Submodular Functions: from Discrete to Continuous Domains

Francis Bach

INRIA - Ecole Normale Supérieure

Mokaplan seminar - March 2016

Submodular functions From discrete to continuous domains Summary

- Which functions can be minimized in polynomial time?
 - Beyond convex functions
- Submodular functions
 - Not convex, ... but "equivalent" to convex functions
 - Usually defined on $\{0,1\}^n$
 - Extension to continuous domains
- Preprint available on HAL (Bach, 2015)

Submodularity (almost) everywhere Clustering

• Semi-supervised clustering

• Submodular function minimization

Submodularity (almost) everywhere Graph cuts and image segmentation

• Submodular function minimization

Submodularity (almost) everywhere Sensor placement

- Each sensor covers a certain area (Krause and Guestrin, 2005)
 - Goal: maximize coverage

- Submodular function maximization
- Extension to experimental design (Seeger, 2009)

Submodularity (almost) everywhere Image denoising

• Total variation denoising (Chambolle, 2005)

• Submodular convex optimization problem

Submodularity (almost) everywhere Combinatorial optimization problems

- Set $V = \{1, ..., n\}$
- ullet Power set $2^V=$ set of all subsets, of cardinality 2^n
- Minimization/maximization of a set-function $F: 2^V \to \mathbb{R}$.

$$\min_{A \subset V} F(A) = \min_{A \in 2^V} F(A)$$

Submodularity (almost) everywhere Combinatorial optimization problems

- Set $V = \{1, ..., n\}$
- ullet Power set $2^V=$ set of all subsets, of cardinality 2^n
- Minimization/maximization of a set-function $F: 2^V \to \mathbb{R}$.

$$\min_{A \subset V} F(A) = \min_{A \in 2^V} F(A)$$

Reformulation as (pseudo) Boolean function

with $H: \{0,1\}^n \to \mathbb{R}$ and $\forall A \subset V, \ H(1_A) = F(A)$

Outline

1. Submodular set-functions

- Definitions, examples
- Links with convexity through Lovász extension
- Minimization by convex optimization

2. From discrete to continuous domains

- Nonpositive second-order derivatives
- Invariances and examples
- Extensions on product measures through optimal transport

3. Minimization of continuous submodular functions

- Subgradient descent
- Frank-Wolfe optimization

Submodular functions - References

- Reference book based on combinatorial optimization
 - Submodular Functions and Optimization (Fujishige, 2005)

- Tutorial monograph based on convex optimization (Bach, 2013)
 - Learning with submodular functions: a convex optimization perspective

Submodular functions Definitions

• **Definition**: $H:\{0,1\}^n \to \mathbb{R}$ is **submodular** if and only if

$$\forall x, y \in \{0, 1\}^n$$
, $H(x) + H(y) \ge H(\max\{x, y\}) + H(\min\{x, y\})$

- NB: equality for modular functions (linear functions of x)
- Always assume H(0) = 0

Submodular functions Definitions

• **Definition**: $H:\{0,1\}^n \to \mathbb{R}$ is **submodular** if and only if

$$\forall x, y \in \{0, 1\}^n$$
, $H(x) + H(y) \ge H(\max\{x, y\}) + H(\min\{x, y\})$

- NB: equality for modular functions (linear functions of x)
- Always assume H(0) = 0
- Equivalent definition: (with $e_i \in \mathbb{R}^n$ i-th canonical basis vector)

$$\forall i \in \{1, \dots, n\}, \quad x \mapsto H(x + e_i) - H(x) \text{ is non-increasing }$$

- "Concave property": Diminishing returns

Submodular functions - Examples (see, e.g., Fujishige, 2005; Bach, 2013)

- Concave functions of the cardinality
- Cuts
- Entropies
 - Joint entropy of $(X_k)_{x_k=1}$, from n random variables X_1, \ldots, X_n
- Functions of eigenvalues of sub-matrices
- Network flows
- Rank functions of matroids

Examples of submodular functions Cardinality-based functions

- Modular function: $H(x) = w^{\top}x$ for $w \in \mathbb{R}^n$
 - Cardinality example: If $w = 1_n$, then $H(x) = 1_n^\top x$
- ullet If g is a concave function, then $H: x \mapsto g(1_n^\top x)$ is submodular
 - Diminishing return property

Examples of submodular functions Covers

- Let W be any "base" set, and for each $k \in V$, a set $S_k \subset W$
- Set cover defined as $H(x) = \left| \bigcup_{x_k=1} S_k \right|$

Examples of submodular functions Cuts

- Given a (un)directed graph, with vertex set $V=\{1,\ldots,n\}$ and edge set $E\subset V\times V$
 - H(x) is the total number of edges going from $\{x = 1\}$ to $\{x = 0\}$.

• Generalization with $d:\{1,\ldots,n\}\times\{1,\ldots,n\}\to\mathbb{R}_+$

$$H(x) = \sum_{j,k} d(k,j)(x_k - x_j)_+$$

- ullet Subsets may be identified with elements of $\{0,1\}^n$
- ullet Given any function H and $\mu \in \mathbb{R}^n$ such that $\mu_{j_1} \geqslant \cdots \geqslant \mu_{j_n}$

- Subsets may be identified with elements of $\{0,1\}^n$
- Given any function H and $\mu \in \mathbb{R}^n$ such that $\mu_{j_1} \geqslant \cdots \geqslant \mu_{j_n}$, define:

$$h(\mu) = \sum_{k=1}^{n} \mu_{j_k} [H(e_{j_1} + \dots + e_{j_k}) - H(e_{j_1} + \dots + e_{j_{k-1}})]$$

- ullet Subsets may be identified with elements of $\{0,1\}^n$
- Given any function H and $\mu \in \mathbb{R}^n$ such that $\mu_{j_1} \geqslant \cdots \geqslant \mu_{j_n}$, define:

$$h(\mu) = \sum_{k=1}^{n} \mu_{j_k} [H(e_{j_1} + \dots + e_{j_k}) - H(e_{j_1} + \dots + e_{j_{k-1}})]$$

- ullet For $H(x) = w^{\top}x$, then $h(\mu) = w^{\top}\mu$
- For cuts, $h(\mu) = \sum_{k,j \in V} d(k,j) |\mu_k \mu_j|$ is the total variation

- Subsets may be identified with elements of $\{0,1\}^n$
- Given any function H and $\mu \in \mathbb{R}^n$ such that $\mu_{j_1} \geqslant \cdots \geqslant \mu_{j_n}$, define:

$$h(\mu) = \sum_{k=1}^{n} \mu_{j_k} [H(e_{j_1} + \dots + e_{j_k}) - H(e_{j_1} + \dots + e_{j_{k-1}})]$$

- ullet For $H(x) = w^{\top}x$, then $h(\mu) = w^{\top}\mu$
- For cuts, $h(\mu) = \sum_{k,j \in V} d(k,j) |\mu_k \mu_j|$ is the total variation
- \bullet For any set-function H (even not submodular)
 - -h is piecewise-linear and positively homogeneous
 - If $x \in \{0,1\}^n$, $h(x) = H(x) \Rightarrow$ extension from $\{0,1\}^n$ to $[0,1]^n$

Submodular set-functions Links with convexity (Lovász, 1982)

- 1. H is submodular if and only if h is convex
- 2. If H is submodular, then

$$\min_{x \in \{0,1\}^n} H(x) = \min_{\mu \in \{0,1\}^n} h(\mu) = \min_{\mu \in [0,1]^n} h(\mu)$$

- 3. If H is submodular, then a subgradient of h at any μ may be computed by the "greedy algorithm"
 - Order the components of $\mu \in \mathbb{R}^n$ as $\mu_{j_1} \geqslant \cdots \geqslant \mu_{j_n}$
 - Define $w_{j_k} = H(e_{j_1} + \dots + e_{j_k}) H(e_{j_1} + \dots + e_{j_{k-1}})$ for all k
 - Moreover $h(\mu) = w^{\top} \mu$

Submodular set-functions Links with convexity (Lovász, 1982)

- 1. H is submodular if and only if h is convex
- 2. If H is submodular, then

$$\min_{x \in \{0,1\}^n} H(x) = \min_{\mu \in \{0,1\}^n} h(\mu) = \min_{\mu \in [0,1]^n} h(\mu)$$

- 3. If H is submodular, then a subgradient of h at any μ may be computed by the "greedy algorithm"
- Consequences
 - Submodular function minimization may be done in polynomial time
 - Ellipsoid algorithm in $O(n^5)$ (Grötschel et al., 1981)

Exact submodular function minimization Combinatorial algorithms

- \bullet Algorithms based on $\min_{\mu \in [0,1]^n} h(\mu)$ and its dual problem
- Output the subset A and a dual certificate of optimality
- Best algorithms have polynomial complexity (Schrijver, 2000; Iwata et al., 2001; Orlin, 2009)
 - Typically $O(n^6)$ or more
- Not practical for large problems...

Submodular function minimization Through convex optimization

Convex non-smooth optimization problem

$$\min_{x \in \{0,1\}^n} H(x) = \min_{\mu \in \{0,1\}^n} h(\mu) = \min_{\mu \in [0,1]^n} h(\mu)$$

- Important properties of h for convex optimization
 - Polyhedral function
 - Known subgradients obtained from greedy algorithm
- Generic algorithms (blind to submodular structure)
 - Some with complexity bounds, some without
 - Subgradient, Frank-Wolfe, simplex, cutting-plane (ACCPM)
 - See Bach (2013)

Outline

1. Submodular set-functions

- Definitions, examples
- Links with convexity through Lovász extension
- Minimization by convex optimization

2. From discrete to continuous domains

- Nonpositive second-order derivatives
- Invariances and examples
- Extensions on product measures through optimal transport

3. Minimization of continuous submodular functions

- Subgradient descent
- Frank-Wolfe optimization

From discrete to continuous domains

• Main insight: $\{0,1\}$ is totally ordered!

From discrete to continuous domains

- Main insight: $\{0,1\}$ is totally ordered!
- Extension to $\{0, ..., k-1\}: H : \{0, ..., k-1\}^n \to \mathbb{R}$

$$\forall x, y, \ H(x) + H(y) \ge H(\min\{x, y\}) + H(\max\{x, y\})$$

– Equivalent definition: with $(e_i)_{i \in \{1,...,n\}}$ canonical basis of \mathbb{R}^n

$$\forall x, i, j, \ H(x + e_i) + H(x + e_j) \ge H(x) + H(x + e_i + e_j)$$

- See Lorentz (1953); Topkis (1978)

From discrete to continuous domains

- Main insight: $\{0,1\}$ is totally ordered!
- Extension to $\{0, ..., k-1\}: H : \{0, ..., k-1\}^n \to \mathbb{R}$

$$\forall x, y, \ H(x) + H(y) \ge H(\min\{x, y\}) + H(\max\{x, y\})$$

- Equivalent definition: with $(e_i)_{i \in \{1,...,n\}}$ canonical basis of \mathbb{R}^n

$$\forall x, i, j, \ H(x + e_i) + H(x + e_j) \ge H(x) + H(x + e_i + e_j)$$

- See Lorentz (1953); Topkis (1978)
- ullet Generalization to all totally ordered sets: $\mathfrak{X}_i\subset\mathbb{R}$

intervals
$$+ H$$
 twice differentiable: $\forall x \in \prod_{i=1}^{n} \mathfrak{X}_i, \quad \frac{\partial^2 H}{\partial x_i \partial x_j}(x) \leqslant 0$

A "new" class of continuous functions

• Assume each $\mathcal{X}_i \subset \mathbb{R}$ is a compact interval, and (for simplicity) H twice differentiable:

Submodularity:
$$\forall x \in \prod_{i=1}^{n} \mathfrak{X}_i, \quad \frac{\partial^2 H}{\partial x_i \partial x_j}(x) \leqslant 0$$

- **Invariance** by
 - individual increasing smooth change of variables $H(\varphi_1(x_1), \ldots, \varphi_n(x_n))$
 - adding arbitrary (smooth) separable functions $\sum_{i=1}^{n} v_i(x_i)$

A "new" class of continuous functions

• Assume each $\mathcal{X}_i \subset \mathbb{R}$ is a compact interval, and (for simplicity) H twice differentiable:

Submodularity:
$$\forall x \in \prod_{i=1}^{n} \mathfrak{X}_{i}, \quad \frac{\partial^{2} H}{\partial x_{i} \partial x_{j}}(x) \leqslant 0$$

• **Invariance** by

- individual increasing smooth change of variables $H(\varphi_1(x_1), \ldots, \varphi_n(x_n))$
- adding arbitrary (smooth) separable functions $\sum_{i=1}^{n} v_i(x_i)$

Examples

- Quadratic functions with Hessians with non-negative off-diagonal entries (Kim and Kojima, 2003)
- $-\varphi(x_i-x_j)$, φ convex; $\varphi(x_1+\cdots+x_n)$, φ concave; $\log \det$, etc...
- Monotone of order two (Carlier, 2003), Spence-Mirrlees condition (Milgrom and Shannon, 1994)

A "new" class of continuous functions

• Level sets of the submodular function $(x_1,x_2)\mapsto \frac{7}{20}(x_1-x_2)^2-e^{-4(x_1-\frac{2}{3})^2}-\frac{3}{5}e^{-4(x_1+\frac{2}{3})^2}-e^{-4(x_2-\frac{2}{3})^2}-e^{-4(x_2+\frac{2}{3})^2}$, with several local minima, local maxima and saddle points

Extensions to the space of product measures

- Set-function: $\mathfrak{X}_i = \{0, 1\}$
 - $-[0,1] \approx \text{set of probability distributions on } \{0,1\}$: $\mu_i = \mathbb{P}(X_i = 1)$
 - Lovász extension: for $\mu \in [0,1]^n$ such that $\mu_{j_1} \geqslant \cdots \geqslant \mu_{j_n}$

$$h(\mu) = \sum_{k=1}^{n} \mu_{j_k} [H(e_{j_1} + \dots + e_{j_k}) - H(e_{j_1} + \dots + e_{j_{k-1}})]$$

$$= (1 - \mu_{j_1}) H(0) + \sum_{k=1}^{n-1} (\mu_{j_k} - \mu_{j_{k+1}}) H(e_{j_1} + \dots + e_{j_k}) + \mu_{j_n} H(1_n)$$

$$= \mathbb{E} [H(1_{\mu \geqslant t})] \text{ for } t \text{ uniform in } [0, 1]$$

Extensions to the space of product measures

- Set-function: $\mathfrak{X}_i = \{0, 1\}$
 - $-[0,1] \approx \text{set of probability distributions on } \{0,1\}$: $\mu_i = \mathbb{P}(X_i = 1)$
 - Lovász extension: for $\mu \in [0,1]^n$ such that $\mu_{j_1} \geqslant \cdots \geqslant \mu_{j_n}$

$$\begin{split} h(\mu) &= \sum_{k=1}^n \mu_{j_k} [H(e_{j_1} + \dots + e_{j_k}) - H(e_{j_1} + \dots + e_{j_{k-1}}\})] \\ &= (1 - \mu_{j_1}) H(0) + \sum_{k=1}^{n-1} (\mu_{j_k} - \mu_{j_{k+1}}) H(e_{j_1} + \dots + e_{j_k}) + \mu_{j_n} H(1_n) \\ &= \mathbb{E} \big[H \big(1_{\mu \geqslant t} \big) \big] \text{ for } t \text{ uniform in } [0, 1] \end{split}$$

- Relaxation on product measures
 - Continuous variable $\mu = (\mu_1, \dots, \mu_n) \in \prod_{i=1}^n [0, 1]$
 - Based on inverse cumulative distribution functions: $[0,1] \to \mathfrak{X}_i$

Extensions to the space of product measures View 1: thresholding cumulative distrib. functions

- Given a probability distribution $\mu_i \in \mathcal{P}(\mathfrak{X}_i)$
 - (reversed) cumulative distribution function $F_{\mu_i}: \mathfrak{X}_i \to [0,1]$ as

$$F_{\mu_i}(x_i) = \mu_i(\{y_i \in \mathcal{X}_i, y_i \ge x_i\}) = \mu_i([x_i, +\infty)) \in [0, 1]$$

- and its "inverse": $F_{\mu_i}^{-1}(t) = \sup\{x_i \in \mathcal{X}_i, F_{\mu_i}(x_i) \geqslant t\} \in \mathcal{X}_i$

Extensions to the space of product measures View 1: thresholding cumulative distrib. functions

- Given a probability distribution $\mu_i \in \mathcal{P}(\mathfrak{X}_i)$
 - (reversed) cumulative distribution function $F_{\mu_i}: \mathfrak{X}_i \to [0,1]$ as

$$F_{\mu_i}(x_i) = \mu_i(\{y_i \in \mathcal{X}_i, y_i \geqslant x_i\}) = \mu_i([x_i, +\infty)) \in [0, 1]$$

- and its "inverse": $F_{\mu_i}^{-1}(t) = \sup\{x_i \in \mathcal{X}_i, F_{\mu_i}(x_i) \geqslant t\} \in \mathcal{X}_i$

Extensions to the space of product measures View 1: thresholding cumulative distrib. functions

- Given a probability distribution $\mu_i \in \mathcal{P}(\mathfrak{X}_i)$
 - (reversed) cumulative distribution function $F_{\mu_i}: \mathfrak{X}_i \to [0,1]$ as

$$F_{\mu_i}(x_i) = \mu_i(\{y_i \in \mathcal{X}_i, y_i \geqslant x_i\}) = \mu_i([x_i, +\infty)) \in [0, 1]$$

- and its "inverse": $F_{\mu_i}^{-1}(t) = \sup\{x_i \in \mathcal{X}_i, F_{\mu_i}(x_i) \geqslant t\} \in \mathcal{X}_i$

"Continuous" extension

$$\forall \mu \in \prod_{i=1}^{n} \mathcal{P}(\mathcal{X}_i), \quad h(\mu_1, \dots, \mu_n) = \int_0^1 H[F_{\mu_1}^{-1}(t), \dots, F_{\mu_n}^{-1}(t)] dt$$

- For finite sets, can be computed by sorting all values of $F_{\mu_i}(x_i)$
- Equal to the Lovász extension for set-functions

Extensions to the space of product measures View 1: thresholding cumulative distrib. functions

"Continuous" extension

$$\forall \mu \in \prod_{i=1}^{n} \mathcal{P}(\mathcal{X}_i), \quad h(\mu_1, \dots, \mu_n) = \int_0^1 H[F_{\mu_1}^{-1}(t), \dots, F_{\mu_n}^{-1}(t)] dt$$

- For finite sets, can be computed by sorting all values of $F_{\mu_i}(x_i)$
- Equal to the Lovász extension for set-functions

Extensions to the space of product measures View 2: convex closure

- ullet Given any function H on $\mathfrak{X}=\prod_{i=1}^n\mathfrak{X}_i$
 - Known value H(x) for any "extreme points" of product measures (i.e., all Diracs δ_x at any $x \in \mathcal{X}$)
 - Convex closure h = largest convex lower bound
 - Minimizing H and its convex closure \tilde{h} is equivalent

Extensions to the space of product measures View 2: convex closure

- ullet Given any function H on $\mathfrak{X}=\prod_{i=1}^n\mathfrak{X}_i$
 - Known value H(x) for any "extreme points" of product measures (i.e., all Diracs δ_x at any $x \in \mathcal{X}$)
 - Convex closure h = largest convex lower bound
 - Minimizing H and its convex closure \tilde{h} is equivalent
- Need to compute the bi-conjugate of

 $a: \mu \mapsto H(x)$ if $\mu = \delta_x$ for some $x \in \mathcal{X}$, and $+\infty$ otherwise

Computation of the convex envelope

Need to compute the bi-conjugate of

 $a: \mu \mapsto H(x)$ if $\mu = \delta_x$ for some $x \in \mathcal{X}$, and $+\infty$ otherwise

• Step 1: compute $a^*(w) = \sup_{\mu} \langle \mu, w \rangle - a(\mu)$ for $w \in \prod_{i=1}^n \mathbb{R}^{\chi_i}$

$$a^*(w) = \sup_{x \in \mathcal{X}} \sum_{i=1}^n w_i(x_i) - H(x) = \sup_{\gamma \in \mathcal{P}(\mathcal{X})} \sum_{x \in \mathcal{X}} \gamma(x) \left\{ \sum_{i=1}^n w_i(x_i) - H(x) \right\}$$
$$= \sup_{\gamma \in \mathcal{P}(\mathcal{X})} \left\{ \sum_{i=1}^n \sum_{x_i \in \mathcal{X}_i} w_i(x_i) \gamma_i(x_i) - \sum_{x \in \mathcal{X}} \gamma(x) H(x) \right\}$$

– with $\gamma_i(x_i) = \sum_{x_j, j \neq i} \gamma(x_1, \dots, x_n)$ the i-th marginal of γ

Computation of the convex envelope

• Step 1:
$$a^*(w) = \sup_{\gamma \in \mathcal{P}(\mathcal{X})} \left\{ \sum_{i=1}^n \sum_{x_i \in \mathcal{X}_i} w_i(x_i) \gamma_i(x_i) - \sum_{x \in \mathcal{X}} \gamma(x) H(x) \right\}$$

• Step 2: compute $a^{**}(\mu) = \sup_{w} \langle w, \mu \rangle - a^*(w)$ for $\mu \in \prod_{i=1}^n \mathcal{P}(\mathfrak{X}_i)$

$$a^{**}(\mu) = \sup_{w} \langle w, \mu \rangle - \sup_{\gamma \in \mathcal{P}(\mathcal{X})} \left\{ \sum_{i=1}^{n} \sum_{x_i \in \mathcal{X}_i} w_i(x_i) \gamma_i(x_i) - \sum_{x \in \mathcal{X}} \gamma(x) H(x) \right\}$$
$$= \inf_{\gamma \in \mathcal{P}(\mathcal{X})} \sup_{w} \sum_{i=1}^{n} \sum_{x_i \in \mathcal{X}_i} w_i(x_i) \left(\mu_i(x_i) - \gamma_i(x_i) \right) + \sum_{x \in \mathcal{X}} \gamma(x) H(x)$$

• Thus $a^{**}(\mu) = \inf_{\gamma \in \mathcal{P}(\mathfrak{X})} \int_{\mathfrak{X}} H(x) d\gamma(x)$ such that $\forall i, \ \gamma_i(x_i) = \mu_i(x_i)$

Extensions to the space of product measures View 2: convex closure

- ullet Given any function H on $\mathfrak{X}=\prod_{i=1}^n\mathfrak{X}_i$
 - Known value H(x) for any "extreme points" of product measures (i.e., all Diracs δ_x at any $x \in \mathcal{X}$)
 - Convex closure h = largest convex lower bound
 - Minimizing H and its convex closure \tilde{h} is equivalent
- "Closed-form" formulation: $\tilde{h}(\mu_1, \dots, \mu_n) = \inf_{\gamma \in \mathcal{P}(\mathcal{X})} \int_{\mathcal{X}} H(x) d\gamma(x),$
 - with respect to all prob. measures γ on \mathfrak{X} such that $\gamma_i(x_i) = \mu_i(x_i)$
 - Multi-marginal optimal transport

Extensions to the space of product measuresCombining the two views

- View 1: thresholding cumulative distribution functions
 - + closed form computation for any H, always an extension
 - not convex
- View 2: convex closure
 - + convex for any H, allows minimization of H
 - not computable, may not be an extension

Extensions to the space of product measuresCombining the two views

• View 1: thresholding cumulative distribution functions

- + closed form computation for any H, always an extension
- not convex

View 2: convex closure

- + convex for any H, allows minimization of H
- not computable, may not be an extension

Submodularity

- The two views are equivalent
- Direct proof through optimal transport
- All results from submodular set-functions go through

Kantorovich optimal transport in one dimension

• Theorem (Carlier, 2003): If H is submodular, then

$$\inf_{\gamma \in \mathcal{P}(\mathcal{X})} \int_{\mathcal{X}} H(x) d\gamma(x) \text{ such that } \forall i, \gamma_i = \mu_i$$

is equal to
$$\int_0^1 H[F_{\mu_1}^{-1}(t), \dots, F_{\mu_n}^{-1}(t)] dt$$

Kantorovich optimal transport in one dimension

• **Theorem** (Carlier, 2003): If H is submodular, then

$$\inf_{\gamma \in \mathcal{P}(\mathcal{X})} \int_{\mathcal{X}} H(x) d\gamma(x) \text{ such that } \forall i, \gamma_i = \mu_i$$

is equal to
$$\int_0^1 H[F_{\mu_1}^{-1}(t), \dots, F_{\mu_n}^{-1}(t)] dt$$

- Proof/intuition for n=2 for the Monge problem
- (a) Assume for simplicity atomless measures
- (b) The following increasing map is natural $F_{\mu_2}^{-1} \circ F_{\mu_1} : \mathfrak{X}_1 \to \mathfrak{X}_2$
- (c) This is the only increasing map
- (d) Transport maps always increasing when H submodular
 - If $x_1 < x_1'$ mapped to $x_2 > x_2'$, then exchanging x_2 and x_2' would increase the cost by $c(x_1, x_2') + c(x_1', x_2) c(x_1, x_2) c(x_1', x_2') \le 0$

Duality - Subgradients of extension

General duality

$$h(\mu) = \sup_{w} \sum_{i=1}^{n} \sum_{x_i \in \mathcal{X}_i} w_i(x_i) \mu_i(x_i) - \sup_{x \in \mathcal{X}} \left\{ \sum_{i=1}^{n} w_i(x_i) - H(x) \right\}$$

- Subgradients from "greedy algorithm"
 - Sort all values of $F_{\mu_i}(x_i)$ for $i \in \{1, \dots, n\}$ and $x_i \in \mathcal{X}_i$
 - Get a subgradient w by taking differences of values of H
 - See Bach (2015) for more details

Submodular functions Links with convexity (Bach, 2015)

- 1. H is submodular if and only if h is convex
- 2. If H is submodular, then

$$\min_{x \in \prod_{i=1}^{n} \mathcal{X}_i} H(x) = \min_{\mu \in \prod_{i=1}^{n} \mathcal{P}(\mathcal{X}_i)} h(\mu)$$

3. If H is submodular, then a subgradient of h at any μ may be computed by a "greedy algorithm"

Outline

1. Submodular set-functions

- Definitions, examples
- Links with convexity through Lovász extension
- Minimization by convex optimization

2. From discrete to continuous domains

- Nonpositive second-order derivatives
- Invariances and examples
- Extensions on product measures through optimal transport

3. Minimization of continuous submodular functions

- Subgradient descent
- Frank-Wolfe optimization

Minimization of submodular functions Projected subgradient descent

- For simplicity: discretizing all sets X_i , i = 1, ..., n to k elements
- Assume Lispschitz-continuity: $\forall x, e_i, |H(x + e_i) H(x)| \leq B$
 - Fact: subgradients of h bounded by B in ℓ_{∞} -norm
- Projected subgradient descent
 - Convergence rate of $O(nkB/\sqrt{t})$ after t iterations
 - Cost of each iteration $O(nk \log(nk))$
 - Reasonable scaling with respect to discretization

$$O\left(\frac{n^3}{\varepsilon^3}\right)$$
 for continuous domains

Minimization of submodular functions Frank-Wolfe / conditional gradient

- Submodular set-functions: $\mathfrak{X}_i = \{0, 1\}$
 - (C) : $\min_{\mu \in [0,1]^n} h(\mu)$ non-smooth convex
 - Solve instead (S) : $\min_{\mu \in \mathbb{R}^n} h(\mu) + \frac{1}{2} ||\mu||^2$ (strongly convex)
 - Fact: level sets of (S) obtained from minimizers of $H(x) + \lambda x^{\top} 1_n$

Minimization of submodular functions Frank-Wolfe / conditional gradient

- Submodular set-functions: $X_i = \{0, 1\}$
 - (C): $\min_{\mu \in [0,1]^n} h(\mu)$ non-smooth convex
 - Solve instead (S) : $\min_{\mu \in \mathbb{R}^n} h(\mu) + \frac{1}{2} ||\mu||^2$ (strongly convex)
 - Fact: level sets of (S) obtained from minimizers of $H(x) + \lambda x^{\top} 1_n$

Extension to all submodular functions

- $(C) : \min_{\mu \in \prod_{i=1}^n \mathcal{P}(\mathcal{X}_i)} h(\mu)$
- Solve instead (S): $\min_{\mu \in \prod_{i=1}^n \mathcal{P}(\mathcal{X}_i)} f(\mu) + \sum_{i=1}^n \varphi_i(\mu_i)$
- $\varphi(\mu_i)$ defined through optimal transport with a submodular cost $c_i(x_i,t)$ between μ_i and the uniform distribution on [0,1]
- $-\varphi(\mu_i)$ can be strongly convex
- Level sets of (S) obtained from minimizers of $H(x) + \sum_{i=1}^{n} c_i(x_i, t)$

Empirical simulations

• Signal processing example: $H:[-1,1]^n \to \mathbb{R}$ with $\alpha < 1$

$$H(x) = \frac{1}{2} \sum_{i=1}^{n} (x_i - z_i)^2 + \lambda \sum_{i=1}^{n} |x_i|^{\alpha} + \mu \sum_{i=1}^{n-1} (x_i - x_{i+1})^2$$

Empirical simulations

• Signal processing example: $H:[-1,1]^n \to \mathbb{R}$ with $\alpha < 1$

$$H(x) = \frac{1}{2} \sum_{i=1}^{n} (x_i - z_i)^2 + \lambda \sum_{i=1}^{n} |x_i|^{\alpha} + \mu \sum_{i=1}^{n-1} (x_i - x_{i+1})^2$$

Conclusion

• Submodular function and convex optimization

- From discrete to continuous domains
- Extensions to product measures
- Direct link with one-dimensional multi-marginal optimal transport

Conclusion

Submodular function and convex optimization

- From discrete to continuous domains
- Extensions to product measures
- Direct link with one-dimensional multi-marginal optimal transport

On-going work

- Optimal transport beyond submodular functions
- Beyond discretization
- Beyond minimization
- Sums of submodular functions and convex functions

References

- F. Bach. Learning with Submodular Functions: A Convex Optimization Perspective. Technical Report 00645271, HAL, 2013.
- F. Bach. Submodular functions: from discrete to continous domains. Technical Report 1511.00394-v2, HAL, 2015.
- G. Carlier. On a class of multidimensional optimal transportation problems. *Journal of Convex Analysis*, 10(2):517–530, 2003.
- A. Chambolle. Total variation minimization and a class of binary MRF models. In *Energy Minimization Methods in Computer Vision and Pattern Recognition*, pages 136–152. Springer, 2005.
- G. Choquet. Theory of capacities. Ann. Inst. Fourier, 5:131-295, 1954.
- S. Fujishige. Submodular Functions and Optimization. Elsevier, 2005.
- M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in combinatorial optimization. *Combinatorica*, 1(2):169–197, 1981.
- S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial algorithm for minimizing submodular functions. *Journal of the ACM*, 48(4):761–777, 2001.
- Sunyoung Kim and Masakazu Kojima. Exact solutions of some nonconvex quadratic optimization problems via sdp and socp relaxations. *Computational Optimization and Applications*, 26(2): 143–154, 2003.
- A. Krause and C. Guestrin. Near-optimal nonmyopic value of information in graphical models. In *Proc. UAI*, 2005.

- G. G. Lorentz. An inequality for rearrangements. *American Mathematical Monthly*, 60(3):176–179, 1953.
- L. Lovász. Submodular functions and convexity. *Mathematical programming: The state of the art, Bonn*, pages 235–257, 1982.
- P. Milgrom and C. Shannon. Monotone comparative statics. *Econometrica: Journal of the Econometric Society*, pages 157–180, 1994.
- J.B. Orlin. A faster strongly polynomial time algorithm for submodular function minimization. *Mathematical Programming*, 118(2):237–251, 2009.
- A. Schrijver. A combinatorial algorithm minimizing submodular functions in strongly polynomial time. Journal of Combinatorial Theory, Series B, 80(2):346–355, 2000.
- M. Seeger. On the submodularity of linear experimental design, 2009. http://lapmal.epfl.ch/papers/subm_lindesign.pdf.
- D. M. Topkis. Minimizing a submodular function on a lattice. *Operations research*, 26(2):305–321, 1978.