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Curve-shortening flow

We start with the curve-shortening flow in RY, which is the
1-dimensional case of the mean-curvature flow:

1 0 X
OX = 1a.x1% (|asxw> ’ )

where s € R/Z — X(t,s) describes a time-dependent curve in RY.
We introduce a singular vector-valued measure

(t,x) = B(t,x) = o 5(x — X(t,5))dsX(t,s)ds € R,

which automatically satisfies V - B = 0. Let v(t, x) be the smooth
vector field such that

0 X(t,s) = v(t, X(t,s)).



Outline Curve-shortening flow Gradient flow structure Dissipative solutions

“Eulerian version” of curve-shortening flow

If the loop X(t,s) solves the curve-shortening flow (1), then (B, v)
satisfies the following parabolic type PDEs (in the sense of
distributions)

HhB+V - (Bov—-—v®B)=0, V-B=0, (2)
B®B>

Blv=V-|—], 3

Bl =v- (25 3)

which can be interpreted as the “Eulerian version” of the
curve-shortening flow. In the framework of optimal transport, these
PDEs can be viewed as the gradient flow based on optimal
transport of closed (d — 1)—forms in RY with suitable
transportation metrics.
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Divergence-free vector fields as closed (d — 1)—forms

The divergence-free vector field B can be seen as a closed
(d — 1)—form. For instance, as d = 3,

B = Bdx? A dx3 + B2dx3 A dxt + B3dx! A dx?,
0= df = (01B*+8:B24+83B%)dx* Adx*Adx3 = divB dx* Adx?Adx3,

and these formulae easily extend to arbitrary dimensions d. For
simplicity, let's work on the torus T¢ = (R/Z).
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Transportation of closed (d — 1)—forms

The concept of transport involves time-dependent closed
(d — 1)—forms (; and vector fields v(t,x). Let ¢; be the group of
diffeomorphisms generated by v(t, x) such that

d
aqﬁt =Vviod, ¢o=Id.
At any time t, §; is the pushforward of 5y by ¢;:

ﬁt = (¢7t)*60
This implies
d
aﬁt + LB =0.

In terms of divergence-free vector fields, this gives the induction
equations
0hB+V - (Bov—-v®B)=0.



Outline Curve-shortening flow Gradient flow structure Dissipative solutions

Transportation cost

Mimicking the case of volume forms, we define a transportation
cost by introducing, for each fixed fields B, a Hilbert norm

depending on B:
le =/ [, lvPlel.
Td

We look at the gradient flow of the convex functional

f[s]:/wwy.
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Steepest descent |

By the induction equation (2), we have
d B S
—F[B] = — 0B =— —9:(B'V —v'B
dr [B] /Td IB] t /Td EK i(B'v/ — v'B’)

= Lo () -2 ()= Lve

B®B
c=v-(%57)-
B

where
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Steepest descent |l

So we have

d |G — |B|v]? / /IGI2
—F[B] = — 6= | =2 - - =L
a7 1Bl /Tdv /Td 2|B| vFl8] Elk

G2

> [ weesl-5 [

1B|’

To get the steepest descent according to norm || - ||, it is enough
to saturate this inequality. In other words, choose v such that
BB
|Blv=G=V" ( >
Bl

This gives exactly the Eulerian version of the curve-shortening flow
equations (2),(3).
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Idea of dissipative solution |

We define a concept of “dissipative solutions” related to the work

of P.-L. Lions for the Euler equation of incompressible fluids or to

the work of L. Ambrosio, N. Gigli, G. Savaré for the heat equation
and similar to the one introduced by Y. Brenier.

Briefly speaking, for any smooth trial field b*, v* with |b*| =1, we
look at the relative entropy

(B —|BJb*)?

=|B|—B-b" = >

For smooth solution (B, v) to (2)(3), after lengthy computations,
we have

|P —|B|v* !2 */ / /
B-L P-L
dt /ﬂ‘d /Td 2|B| =¢ 'I[*d77+ Td 2+ Td 3

where P = |B|v, ¢*, Ly, L3 depending only on b* and v*.
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Idea of dissipative solution Il

By writing

P 1Bl _ oo R
Sig =P (P 1BV A= 5B

and integrating from [0, t], we get the family of inequalities

s e[ e A2,
P (A_Ly)_B. <L2 N bA(A”)ﬂ (0)do < /T 7(0).

2
(4)

where r is taken largely enough, so that the inequalities are stable
under weakly-* convergence.
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Idea of dissipative solution Il

This inspires us to give a notion of “very weak” solutions (we call
them dissipative solutions), which do not necessarily need to satisfy
the equations in the weak or strong sense, but need to satisfy the
inequalities (4) for all test functions (b*, v*, A) and r large enough.
By defining in this way, these solutions enjoy the so called
weak-strong uniqueness, which means that any dissipative
solutions must coincide with a strong solution emanating from the
same initial data as long as the latter exists. In the
curve-shortening case, we only get the uniqueness for the
homogeneous variables b = B/|B| and v = P/|B|. There is a lot
of room left for the evolution of |B] itself.
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THANKS FOR YOUR ATTENTION!
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Definition of dissipative solution

Definition

Let us fix T > 0. We say that (B, P) with

B € C([0, T], C(T9,R9Y. .), P C([0, T] x T¢,R)" is a
dissipative solution of the curve-shortening flow with initial data
Bo € C(T?,RYY if and only if:

i) B(0)= By, V-B=0insense of distributions;

i) B and P are bounded, respectively in the spaces

CY2([0, T], (CY(T9)),,.) and C([0, T] x T, R?)’, by constants
depending only on T and [14|Bol.

iii) For all A >0, 6 € [0, T], for all smooth trial functions

(b*, v*, A) valued in RY, with ||Al|oc < A and b*2 = 1, for all
r> ¢+ 2 4 AV ]|, (4) is satisfied.



Outline Curve-shortening flow Gradient flow structure Dissipative solutions

d (P — pv*)? /1
£ NPT [ (Bi—pbt)(Bi—pb?)(0;vi O v
dt/TdH/Td p szp( pb;)(Bj—pb} )(9;v +0;v})

1 * * * *
= [, (Bi= B )P = (038 — 018)

+/ 77L1+/ B-L2+/ P-Ls
T¢ T T

p=|B|, Li=v*?—b"- V(b* v*),
Ly = —D}b* + (b* - V)v* + V(b* - v*) + b*(v? — b* - V(b* - v*)),
Df =(0r +v*- V), Lz=—v"+(b"-V)b",

where
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