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Motivation: thin film CIGS solar cell production

Collaboration with IRDEP
(Institut de Recherche et
Développement sur l’Energie
Photovoltäıque, EDF, CNRS,
Chimie Paristech).

Optimal control of the production
process of thin film CIGS
(Copper, Indium, Gallium,
Selenium) solar cell devices
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Typical composition of a CIGS solar cell

Figure: Typical composition of a thin film CIGS solar cell device
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Production process: Chemical Vapor Decomposition

(CVD)
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Production process: Chemical Vapor Decomposition

(CVD)

Figure: CIS unit cell
Figure: Chemical Vapor Deposition

process
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Simplified 1d model (1)

Let us denote by A := {Cu, In,Ga, Se,Mo} the set of the different atomic species
involved in the process.

The production process lasts during a time T > 0. The aim is to control the
fluxes of the different atomic species (φA(t))A∈A,0≤t≤T in order to obtain a
desired thickness of the cell eopt(T ) and desired profile of concentrations
(coptA (x))A∈A, 0≤x≤eopt(T ) at time t = T .

0 ≤ x ≤ e(t)

φSe(t)φCu(t) φIn(t) φGa(t)

cCu(x , t) cIn(x , t)
cGa(x , t) cSe(x , t)

cMo(x , t)
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Simplified 1d model (2)

At time t ∈ (0,T ), e(t) denotes the thickness of the cell, and for all 0 ≤ x ≤ e(t),
cA(x , t) denotes the local concentration of entity A at time t and depth x .

Time t = 0: e(0) = e0 > 0, cA(x , 0) = c0A(x), ∀0 ≤ x ≤ e0, ∀A ∈ A.

We also assume that for all 0 ≤ x ≤ e0, c
0
A(x) ≥ 0 and

∑

A∈A

c
0
A(x) = 1.

Evolution of the thickness of the solid: e
′(t) =

∑

A∈A

φA(t), ∀t ∈ (0,T )

Cross-diffusion of the different species in the solid:

∂tcA = divx





∑

B∈A, B 6=A

kAB(cB∂xcA − cA∂xcB)



 , ∀(t, x) ∈ (0,T )× (0, e(t))

Boundary conditions:

FA(x , t) :=
∑

B∈A, B 6=A

kAB(cB(x , t)∂xcA(x , t)− cA(x , t)∂xcB(x , t)).

FA(0, t) = 0, FA(e(t), t) + e
′(t)cA(e(t), t) = φA(t), ∀t ∈ (0,T ).

V.Ehrlacher (CERMICS) Control solar cell
MOKAPLAN, CEREMADE, February 2015 7 /

13



Properties of the model

The diffusion equations are derived from a lattice-based hopping model, leading to
a cross-diffusion system for n = |A| species, incorporating volume-filling effects.

It follows from this model that

∀(t, x) ∈ (0,T )× (0, e(t)), cA(t, x) ≥ 0 and
∑

A∈A

cA(t, x) = 1. (1)

Besides, we have the following mass conservation property (due to the choice of
boundary conditions):

∂t

(

∫ e(t)

0

cA(x , t) dx

)

= φA(t). (2)

Remark: In the case when all the diffusion coefficients kAB are identical and
equal to k , the system can be equivalently rewritten as

∂tcA(x , t) = k∆xcA(x , t), ∀(t, x) ∈ (0,T )× (0, e(t)).
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Questions

Theoretical questions:

Well-posedness of the model? (existence, uniqueness...)
In the case when φA(t) = 0, this model was derived and studied for particular
values of the diffusion constants kAB in [Burger, Di Francesco, Pietschmann, Schlake

(2010)].

Numerical questions:

How to design a stable algorithm such that (1) and (2) are satisfied at the
discrete level?

V.Ehrlacher (CERMICS) Control solar cell
MOKAPLAN, CEREMADE, February 2015 9 /

13



With zero fluxes (φA(t) = 0, e(t) = e0): gradient flow

structure

Without fluxes, this system has a gradient flow structure [Jordan, Kinderlehrer, Otto,

1998], [Zinsl, Matthes, 2014], [Mielke, Liero, 2013], [Jungel, 2014], [Daneri, Savaré, 2010] , in the sense
that it can be rewritten as

∂tC = divx [M(C )∂x∇E(C )] , C (t, x) = (cA(t, x))A∈A

where

C :

{

(0,T )× (0, e0) → S

(t, x) 7→ (cA(t, x))A∈A
, with

S := {C = (cA)A∈A ∈ R
|A|
+ |

∑

A∈A cA = 1}, is the set of profile
concentrations;

E :

{

S → R

C 7→ E(C ) :=
∑

A∈A cA(ln cA − 1)
is the driving entropy

functional of the system;

M :

{

S → R
|A|×|A|

C 7→ (MAB(C ))A,B∈A

is the mobility tensor defined by

∀A 6= B ∈ A, MAA(C ) :=
∑

A′∈A, A6=A′

kAA′cAcA′ and MAB(C ) := −kABcAcB .
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Optimal transport formulation: distance generated by a

mobility matrix

[Benamou, Brenier, 2000], [Zinsl, Matthes, 2014]

Optimal transport metric associated to a moblity matrix for nonlinear
cross-diffusion systems: For C0,C1 : (0, e0) → S ,

WM(C0,C1)
2 = inf

{
∫ 1

0

∫ e0

0

W
T
M(C )−1

W dx dt, (C ,W ) ∈ C1(0,T ;C0,C1)

}

,

where

C1(0,T ;C0,C1) :=

{

C ,W : (0,T )× (0, e0) → R |
C (0) = C0, C (1) = C1,

∂tC + ∂xW = 0

}

.

For some diffusion equations (linear mobility matrix), this distance can be
reinterpreted in terms of the standard Wasserstein distance.
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Numerical scheme: de Giorgi’s minimizing movement

method

Without fluxes: Minimizing movement method [Jordan, Kinderlehrer, Otto, 1998], [Daneri,

Savaré, 2010] for the numerical resolution of the system:
Let τ > 0 be a time step.

Cn+1 ∈ inf
C = (cA)A∈A : (0, e0) → S ,

∀A ∈ A,
∫ e0

0
cA(x) dx =

∫ e0

0
c0A(x) dx

E(C ) +
1

2τ
WM(Cn,C )2.

Possible advantages:

implicit scheme, hopefully stable;

mass and volume constraints satisfied exactly at each iteration;

using a regularized entropic distance? [Benamou, Carlier, Cuturi, Nenna, Peyré, 2014]

With fluxes, use of a splitting scheme (minimizing movement method for the
diffusion step, explicit scheme to treat the fluxes).
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