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Interpolations in P(X)

° X: Riemannian manifold  (state space)
@ P(X): set of all probability measures on X
® po, 1 € P(X)

@ interpolate between g and g



Interpolations in P(X)

@ Standard affine interpolation between 1 and w1
= (1 — t)po + tug € P(X), 0<t <1
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Interpolations in P(X)

Affine interpolations require mass transference with infinite speed

@ Denial of the geometry of X

@ We need interpolations built upon trans-portation, not tele-portation



Interpolations in P(X)

@ We seek interpolations of this type
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Curvature

@ geodesics and curvature are intimately linked

@ several geodesics give information on the curvature




Displacement interpolation
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Displacement interpolation

Respect geometry
@ we have already used geodesics

@ how to choose y = T(x) such that interpolations encrypt curvature
as best as possible?

@ no shock

@ perform optimal transport

Monge's problem
[y d?(x, T(x)) po(dx) — min; T: Typo =

@ d: Riemannian distance



Lazy gas experiment

t=0 0<t<1 t=1

Positive curvature



Lazy gas experiment
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Negative curvature



Curvature and displacement interpolations

Relative entropy
H(p|r) := [ log(dp/dr) dp, p, r : probability measures

Convexity of the entropy along displacement interpolations
The following assertions are equivalent
@ Ric> K
o along any [, j1]™ = (e)ocecr, < H(uelvol) > KW2(jio, 1)

@ von Renesse-Sturm (04)
o W, is the Wasserstein distance
@ starting point of the Lott-Sturm-Villani theory



Schrodinger's thought experiment

Consider a huge collection of non-interacting identical Brownian particles.
If the density profile of the system at time t = 0 is approximately
o € P(R3), you expect it to evolve along the heat flow:

{ vy =1get®/2 0<t<1
Vo = Mo
where A is the Laplace operator.

Suppose that you observe the density profile of the system at time t = 1
to be approximately u; € P(R3) with yy different from the expected v.
Probability of this rare event ~ exp(—CNavogadro)-

Schrodinger’s question (1931)

Conditionally on this very rare event, what is the most likely path
(e)o<t<1 € P(R3)O of the evolving profile of the particle system?




Schrodinger’s problem

e X : Riemannian manifold
o Q := {paths} c x[o1
e Pe P(Q) and (Pt)ogtgl € P(X)[O’l]

@ ReP(2) : Wiener measure (Brownian motion)

Schrodinger’s problem

H(P|R) — min; P € P(Q): Py = o, P1 =111 (den)J

o, 11 € P(X) are the initial and final prescribed profiles

Definition. R-entropic interpolation J

[0, 111]7 := (Pt)o<t<1 with P the unique solution of (Sayn)-

It is the answer to Schrodinger's question



Lazy gas experiments

o Lazy gas experiment at zero temperature (Monge)
» Zero temperature
» Displacement interpolations
» Optimal transport

@ Lazy gas experiment at positive temperature (Schrodinger)

» Positive temperature
» Entropic interpolations
» Minimal entropy



Lazy gas experiments

t=0 0<t<l t=1

Negative curvature
Zero temperature



Lazy gas experiments

Negative curvature
Positive temperature



Cooling down

Aim

Drifting from Schrodinger problem to an optimal transport problem

To decrease temperature:
@ slow down the particles of the heat bath

@ more generally, decrease fluctuations

Slowed down reference measures

(Bt)t20 . Brownian motion on the Riemannian manifold X
R: law of (Bt)o<t<1
R%: law of (By/k)o<t<1

k — 00




Cooling down

k=1:
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Cooling down

o N—oo, k=1:
the whole particle system performs a rare event to travel from g to
M1
» cooperative behavior
» Gibbs conditioning principle (thermodynamical limit: N — o0)

o N=1, k—o0:
each individual particle faces a hard task and must travel along an
approximate geodesic

» individual behavior
» large deviation principle (cooling down limit: k — oc0)

Cooling down principle

The cooled down sequence (R¥)x>1 encodes some geometry

o N— oo, k—o00: these two behaviors superpose



Results

Results 1
@ displacement interpolations feel curvature

@ entropic interpolations also feel curvature

Results 2
@ entropic interpolations converge to displacement interpolations

@ entropic interpolations regularize displacement interpolations

@ [-convergence



Results

Results 2 (continued)

The same kind of results hold in other settings
(a) discrete graphs

(b) Finsler manifolds

(c) interpolations with varying mass

(a) graphs: random walk
(b) Finsler:  jump process in a manifold, (work in progress)

(c) varying mass: branching process, (work in progress)



Results

Results 3

Schrodinger’s problem is an analogue of Hamilton's least action principle.
It allows for dynamical theories of

o diffusion processes

@ random walks on graphs

@ stochastic Newton equation

@ acceleration is related to curvature



Remainder of the talk

Let us give some details about Results 2:

@ entropic interpolations converge to displacement interpolations




Notation

X = {states}

Q = {paths} ¢ XU & = (wr)o<i<1 €Q
Xe:weQr—weX, 0<t<1 (canonical process)
P e P(Q)

P(dz) := [(X¢)xP](dz) = P(X; € dz) € P(X)



Particle system

o Q = {paths} c x01

e ReP(Q): reference Markov measure

o R*" =R(-|Xo=x), xeX

° (Zi)lgigN € Q‘N, independent dynamical particles
Law(Z)=R¥, 1<i<N

o N —

Assume that

L = § Xikian b 2o €P(X),  (t=0)

Empirical measures

2= ==

Zl<l<N dzi € P(Q2)
oA <:<N52’ eP(X), 0<t<1




Schrodinger’s problem

Law of large numbers
o LN(dw) N Rt (dw) = [, R*(dw) po(dx) € P(Q)

o (L )o<e<1 N (RM9<ic1 € P(X)0OA

o Li(dy) = Ri°(dy) €P(X)

Schrodinger's question (1931)
o N large
o suppose that you observe: LY ~ pq, u3 # RI®  (t =1, rare event)

@ question: ‘“conditionally on this rare event,
what is the most likely path (LN )o<;<1?"




Schrodinger’s problem

@ Sanov’s theorem:

Pr(LN € A) = (—/v inf HPR) A Q
(LT eA) = exp et HPIR)), ACP)

Relative entropy

H(plr) := [ log(dp/dr) dp € [0, ]

o Pr(tNe ALY ~py) =
N—roc0

=P ( B N{ PEA,POEJO,HZM HPIR) - Po:ulorj'f’l:m H(P‘R)})



Schrodinger’s problem

@ answer to Schrodinger’s question:
the most likely path is close to the
time-marginal flow (P:)o<¢<1 of the unique solution P of

Dynamical Schrodinger problem
H(P|R) — min; PeP(Q): Py= o, Pr =111 ET J

o H. Follmer

Definition (entropic interpolation)
Let P be the solution of (Sqyn). Then,
Mt = Pt7 0 S t S 1
is the R-entropic interpolation between 1o and py in P(X).




Schrodinger’s problem

) P01 = (Xo,Xl)#P S P(X2)
@ PY=P(-| Xo=x,X1 =y) € P(Q) : bridge
) P() = fXQ ny(') P01(dxdy) € P(Q)

Result
If it exists, the unique solution P of (Sqyy) satisfies
o PY =RY, Vxy
o P(:) = [y R¥Y(:) m(dxdy)
where Py; = m € P(X?) is the unique solution of (S) below
e inf(S) = H(P|R) = H(Po1|Ro1)

Schrodinger’s problem

H(7|Ro1) — min; 7 € P(X?): mo = o, 71 = i1 (S)

) H(P|R) = H(P01|R01) + fX2 H(ny’RXy) P01(dxdy)



Schrodinger’s problem

Result

Assume: R is m-stationary Markov,

m®m<K Ryp < m@m, H(uglm), H(ui|m) < oo, ...
Then, (Sqyn) and (S) admit a solution.

@ long history: Schrodinger, Bernstein, Fortet, Beurling, Csiszar,

@ and also:

Riischendorf & Thomsen, Follmer & Gantert, L.

Jamison, Zambrini, Dai Pra, Wakolbinger, Pavon,
Mikami, Reelly, Thieullen, ...



Cooling down (Brownian case)

suppose that in addition the heat bath is pretty cold
cooling down is (mostly) slowing down the particles

e R= LaW((Bt)ogtgl), Rk = LaW((kalt)ogtgl), k — o0
H(P|R*)/k — min; PeP(Q): Py= o, Pr =1 (Séyn)J
H(w|Ry)/k — min; 7€ P(X?2): m = po, 71 = 1 (S9) J

dXt = dBt, R-a.s.

dX; = \/1/k dB:, Rk-as.
RY (dxdy) = (2 /k)~94/2 exp(—K|y — x|?/2) dxdy
with P¥ solution of (S§ )

| | 1
inf(SK,,,) = inf(S¥) = /XQ Sl = xI2 Pl (dxdy) + 0 oe(1)

this suggests that

“Nimgsoo(SK) = (MK»)" |




Cooling down (Brownian case)

Cooled down Schrodinger problem

H(r|R§)/k — min; 7 € P(X?): mo = po, 71 = 1 ()

v

Monge-Kantorovich problem

1 :
/X2 §|y — xP?n(dxdy) — min; 7€ P(X?):mo=po,m1 =p1 (MK3)

v

Theorem
o I-limk_(SK) = (MKy)
4 Iimk_wo inf(Sk) = inf(MKg) = W22(,u0,u1)/2

o “limy_ ook =7": solution of (MK3)

Mikami (2004), L. (2012)



Cooling down (Brownian case)

Cooling particles down brings geometry (Brownian case)

limy_yoo REX = dyv, ¥ : constant speed geodesic

e k=1:
y
t=0 =1
e k=10
y
x e
o k=00



Cooling down (Brownian case)

Convergence schema

Pk(dw) = [, R*Y(dw) w*(dxdy)
\ 1 1
P(dw) = [y2 Oypo(dw) 7(dxdy)

Entropic interpolations converge to displacement interpolations

ph(dz) = [y REY(dz) 7(dxdy), 0<t<1

) ! !
pe(dz) = [y Op(dz) m(dxdy), 0<t<1

McCann's displacement interpolation

[110, 1] PP := (pe)o<e<i




Displacement interpolation
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Displacement interpolation
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Doubly indexed large deviation principle

o choose (R¥),>1 such that it satisfies some LDP

LDP for (Rk)k21
@ Rkx k;xoo exp(—ak[C + L{XO:X}])a Vx

@ ap — o0, C:Q — [0,00], coercive
e {C =0} is the limiting support of “all geodesics”

Example (slow Brownian motion)

ak =k, C(w)= [ 3laxfdt, limyosoo REY =8




['-convergence

Dynamical cooled down Schrodinger problem

H(P|R¥)/ax — min; P € P(Q): Po = o, P1 = pi¥ (Ssyn)

v

Dynamical Monge-Kantorovich problem

EpC — min; P e P(Q) : Py = po, P1 = 111 (MKdyn)

v

Theorem

@ there exists u’f — p1  such that  T- Iimk_m(Sgyn) = (MKayn)
limg o0 inf(Sgyn) = inf(MKayn)
“limk_s0o PX = P " solution of (MKgyn)




['-convergence

o if PK— P we get the following schema

Convergence schema

Pk(dw) = fX2 Rk (dw)  mk(dxdy)

J 4 4
P(dw) = [ G¥(dw) m(dxdy)

Entropic interpolations converge to displacement interpolation

ph(dz) = [y REY(dz) 7n(dxdy), 0<t<1
! ! !
pe(dz) = [po GY(dz) m(dxdy), 0<t<1

Definition (displacement interpolation)

[0, 111] P := (pe)o<e<a




[2-type displacement interpolations on a vector space

o X =R"
[kt

o R ZIM=x+ kD V; (V)1 iid.  EV =0
j=1

Mogulskii's theorem

C(w) = fy Ly(we) dt

o Ly(v)=sup,{p-v—Hy(p)}; Hv(p)=logEexp(p-V)
o Ly(v) = Ovo(lvI?)

Contraction principle

c(x,y) =inf{C(w);w € Q:wyo=x,w1 =y}

o c(x,y)=Lv(y —x)



Interpolations on a discrete graph

e metric graph (X, ~, d)

x ~ y means that (x,y) is an edge

@ length Uw) = Zogtgl l{wt_ 2oy d(We— wt)
e intrinsic distance d(x,y) = inf {{(w) 1w € Qwp = x,w1 = y}



Interpolations on a discrete graph

@ to recover d:

» slow down the walk
» conditionatt=0and t=1

o reference walk: R € P(2) with jump kernel
JX(dy) = Zy:ywx JX(y) 6}/

Lazy random walks R*

J(dy)= D Kk ? (v) 4,

yy~x




Interpolations on a discrete graph

Geodesics

M :={we Quwy=x,w1 =y, l(w) =d(x,y)}
[ = Uxy 1

Convergence of bridges

lim RKY = G € P(IY)

k—o0

o G := lrefolJXt(X)dt R

Convergence of the interpolations
ax=logk, C=¢ c=d

o limy o0 inf(S¥) = Wi (uo, 1)



[1-type interpolations on a diffuse length space

e (X,d): diffuse metric space

Definition (diffuse metric space)

(X, d) is diffuse if there exists a Borel measure m on X’ such that
e sup, m(Bl) < oo
e m(BY) >0, Vxe X, Ve>0

e B :={ye X :d(x,y)<e}



[1-type interpolations on a diffuse length space

Reference processes
® R« Ji(dy) = 1gi(y) m(dy)
o RK & JK(dy) = e_llsl/k(y) m(dy)

o S¢:=B\ B

Convergence of the entropic interpolations
ax = k, C = length, c=d

o H(P|R¥) = H(P|R) — Eplog(dR*/dR)

o —log(dR¥/dR)/k = #{t : Xo- # Xe}/k + Oxso(1/K)
= length(X) + Ok—00(1/k) O

@ work in progress with Luca Tamanini
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