We can associated to any (ϕ, λ) ∈ Aut(C) a
probability measure µ = (ϕ, λ)#ρ0, i.e. for any F ∈ C0

b (Ω)∫
Ω
F(z)dµ(z) =

∫
Ω
F([ϕ(x), λ(x)]) dρ0(x)

where ϕ(x) : t → ϕt(x) and λ(x) : t → λt(x).

Marginal constraint: The constraint λ =
√

Jac(ϕ) can be expressed as: for any
f ∈ C0([0,T ]×M)∫

Ω

∫ T

0
f (t, xt)r

2
t dt dµ(z) =

∫
Ω

∫ T

0
f (t, x)dt dρ0(x) (1)

which corresponds to change of variable formula

A generalized compressible flow is a probability measure µ ∈ P(Ω) satisfying (1).
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Compactness

The action of a generalized compressible flow µ is given by

A(µ) =

∫
Ω
E(z)dµ(z) , E(z) =

{ ∫ T
0 r2t ‖ẋt‖2 + ṙ2t dt if z is abs. continuous

+∞ otherwise

Lemma
The set of generalized compressible flows with uniformly bounded action A(µ) ≤ C is
relatively sequentially compact for the narrow topology.

Proof (sketch).
Use Prokhorov’s theorem: we need to prove tightness.

1. Consider the set of paths ΩR ⊂ Ω bounded in the radial direction (rt ≤ R). We
have

ΩR,K = ΩR ∩ {z ∈ Ω ; A(z ≤ K)} is contained in a compact subset of Ω

by Ascoli-Arzelá theorem.

2. µ(Ω \ ΩR) ≤ C/R2 using A(µ) ≤ C

3. ∀ ε > 0 ∃Kε,Rε > 0 such that µ(Ω \ ΩRε,Kε ) ≤ ε
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Generalized problem and boundary conditions

Generalized CH problem: Find the generalized compressible flow µ minimizing the
action A(µ) with what boundary conditions?

In the deterministic CH problem we are looking for paths such that ϕ0 = Id and
ϕT = h ∈ Diff(Ω). In the generalized setting this corresponds to

Strong coupling:
(e0, eT )#µ = [(Id, 1), (h,

√
Jac(h))]#ρ0

where et(z) = zt is the evaluation map at time t on paths. That is, ∀ f ∈ C0
b (C × C)∫

Ω
f (z0, zT ) dµ(z) =

∫
M
f ([x , 1], [h(x),

√
Jac(h(x))]) dρ0(x)

Taking these boundary conditions:
I Assuming finite action, by compactness, there is a minimizing sequence µn ⇀ µ∗

I µ∗ might not be a generalized compressible flow: marginal constraint not stable
under narrow convergence

I Paths with unboundedly large r (Jacobian) can be charged
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Homogeneous coupling and rescaling

A function f : Cn is p-homogeneous (in the radial direction) iff for every α > 0,
f ([xi , αri ]) = αpf ([xi , αri ])

Homogeneous coupling: ∀ 2-homogeneous f ∈ C0(C × C)∫
Ω
f (z0, zT ) dµ(z) =

∫
M
f ([x , 1], [h(x),

√
Jac(h(x))]) dρ0(x)

Given a functional θ : Ω→ R, define the dilation map by

dilθ,2 = prodθ#(θ2µ) , where prodθ(z) = (t 7→ [xt , rt/θ(z)])

Lemma (rescaling)
Consider a measure µ ∈M(Ω) and a 1-homogeneous functional σ : Ω→ R such that
σ(z) > 0 for µ-almost every path z. Assume C =

(∫
Ω σ

2 dµ
)1/2

< +∞ . Then
µ̃ = dilσ/C ,2µ ∈ P(Ω) satisfies

I ∀ 2-homogeneous functionals F ,
∫

Ω F dµ =
∫

Ω F dµ̃
I µ̃({z ∈ Ω ; σ(z) = C}) = 1

Ex: if µ({z ∈ Ω ; r0 = 0}) = 0 then for σ = r0, C = 1 (marginal constraint) and
dilr0,2µ is concentrated on path such that r0 = C = 1.

8 / 18



Existence of minimizers

Theorem
Provided that there exists a generalized flow µ∗ such that A(µ∗) < +∞, the
minimum of the action among generalized compressible flows satisfying the
homogeneous coupling constraint is attained.

Proof (sketch).
Consider a minimizing sequence µn

1. rescale support using dilation

2. action and constraints preserved: compactness =⇒ limit in narrow topology

3. check uniform integrability constraints (now holds on rescaled support)

Note:
I This proves existence for any h in the connected component of Diff(M)

I Solution allowed to charge cone apex (r = 0): shocks, vanishing Jacobian
I Is coupling meaningful?
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A decomposition result for deterministic boundary conditions

Lemma
For all measures µ ∈M(Ω) satisfying the homogeneous coupling constraint

(∗) µ({z, r0 = 0}) = 0 ⇐⇒ (∗∗) µ({z, r0 = rT = 0}) = 0

Proof.
If (*), µ1 = dilr0,2µ is concentrated on paths with r0 = 1. Then,∫

Ω
(rT −

√
Jac(h)(x0))2 dµ1(z) =

∫
Ω

(rT − r0
√

Jac(h)(x0))2 dµ1(z) = 0

Therefore µ1 satisfies the strong coupling and (**) holds.

There exists a decomposition
µ = µ0 + µ̃

with
I µ̃ = µ {z; r0 6= 0 and rT 6= 0} : can be rescaled to satisfy strong coupling
I µ0 = µ {z; r0 = rT = 0} : meaning?
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Smooth solutions are minimizers

Euler-Lagrange equations in terms of (ϕ, λ):{
λϕ̈+ 2λ̇ϕ̇+ 1

2λ∇P ◦ ϕ = 0 ,
λ̈− λ‖ϕ̇‖2 + λP ◦ ϕ = 0 ,

where P : M → R is the pressure: Lagrange multiplier for constraint λ =
√

Jac(ϕ).

Theorem
On M = S1

1 , unit radius circle, if for all t ∈ [0,T ]∥∥∥∥∥
(

2P + (∇)2P ∇P
(∇P)T 2P

)∥∥∥∥∥
2

≤
2π2

T 2 (2)

then (ϕ, λ)#ρ0 is a minimizer and it is unique (up to dilation) if the inequality is strict.

Note:
I for M = S1

1 we identify C with R2

I result holds on M ⊂ Rd compact, but on shorter time for given P

I proof uses Poincaré inequality as for incompressible Euler also to prove that
µ0 = 0 (paths starting at the apex not charged)

I P < π2/T 2 is sharp for uniqueness
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Rotation on the circle: non-uniqueness and a non-deterministic solution

Generalized CH problem on S1
R , circle of radius R, with coupling given in polar

coordinates by
h : θ ∈ R/Z2π → θ + π

so that Jac(h) = 1.

Theorem
When R = 1 the dynamic plan

µ∗ =
1
2

(Id, ζ0)#ρ0 +
1
2

(ψ1, ζ1)#ρ0 ,

with

ζ0t (θ) =
√
2 sin(

√
P∗t) , ζ1t (θ) =

√
2| cos(

√
P∗t)| , ψ1

t (θ) =

{
θ t ≤ T/2 ,
θ + π t > T/2 ,

as well as the dynamic plan induced by constant speed rotation are minimizers
corresponding to the constant pressure P∗ = (π/T )2; when R > 1 the constant speed
rotation is not a minimizer.

Next, we show that for no rotation (ψ1
1 = Id) this flow arises as narrow limit of

deterministic flows.
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Peakon collisions

I Peakon collision means we can compress particles to occupy the same position in
finite time and at finite cost

I At small scales the optimal way to do this is using linear peakons collision

θ̇2(0)

0

θ̇1(0)

0 π
2 π 3π

2 2π

I Jacobian is piecewice constant, collision for ε→ 0
I Marginals on the cone at fixed time (ϕt , λt)#ρ0: at collision concentrated on

circle of radius
√
2
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An approximation result on the circle

Concatenating peakon collisions in space and time yields a sequence of deterministic
flows convergenging to a non-deterministic generalized compressible flow

0

T

0 π
2 π 3π

2 2π

Note: same fixed-time marginals if we rescale the paths to have rT/4 = 1.

Theorem
There exists a sequence ϕn such that µn = (ϕn,

√
Jac(ϕn))#ρ0 can be rescaled to

µ̃n ⇀ µ∗ (def. as before with no rotation) and A(µ̃n)→ A(µ∗) = π2/T .

I Paths starting at and reaching the apex correspond to creation of voids
(unbounded Jacobian) in the limit

I Cannot reach final configuration due to topology of S1 (it would be very
inexpensive to rotate most of points at T/2)
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Rotation on the torus: a non-deterministic solution

Generalized CH problem on T 2
1,R = S1

1 × S1
R , with coupling in polar coordinates

h : (θ, φ) ∈ R2/Z2
2π → (θ + π, φ+ π)

so that Jac(h) = 1.

Theorem
The dynamic plan

µ∗ =
1
2

(Id, ζ0)#ρ0 +
1
2

(ψ1, ζ1)#ρ0 ,

with ζ0t =
√
2 sin(

√
P∗t), ζ1t =

√
2| cos(

√
P∗t)| where P∗ = (π/T )2, and

ψ1
t (θ, φ) =

{
(θ, φ) t ≤ T/2 ,
(θ + π, φ+ π) t > T/2 ,

is a minimizer, whereas the constant speed rotation is not a minimizer.

Note:
I we can prove the result since the action for the rotation on T 2

1,R is larger than
that on S1

1 (where we know the minimizer’s action)
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An approximation result on the torus

Adapting 1d construction =⇒ approximation result holds on the torus with rotation

Theorem
There exists a sequence ϕn such that µn = (ϕn,

√
Jac(ϕn))#ρ0 can be rescaled to

µ̃n ⇀ µ∗ (minimizer for double rotation) and A(µ̃n)→ A(µ∗) = π2/T .

Proof (sketch).
Rotate n stripes in the domain separately when they occupy small area. For 1 stripe:

0

π

2π

0 π 2π

0

π

2π

0 π 2π

16 / 18



An approximation result on the torus

Adapting 1d construction =⇒ approximation result holds on the torus with rotation

Theorem
There exists a sequence ϕn such that µn = (ϕn,

√
Jac(ϕn))#ρ0 can be rescaled to

µ̃n ⇀ µ∗ (minimizer for double rotation) and A(µ̃n)→ A(µ∗) = π2/T .

Proof (sketch).
Rotate n stripes in the domain separately when they occupy small area. For 1 stripe:

0

π

2π

0 π 2π

0

π

2π

0 π 2π

16 / 18



An approximation result on the torus

Adapting 1d construction =⇒ approximation result holds on the torus with rotation

Theorem
There exists a sequence ϕn such that µn = (ϕn,

√
Jac(ϕn))#ρ0 can be rescaled to

µ̃n ⇀ µ∗ (minimizer for double rotation) and A(µ̃n)→ A(µ∗) = π2/T .

Proof (sketch).
Rotate n stripes in the domain separately when they occupy small area. For 1 stripe:

0

π

2π

0 π 2π

0

π

2π

0 π 2π

16 / 18



An approximation result on the torus

Adapting 1d construction =⇒ approximation result holds on the torus with rotation

Theorem
There exists a sequence ϕn such that µn = (ϕn,

√
Jac(ϕn))#ρ0 can be rescaled to

µ̃n ⇀ µ∗ (minimizer for double rotation) and A(µ̃n)→ A(µ∗) = π2/T .

Proof (sketch).
Rotate n stripes in the domain separately when they occupy small area. For 1 stripe:

0

π

2π

0 π 2π

0

π

2π

0 π 2π

16 / 18



An approximation result on the torus

Adapting 1d construction =⇒ approximation result holds on the torus with rotation

Theorem
There exists a sequence ϕn such that µn = (ϕn,

√
Jac(ϕn))#ρ0 can be rescaled to

µ̃n ⇀ µ∗ (minimizer for double rotation) and A(µ̃n)→ A(µ∗) = π2/T .

Proof (sketch).
Rotate n stripes in the domain separately when they occupy small area. For 1 stripe:

0

π

2π

0 π 2π

0

π

2π

0 π 2π

16 / 18



An approximation result on the torus

Adapting 1d construction =⇒ approximation result holds on the torus with rotation

Theorem
There exists a sequence ϕn such that µn = (ϕn,

√
Jac(ϕn))#ρ0 can be rescaled to

µ̃n ⇀ µ∗ (minimizer for double rotation) and A(µ̃n)→ A(µ∗) = π2/T .

Proof (sketch).
Rotate n stripes in the domain separately when they occupy small area. For 1 stripe:

0

π

2π

0 π 2π

0

π

2π

0 π 2π

16 / 18



An approximation result on the torus

Adapting 1d construction =⇒ approximation result holds on the torus with rotation

Theorem
There exists a sequence ϕn such that µn = (ϕn,

√
Jac(ϕn))#ρ0 can be rescaled to

µ̃n ⇀ µ∗ (minimizer for double rotation) and A(µ̃n)→ A(µ∗) = π2/T .

Proof (sketch).
Rotate n stripes in the domain separately when they occupy small area. For 1 stripe:

0

π

2π

0 π 2π

0

π

2π

0 π 2π

16 / 18



An approximation result on the torus

Adapting 1d construction =⇒ approximation result holds on the torus with rotation

Theorem
There exists a sequence ϕn such that µn = (ϕn,

√
Jac(ϕn))#ρ0 can be rescaled to

µ̃n ⇀ µ∗ (minimizer for double rotation) and A(µ̃n)→ A(µ∗) = π2/T .

Proof (sketch).
Rotate n stripes in the domain separately when they occupy small area. For 1 stripe:

0

π

2π

0 π 2π

0

π

2π

0 π 2π

16 / 18



An approximation result on the torus

Adapting 1d construction =⇒ approximation result holds on the torus with rotation

Theorem
There exists a sequence ϕn such that µn = (ϕn,

√
Jac(ϕn))#ρ0 can be rescaled to

µ̃n ⇀ µ∗ (minimizer for double rotation) and A(µ̃n)→ A(µ∗) = π2/T .

Proof (sketch).
Rotate n stripes in the domain separately when they occupy small area. For 1 stripe:

0

π

2π

0 π 2π

0

π

2π

0 π 2π

16 / 18



An approximation result on the torus

Adapting 1d construction =⇒ approximation result holds on the torus with rotation

Theorem
There exists a sequence ϕn such that µn = (ϕn,

√
Jac(ϕn))#ρ0 can be rescaled to

µ̃n ⇀ µ∗ (minimizer for double rotation) and A(µ̃n)→ A(µ∗) = π2/T .

Proof (sketch).
Rotate n stripes in the domain separately when they occupy small area. For 1 stripe:

0

π

2π

0 π 2π

0

π

2π

0 π 2π

16 / 18



An approximation result on the torus

Adapting 1d construction =⇒ approximation result holds on the torus with rotation

Theorem
There exists a sequence ϕn such that µn = (ϕn,

√
Jac(ϕn))#ρ0 can be rescaled to

µ̃n ⇀ µ∗ (minimizer for double rotation) and A(µ̃n)→ A(µ∗) = π2/T .

Proof (sketch).
Rotate n stripes in the domain separately when they occupy small area. For 1 stripe:

0

π

2π

0 π 2π

0

π

2π

0 π 2π

16 / 18



An approximation result on the torus

Adapting 1d construction =⇒ approximation result holds on the torus with rotation

Theorem
There exists a sequence ϕn such that µn = (ϕn,

√
Jac(ϕn))#ρ0 can be rescaled to

µ̃n ⇀ µ∗ (minimizer for double rotation) and A(µ̃n)→ A(µ∗) = π2/T .

Proof (sketch).
Rotate n stripes in the domain separately when they occupy small area. For 1 stripe:

0

π

2π

0 π 2π

0

π

2π

0 π 2π

16 / 18



An approximation result on the torus

Adapting 1d construction =⇒ approximation result holds on the torus with rotation

Theorem
There exists a sequence ϕn such that µn = (ϕn,

√
Jac(ϕn))#ρ0 can be rescaled to

µ̃n ⇀ µ∗ (minimizer for double rotation) and A(µ̃n)→ A(µ∗) = π2/T .

Proof (sketch).
Rotate n stripes in the domain separately when they occupy small area. For 1 stripe:

0

π

2π

0 π 2π

0

π

2π

0 π 2π

16 / 18



An approximation result on the torus

Adapting 1d construction =⇒ approximation result holds on the torus with rotation

Theorem
There exists a sequence ϕn such that µn = (ϕn,

√
Jac(ϕn))#ρ0 can be rescaled to

µ̃n ⇀ µ∗ (minimizer for double rotation) and A(µ̃n)→ A(µ∗) = π2/T .

Proof (sketch).
Rotate n stripes in the domain separately when they occupy small area. For 1 stripe:

0

π

2π

0 π 2π

0

π

2π

0 π 2π

16 / 18



An approximation result on the torus

Adapting 1d construction =⇒ approximation result holds on the torus with rotation

Theorem
There exists a sequence ϕn such that µn = (ϕn,

√
Jac(ϕn))#ρ0 can be rescaled to

µ̃n ⇀ µ∗ (minimizer for double rotation) and A(µ̃n)→ A(µ∗) = π2/T .

Proof (sketch).
Rotate n stripes in the domain separately when they occupy small area. For 1 stripe:

0

π

2π

0 π 2π

0

π

2π

0 π 2π

16 / 18



An approximation result on the torus

Adapting 1d construction =⇒ approximation result holds on the torus with rotation

Theorem
There exists a sequence ϕn such that µn = (ϕn,

√
Jac(ϕn))#ρ0 can be rescaled to

µ̃n ⇀ µ∗ (minimizer for double rotation) and A(µ̃n)→ A(µ∗) = π2/T .

Proof (sketch).
Rotate n stripes in the domain separately when they occupy small area. For 1 stripe:

0

π

2π

0 π 2π

0

π

2π

0 π 2π

16 / 18



An approximation result on the torus

Adapting 1d construction =⇒ approximation result holds on the torus with rotation

Theorem
There exists a sequence ϕn such that µn = (ϕn,

√
Jac(ϕn))#ρ0 can be rescaled to

µ̃n ⇀ µ∗ (minimizer for double rotation) and A(µ̃n)→ A(µ∗) = π2/T .

Proof (sketch).
Rotate n stripes in the domain separately when they occupy small area. For 1 stripe:

0

π

2π

0 π 2π

0

π

2π

0 π 2π

16 / 18



Some open questions

I Sharper estimate on pressure for general case (M 6= S1
1 )?

I Is non-deterministic rotation the unique minimizer (on S1
R or T 2

1,R)?

I Conditions for occurrence of blow up in the general case?
I Pressure always exists as a distribution independently of blow up (Gallouët,

Natale, and Vialard, 2018). Regularity?
I Tightness? In 2d no topological impediment at least for rotation. General case?
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