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Abstract. We introduce and study a multi-marginal optimal partial
transport problem. Under a natural and sharp condition on the dom-
inating marginals, we establish uniqueness of the optimal plan. Our
strategy of proof establishes and exploits a connection with another
novel problem, which we call the Monge-Kantorovich partial barycenter
problem (with quadratic cost). This latter problem has a natural inter-
pretation as a variant of the mines and factories description of optimal
transport. We then turn our attention to various analytic properties of
these two problems. Of particular interest, we show that monotonicity
of the active marginals can fail, a surprising difference from the two
marginal case.

1. Introduction

Throughout this paper, whenever we write “measure” it will tacitly be
assumed that we are referring to a positive, Borel measure on the relevant
space in question. In all but the last section, we also assume a measure µ,
when it is defined on Rn, has finite second moment; i.e. that

∫
Rn |x|2µ(dx) <

∞. Also, “absolutely continuous”, “a.e.”, “null set”, and “zero measure”
without any further qualifiers will always be with respect to the Lebesgue
measure. Finally, for any measure µ, we will write

M (µ) := µ(X),

where X is the entire space that µ is defined on.
Recall the classical optimal transport problem with quadratic cost: let µ

and ν be measures on Rn satisfying the mass constraint M (µ) =M (ν) <
∞, and write Π (µ, ν) for the collection of all measures on Rn × Rn whose
left and right marginals equal µ and ν , respectively. Then a solution of the
optimal transport problem (with quadratic cost) is a measure γ ∈ Π (µ, ν)
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achieving the minimum value in

MK2
2 (µ, ν) := min

γ′∈Π(µ,ν )

∫
Rn×Rn

|x− y|2γ′(dx, dy). (OT)

We will denote the collection of solutions to (OT) above as Opt (µ, ν). Ex-
istence of an optimizer is not difficult to show; a famous theorem of Brenier
implies that if the first measure is absolutely continuous, and both measures
have finite second moments, the solution is unique and is in fact concen-
trated on the graph {(x, T (x))} of a function over the first variable [2, 3].
This result has been extended to a wide class of other costs (see, for example,
[11, 12, 5]).

We will be concerned here with two natural extensions of (OT) above.
The first is the optimal partial transport problem: let µ and ν be mea-
sures on Rn each with finite total mass (not necessarily equal), fix any
0 ≤ m ≤ min {M (µ) , M (ν)}, and write Π≤ (µ, ν) for the collection of
all measures on Rn×Rn whose left and right marginals are dominated by µ
and ν respectively, that is, (π1)#γ (E) ≤ µ (E) and (π2)#γ (E) ≤ ν (E) for
any measurable set E, where πj denotes projection onto the jth coordinate
(for ease of notation we will simply write µ≤ ≤ µ to indicate that µ≤ is

dominated by µ). Then a solution of the optimal partial transport problem
(again with quadratic cost) is a measure γ ∈ Π≤ (µ, ν) with M (γ) = m
achieving the minimum value in

MK2
2,m (µ, ν) := min

γ′∈Π≤(µ,ν ), M(γ′)=m

∫
Rn×Rn

|x− y|2γ′(dx, dy). (OTm)

We will denote the collection of solutions to (OTm) above as Optm (µ, ν).
Again, existence of an optimal measure can be established in a straightfor-
ward way. Uniqueness is much more involved; however, when the supports
of the two measures are separated by a hyperplane, Caffarelli and McCann
established a uniqueness result (in addition to several properties of the min-
imizer, see [6]). This assumption on the measures was weakened by Figalli
in [10]; he assumed only that the pointwise minimum of the two measures
has total mass not greater than m. This is easily seen to be a sharp condition
for uniqueness; if it fails, then for any measure µ≤ with mass m satisfying

both µ≤ ≤ µ and µ≤ ≤ ν , the diagonal coupling (Id× Id)# µ≤ is clearly
optimal. In addition, Figalli extended his results to a larger class of cost
functions.

On the other hand, one can also consider the multi-marginal optimal
transport problem: let µj for j = 1, . . . , N be measures on Rn all with equal,
finite mass, and write Π (µ1, . . . , µN ) for the collection of all measures on

(Rn)N whose jth marginal equals µj . Then a solution of the multi-marginal

optimal transport problem, with Gangbo-Świȩch cost:

c(x1, . . . , xN ) :=
N∑
j 6=k
|xj − xk|2,
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(see [13]), is a measure σ ∈ Π (µ1, . . . , µN ) achieving the minimum value in

min
σ′∈Π(µ1,...,µN )

C
(
σ′
)
, (MM)

where

C
(
σ′
)

:=

∫
(Rn)N

c(x1, . . . , xN )σ′(dx1, . . . , dxN ).

Once more, existence can be established in a straightforward way. Assuming
the first measure is absolutely continuous, Gangbo and Świȩch proved that
the optimizer is unique and, like in the two marginal case, is concentrated
on a graph {(x1, T2(x1), . . . , TN (x1))} over the first variable [13]. This result
has been extended to certain other cost functions [7, 15, 18, 14]; these costs
are very special, however, and for a variety of other costs, counterexamples to
uniqueness and the graphical structure are known [9, 17, 16], indicating that
these properties depend delicately on the cost function for multi-marginal
problems.

In this paper, we combine these two extensions (OTm) and (MM) and
consider the multi-marginal optimal partial transport problem: let µj for
j = 1, . . . , N be measures on Rn all with finite (but not necessarily equal)
total mass, fix any 0 ≤ m ≤ min1≤j≤N {M (µj)}, and write Π≤ (µ1, . . . , µN )

for the collection of all measures on (Rn)N whose jth marginal is dominated
by µj for each j. Then a solution of the multi-marginal optimal partial

transport problem (with Gangbo-Świȩch cost) can be defined as a measure
σ ∈ Π≤ (µ1, . . . , µN ) with M (σ) = m achieving the minimum value in

min
σ′∈Π≤(µ1,...,µN ), M(σ′)=m

C
(
σ′
)
. (MMm)

Analogously to the above, we will denote the collection of solutions to (MMm)
as Optm (µ1, . . . , µN ). In informal exposition, we will sometimes refer to any
marginal of a minimizer in either (OTm) or (MMm) as an “active submea-
sure.”

As in (OTm), existence of a minimizer in (MMm) is not difficult to see;
the first issue one encounters is that of uniqueness, which will be the focus
of this paper. Our main goal is to identify conditions under which the
multi-marginal problem (MMm) admits a unique solution; it turns out that
a condition analogous to the one given by Figalli in [10] is sufficient, see
Theorem 1.2 below.

Our approach here involves the analysis of another problem, which turns
out to be essentially equivalent to (MMm) and which we call the (Monge-Kantorovich)
partial barycenter problem. This is a natural extension of the usual (Monge-
Kantorovich) barycenter problem, which is, given measures µ1, . . . , µN , all
with mass m, to find a minimizer of

min
ν∈Pm

N∑
j=1

MK2
2 (µj , ν) , (BC)
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where

Pm := {all measures ν | M (ν) = m,

∫
Rn

|x|2ν(dx) <∞}.

This problem was introduced by Agueh and Carlier, who showed it is essen-
tially equivalent to (MM) (see [1]).

We introduce the appropriate analogue, the partial barycenter, as a min-
imizer in

min
ν∈Pm

Fm(ν, µ1, . . . , µN ), (BCm)

where m and the µi are as in (MMm) and,

Fm(ν, µ1, . . . , µN ) :=
N∑
j=1

MK2
2,m (µj , ν) .

When the collection of measures µ1, . . . , µN and the mass constraint m is
clear, we will suppress them and simply write F(ν) in place of Fm(ν, µ1, . . . , µN ).
Also, we may sometimes refer to the submeasures of µj that are actually
coupled to a minimizer of (BCm) as “active submeasures” as well.

We will first show there is a connection between the problems (MMm)
and (BCm) (which is analogous to the relationship between (MM) and (BC)
in [1]), expressed by the following theorem:

Proposition 1.1 (Equivalence of (BCm) and (MMm)). For 1 ≤ j ≤ N , fix
absolutely continuous measures µj, and some 0 < m ≤ min1≤j≤NM (µj).

Then for any optimal measure σ in (MMm), A#σ is optimal in (BCm),
where

A(x1, . . . , xN ) :=
1

N

N∑
j=1

xj . (1)

Conversely, for any minimizer ν in (BCm), the measure (Sν1 , . . . , S
ν
N )# ν is

optimal in (MMm), where Sνj is the optimal mapping such that
(
Sνj × Id

)
#
ν ∈

Optm (µj , ν) for each 1 ≤ j ≤ N .
Furthermore, the minimizer of (MMm) is unique if and only the mini-

mizer of (BCm) is unique.

Then, we will turn to the question of uniqueness in (BCm). We establish
the following theorem, which shows that under conditions analogous to those
in [10], we indeed obtain uniqueness in (BCm):

Theorem 1.2 (Uniqueness of partial barycenters). For 1 ≤ j ≤ N , fix
absolutely continuous measures µj, each with finite mass and with densities
gj. Writing µ∧ for the absolutely continuous measure with density g∧ :=
min1≤j≤N gj, fix some m ≥ 0 satisfying

M (µ∧) ≤ m ≤ min
1≤j≤N

{M (µj)}.
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Then there exists a unique minimizer in Pm of (BCm).

Finally, by combining Proposition 1.1 with Theorem 1.2, we immediately
obtain the following corollary:

Corollary 1.3. Under the assumptions of Theorem 1.2, the multi-marginal
optimal partial transport problem (MMm) has a unique solution.

Surprisingly, several of the monotonicity properties enjoyed by solutions
of (OTm) are not exhibited by solutions of (MMm); we will briefly demon-
strate this fact with some examples later.

One might expect that an alternature approach, following the work of
Figalli [10], could be used to establish Corollary 1.3; more precisely, that
one could show that the function m 7→ minσ′∈Π≤(µ1,...,µN ), M(σ′)=m C(σ′) is

strictly convex on [M (µ∧) ,min1≤j≤N {M (µj)}] and use this fact to deduce
uniqueness of the optimal plan in (MMm). As one of our examples illustrates
(see Remark 4.2 below), it turns out that the natural multi-marginal ana-
logue of a key preliminary result of Figalli (Proposition 2.4 in [10]) does not
hold. As this proposition is used in a crucial way in the proof of Figalli’s
main result ([10, Theorem 2.10]), a direct extension of his techniques cannot
be used to prove Corollary 1.3.

We pause now to describe an economic interpretation of the partial barycen-
ter problem, in the context of the well known factories-and-mines interpre-
tation of the classical optimal transport problem.

1.1. Interpretation of the partial barycenter problem. The optimal
transport problem is frequently interpreted as the problem of matching the
production of a resource (say iron ore) by a distribution of mines over a
landscape M ⊂ Rn (represented by the measure µ) with consumption of that
resource by a distribution of factories over the same landscape (represented
by a measure ν). The cost function c(x, y) (= |x − y|2 in our setting)
represents the cost to move one unit of iron from a mine at position x to a
factory at position y. If the total production capacity of the mines matches
the total consumption capacity by the factories (that is, the total masses of µ
and ν coincide), and one would like to use all of the produced resources, the
problem of determining which mine should supply which factory to minimize
the total transportation cost is represented by (OT). More realistically, the
total production capacity of the mines may not match the total consumption
capacity of the factories, and one may only wish to consume a smaller portion
m of the total capacity; in this case, the analogous problem is represented
by (OTm), as is discussed in [6].

Suppose now that production of a certain good requires several resources;
for example, iron, aluminum, and nickel, and that the company has not
yet built their factories (and so is free to build them at any locations they
choose). Production capacity of the resources are given by distributions µj of
mines over a landscape M ⊆ Rn, for j = 1, 2, 3, . . . , N . Given costs cj(xj , y)
(|xj−y|2 here, but see also the extension to more general costs in Section 5)
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to move a unit of resource j from a mine at position xj to a (potential)
factory at position y, the company now wishes to build a distribution of
factories, ν , where these resources will be consumed, in order to minimize
the sum of all the total transportation costs; if the total production of each
resource is the same and all produced resources are to be consumed, this
amounts to the barycenter problem (BC).

However, if, perhaps because of limited demand for the good in question,
only a fixed portion m of each resource is to be consumed (less than the
smallest total production capacity of the resources, which may now differ
for different j), one obtains the partial barycenter problem (BCm).

1.2. Organization of the paper. The remainder of this paper is organized
as follows. In Section 2 we will establish Proposition 1.1. Section 3 is then
devoted to the proof of Theorem 1.2. In Section 4, we discuss some other
properties of interest of minimizers of (MMm) and (BCm). Namely, we
first present two somewhat surprising counterexamples to the monotonicity
property, followed by a discussion of points where the active submeasures
fail to saturate the prescribed measures µj . We close the section with a brief
remark on regularity properties of the “free boundary”. Finally, in Section 5
we discuss an extension of our main results to more general cost functions.

2. Connection between multi-marginal optimal partial
transport and the partial barycenter

For technical reasons, we will find it more convenient to work with abso-
lutely continuous measures, hence we define the following notation:

Pmac := {absolutely continuous ν | M (ν) = m,

∫
Rn

|x|2ν(dx) <∞}.

A simple argument now shows that any minimizer in (BCm) is actually
absolutely continuous, hence it is equivalent to make the minimization over
Pmac in the problem, rather than Pm.

Lemma 2.1.

min
ν∈Pm

Fm(ν, µ1, . . . , µN ) = min
ν∈Pm

ac

Fm(ν, µ1, . . . , µN ).

Proof. We show that any optimal ν ∈ Pm at which the minimum in the left
hand side is attained must actually be absolutely continuous; the result will
then follow immediately.

Note that any such ν is necessarily optimal in the classical barycenter
problem (BC) for the active submeasures. As these are necessarily absolutely
continuous by the absolute continuity of the µj , the result in [18, Theorem
3.3] (see also [1, Theorem 5.1] ) implies the absolute continuity of ν . �

With the above result in hand, we can now show Proposition 1.1.
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Proof of Proposition 1.1. Fix m as in the statement of the proposition. It
is straightforward to verify that, for any x1, . . . , xN ∈ Rn,∑

j 6=k
|xj − xk|2 = min

y∈Rn

N∑
j=1

|xj − y|2 (2)

and that the minimum on the right hand side is attained uniquely at y =
A(x1, . . . , xN ) (recall the definition (1)). The proof of the first two assertions
is then a straightforward adapatation of the argument of Carlier and Ekeland
in [8, Proposition 3] (in fact, the three bullet points below closely mirror the
three assertions in the proof of [8, Proposition 3]), and we only list the main
steps:

• For any ν ∈ Pmac, let Sνj be the optimal mapping satisfying
(
Sνj × Id

)
#
ν ∈

Optm (µj , ν). The measure σ := (Sν1 , . . . , S
ν
N )# ν is admissible in (MMm),

and C(σ) ≤ F(ν), hence (also recalling Lemma 2.1) the minimum
value in (MMm) is less than the minimum value in (BCm).
• For any minimizing σ in (MMm), if we define ν := A#σ, we then

have C(σ) = F(ν), and in light of the above, the minimum values
in (MMm) and (BCm) are equal, and ν is a minimizer in (BCm). It
also follows that (πj ×A)# σ is a minimizer in the partial transport

problem (OTm) between µj and ν , where we move mass m =M (ν);
i.e. it belongs to Optm (µj , ν).
• For any minimizing ν ∈ Pmac in (BCm), the measure σ := (Sν1 , . . . , S

ν
N )# ν

must now be minimizing in (MMm) by the above two points.

Turning to the uniqueness assertion, we first assume that the solution ν to
(BCm) is unique. Note that solutions to (MMm) are in particular optimal in
the regular multi-marginal problem (MM) for their marginals. Uniqueness
of minimizers in (MM) (see [13]) then implies that, if σ and σ̄ are distinct
minimizers in (MMm), at least one of their marginals must differ.

Since A#σ and A#σ̄ are minimizers in (BCm) by the above, by our unique-
ness assumption we have A#σ = A#σ̄ = ν . Additionally, γj := (πj ×A)# σ

and γ̄j := (πj ×A)# σ̄ both belong to Optm (µj , ν). Since clearly m satisfies

the hypothesis of the uniqueness result [10, Proposition 2.2 and Theorem
2.10], we then have γj = γ̄j for all j, and in particular, for all j the marginals
(πj)# σ and (πj)# σ̄ must coincide, which is a contradiction.

Conversely, suppose the solution σ to (MMm) is unique. If ν and ν̄ ∈ Pmac
both minimize (BCm), we have that (Sν1 , . . . , S

ν
N )# ν = σ = (S ν̄1 , . . . , S

ν̄
N )# ν̄ .

In particular, note that
(
Sνj

)
#
ν = (πj)# σ =

(
S ν̄j

)
#
ν̄ and both ν and ν̄

solve the regular barycenter problem (BC), for the measures
(
Sνj

)
#
ν =(

S ν̄j

)
#
ν̄ in place of the µj . Thus it follows from the uniqueness result [1,

Proposition 3.5] that ν = ν̄ . �
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3. Uniqueness of the partial barycenter

We now turn to the proof of Theorem 1.2, uniqueness of the partial
barycenter in the minimization problem (BCm). Throughout this section,
for any measure γ on Rn × Rn, we will use the following notation:

C2(γ) :=

∫
Rn×Rn

|x− y|2γ(dx, dy).

In the first lemma, we show that for a fixed µ, the functionalMK2
2,m (µ, ·) is

convex with respect to linear interpolation. Additionally, we show that non-
strict convexity along a segment connecting two measures ν0 and ν1 implies
some structure of the optimal mappings pushing νi forward to a submeasure
of µ: namely that the optimal mappings must match on the support of
the “pointwise minimum” of ν0 and ν1, while both mappings must be the
identity mapping when this “pointwise minimum” fails to saturate.

Lemma 3.1. Let µ be an absolutely continuous measure with M (µ) ≥ m,
let ν0, ν1 ∈ Pmac, and define νt := (1− t)ν0 + tν1. Then

MK2
2,m

(
µ, νt

)
≤ (1− t)MK2

2,m

(
µ, ν0

)
+ tMK2

2,m

(
µ, ν1

)
for all t ∈ [0, 1].

Now suppose equality holds for all t ∈ [0, 1], and for i = 0 or 1, let Si be
any measurable mapping satisfying

(
Si × Id

)
#
νi ∈ Optm

(
µ, νi

)
. Also, let

ν∧ be the measure with density f∧ := min {f0, f1}, where f i is the density
of νi. Then we have that

S0(x) = S1(x) a.e. on {f∧ > 0}, (3)

Si(x) = x a.e. on {f∧ < f i}. (4)

Proof. For i = 0, 1 suppose that µi≤ ≤ µ with total mass m, and γi ∈
Opt

(
µi≤, ν

i
)

satisfy C2

(
γi
)

= MK2
2,m

(
µ, νi

)
. For any t ∈ [0, 1], it is clear

that for γt := (1− t)γ0 + tγ1 we have

(π1)#γ
t = (1− t)µ0

≤ + tµ1
≤ ≤ µ,

(π2)#γ
t = (1− t)ν0 + tν1 = νt,

thus we easily see that

MK2
2,m

(
µ, νt

)
≤ C2

(
γt
)

= (1− t)C2

(
γ0
)

+ tC2

(
γ1
)

= (1− t)MK2
2,m

(
µ, ν0

)
+ tMK2

2,m

(
µ, ν1

)
.

We now turn to the proof of (3) and (4). Suppose that there is non-strict
convexity along µt≤, i.e.

MK2
2,m

(
µ, νt

)
= (1− t)MK2

2,m

(
µ, ν0

)
+ tMK2

2,m

(
µ, ν1

)
, ∀t ∈ [0, 1],

in particular MK2
2,m

(
µ, νt

)
= C2

(
γt
)

and hence γt ∈ Optm
(
µ, νt

)
. Note

that all νi and µi≤ are absolutely continuous; we denote their densities by

f i and gi≤ respectively. Also we may apply the classical result of Brenier
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(see [3]) to see there exist a.e. defined mappings T i : sptµi≤ → spt νi and Si :

spt νi → sptµi≤ such that T i#µ
i
≤ = νi,

(
Id×T i

)
#
µi≤ = γi =

(
Si × Id

)
#
νi,

and Si =
(
T i
)−1

a.e. on spt νi.
We will now show (3). Indeed, by the assumption of non-strict convexity

along νt, for any t ∈ [0, 1] we have that γt ∈ Opt
(
µt≤, ν

t
)
, where µt≤ :=

(1 − t)µ0
≤ + tµ1

≤, and in particular γ1/2 is concentrated on the graph of

a mapping S1/2 : sptµ
1/2
≤ → spt ν1/2. On the other hand, γ1/2 is clearly

supported on the union of the graphs of S0 and S1, and therefore we must
have S0 = S1/2 = S1 a.e. on the set where both S0 and S1 are defined,
which includes {f∧ > 0}. This immediately implies (3).

We next work toward (4). As a result of (3), we can unambiguously define

γ∧ :=
(
S0 × Id

)
#
ν∧ =

(
S1 × Id

)
#
ν∧

with mass m∧ :=M (γ∧) ≤ m. Here we claim that

(π1)#γ
∧ = µ∧≤

where µ∧≤ is the absolutely continuous measure with density g∧≤ := min{g0
≤, g

1
≤}.

To see this, first note it is clear that

(π1)#γ
∧ = S0

#ν
∧ = S1

#ν
∧ ≤ µ∧≤.

Next, we can apply the arguments leading up to (3) with T i replacing Si to
find that for a.e. x ∈ {g∧≤ > 0} we have T 0(x) = T 1(x), hence

T 0
#µ
∧
≤ = T 1

#µ
∧
≤ ≤ ν∧

=⇒ µ∧≤ = S0
#T

0
#µ
∧
≤ ≤ S0

#ν
∧ = (π1)#γ

∧,

finishing the claim.
Next we claim that for any t ∈ [0, 1] we have

(1− t)(γ0 − γ∧) ∈ Opt(1−t)(m−m∧)

(
µ0
≤ − µ∧≤, (1− t)(ν0 − ν∧)

)
,

t(γ1 − γ∧) ∈ Optt(m−m∧)

(
µ1
≤ − µ∧≤, t(ν1 − ν∧)

)
. (5)

Suppose by contradiction that the claim fails, then there exist

γ̄0 ∈ Opt(1−t)(m−m∧)

(
µ0
≤ − µ∧≤, (1− t)(ν0 − ν∧)

)
,

γ̄1 ∈ Optt(m−m∧)

(
µ1
≤ − µ∧≤, t(ν1 − ν∧)

)
with

C2

(
γ̄0
)

+ C2

(
γ̄1
)
< C2

(
(1− t)(γ0 − γ∧)

)
+ C2

(
t(γ1 − γ∧)

)
= C2

(
γt − γ∧

)
,

(where we have used linearity of C2(·)), which then implies

C2

(
γ̄0 + γ̄1 + γ∧

)
< C2

(
γt
)
. (6)

Now note that

M
(
γ̄0 + γ̄1 + γ∧

)
= (1− t)(m−m∧) + t(m−m∧) +m∧ = m.
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Also,

(π1)#(γ̄0 + γ̄1 + γ∧) ≤ (µ0
≤ − µ∧≤) + (µ1

≤ − µ∧≤) + µ∧≤

= µ0
≤ + µ1

≤ − µ∧≤
= (g0

≤ + g1
≤ − g∧≤)dx

= max {g0
≤, g

1
≤}dx

≤ µ.
On the other hand, the second marginal satisfies

(π2)#(γ̄0 + γ̄1 + γ∧) = (1− t)(ν0 − ν∧) + t(ν1 − ν∧) + ν∧ = νt,

hence combined with (6) this would contradict that γt ∈ Optm
(
µ, νt

)
, and

we obtain the claim.
Finally, for t ∈ (0, 1) (in terms of densities),

(π1)#(1− t)(γ0 − γ∧) = (1− t)(µ0
≤ − µ∧≤) < µ0

≤ − µ∧≤
a.e on its support, hence by combining [10, Theorem 2.6] with (5) we see
that γ0 − γ∧ =

(
S0 × Id

)
#

(ν0 − ν∧) is supported on the diagonal. This

immediately implies that for (ν0 − ν∧)-a.e. x we must have S0(x) = x, and
with a symmetric argument applied to γ1 − γ∧ we obtain (4). �

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Fix m as in the statement of the Theorem, and sup-
pose by contradiction that ν0 6= ν1 are both minimizers in (BCm); again by
Lemma 2.1 we may assume both ν0, ν1 ∈ Pmac. We will construct a ν ∈ Pmac
which achieves a lower value than one of ν0 or ν1 in (BCm), contradicting
their minimality.

Since each summand in F is convex under linear interpolation by Lemma 3.1,
so is F . In particular, as F(ν0) = F(ν1), we see that F(νt) = (1− t)F(ν0) +
tF(ν1) for all t ∈ [0, 1] with νt defined as in Lemma 3.1, which in turn
implies

MK2
2,m

(
µj , ν

t
)

= (1− t)MK2
2,m

(
µj , ν

0
)

+ tMK2
2,m

(
µj , ν

1
)

for all t ∈ [0, 1] and 1 ≤ j ≤ N . For each i = 0, 1 and 1 ≤ j ≤ N we
again obtain an a.e. defined collection of maps Sij : spt νi → sptµj such

that
(
Sij × Id

)
#
νi ∈ Optm

(
µj , ν

i
)
, and µi≤j :=

(
Sij

)
#
νi ≤ µj . We will

extend each Sij to all of Rn by taking it to be the identity mapping where it

is not defined (in particular, on Rn \ spt νi). With this extension, by using
Lemma 3.1 (4) and (3) we can see that for every 1 ≤ j ≤ N ,

S0
j (x) = S1

j (x), a.e. x ∈ Rn,

and additionally,

Sij(x) = x, a.e. x ∈ I ∪ {f i = 0} (7)
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where

I := {x ∈ Rn | f0(x) 6= f1(x)},

and f i is the density of νi. We also note here that Sij is injective a.e. on

spt νi by the absolute continuity of the µj .
By these observations and the a.e. injectivity of Sij on spt νi, we immedi-

ately obtain

f i ≤ g∧ (8)

a.e. on I. Now by the assumption M
(
νi
)

= m > M (µ∧), there exists a

set A{g∧<f i} of strictly positive measure on which g∧ < f i; by (8) we must

have A{g∧<f i} ⊂ {f i > 0} \ I, after possibly discarding a null set, and as a

result we can even see that g∧ < f0 = f1 on A{g∧<f i}.
We now claim that for either i = 0 or 1, there exists a Borel setA{g∧>f i} ⊂

I with strictly positive measure on which g∧ > f i, that also satisfies∫
A{g∧<fi}

(f i − g∧)dx =

∫
A{g∧>fi}

(g∧ − f i)dx > 0 (9)

and

|Sij(Rn \ A{g∧>f i}) ∩ A{g∧>f i}|L = 0 (10)

for all 1 ≤ j ≤ N . Note here that we can write Rn \ A{g∧>f i} as the

disjoint union of the sets
{
f i = 0

}
\ A{g∧>f i},

{
f i > 0

}
∩
(
I \ A{g∧>f i}

)
,

and
{
f i > 0

}
\ I. Since we choose A{g∧>f i} ⊂ I, by (7) we have

|Sij
({
f i = 0

}
\ A{g∧>f i}

)
∩ Sij(

(
A{g∧>f i}

)
|L

= |
({
f i = 0

}
\ A{g∧>f i}

)
∩ A{g∧>f i}|L = 0

and likewise

|Sij
({
f i > 0

}
∩
(
I \ A{g∧>f i}

))
∩ Sij

(
A{g∧>f i}

)
|L = 0.

Thus to guarantee (10) it would be sufficient to show that

|Sij(
{
f i > 0

}
\ I) ∩ Sij(A{g∧>f i})|L = 0. (11)

Now, by (8) and since ν0 6= ν1, there must exist a positive measure subset
of I on which g∧ > f i for either of i = 0 or 1. By the definition of I, we can
take A{g∧>f i} to be a subset of this aforementioned set, in such a way that

f i
′
> 0 on A{g∧>f i}, for either i′ = 0 or 1 (independent of i). At this point,

by shrinking A{g∧<f i} as necessary, we can ensure (9) holds. Finally, using

that {f i > 0} \ I = {f i′ > 0} \ I by definition of I, the fact that Sij = Si
′
j

a.e., and that Si
′
j is injective a.e. on spt νi

′
, we see

|Sij({f i > 0} \ I) ∩ Sij(A{g∧>f i})|L
= |Si′j ({f i′ > 0} \ I) ∩ Si′j (A{g∧>f i})|L = 0
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and we obtain (11).
Note that clearly A{g∧<f i} ∩ A{g∧>f i} = ∅ in both cases. Let us now

define

ν := νi + (g∧ − f i)1A{g∧<fi}∪A{g∧>fi}
dx,

which is a positive measure by the disjointness of A{g∧<f i} and A{g∧>f i}. It

is clear ν is absolutely continuous, and by (9),

M (ν) =M
(
νi
)

+

∫
A{g∧>fi}

(g∧ − f i)dx−
∫
A{g∧<fi}

(f i − g∧)dx

= m,

i.e. ν ∈ Pmac.
Next we claim that

(
Sij

)
#
ν ≤ µj for 1 ≤ j ≤ N . To this end fix an

arbitrary measurable set E, then

(
Sij
)

#
ν(E) = νi(

(
Sij
)−1

(E)) +

∫
A{g∧>fi}∩(S

i
j)
−1

(E)
(g∧ − f i)dx−

∫
A{g∧<fi}∩(S

i
j)
−1

(E)
(f i − g∧)dx

≤ µi≤j(E) + µj(A{g∧>f i} ∩
(
Sij
)−1

(E))− νi(A{g∧>f i} ∩
(
Sij
)−1

(E))

Since A{g∧>f i} ⊂ I, by (7) and (10), we see that

A{g∧>f i} ∩
(
Sij
)−1

(E) = A{g∧>f i} ∩ E =
(
Sij
)−1

(A{g∧>f i} ∩ E)

up to null sets, hence

µi≤j(E) + µj(A{g∧>f i} ∩
(
Sij
)−1

(E))− νi(A{g∧>f i} ∩
(
Sij
)−1

(E))

= µi≤j(E) + µj(A{g∧>f i} ∩ E)− νi(
(
Sij
)−1

(A{g∧>f i} ∩ E))

= µi≤j(E) + µj(A{g∧>f i} ∩ E)− µi≤j(A{g∧>f i} ∩ E)

= µi≤j((Rn \ A{g∧>f i}) ∩ E) + µj(A{g∧>f i} ∩ E)

≤ µj(E),

proving our claim. In particular, this shows that for each i and j, the

measure
(
Sij × Id

)
#
ν is an admissible competitor in MK2

2,m (µj , ν).

Finally, we will show that

N∑
j=1

C2

((
Sij × Id

)
#
ν
)
<

N∑
j=1

C2

((
Sij × Id

)
#
νi
)
. (12)

Since F(ν) ≤
∑N

j=1 C2

((
Sij × Id

)
#
ν

)
and F(νi) =

∑N
j=1 C2

((
Sij × Id

)
#
νi
)

,

this contradicts the fact that νi is a minimizer in (BCm), and will finish the



THE MULTI-MARGINAL OPTIMAL PARTIAL TRANSPORT PROBLEM 13

proof. First we calculate for each 1 ≤ j ≤ N ,

C2

((
Sij × Id

)
#
ν
)

= C2

((
Sij × Id

)
#
νi
)

+

∫
A{g∧>fi}

|Sij(x)− x|2(g∧ − f i)dx

−
∫
A{g∧<fi}

|Sij(x)− x|2(f i − g∧)dx

=MK2
2,m

(
µj , ν

i
)
−
∫
A{g∧<fi}

|Sij(x)− x|2(f i − g∧)dx,

(13)

where we have again used (7) and that A{g∧>f i} ⊂ I. Now by definition

of A{g∧<f i}, we must have −
∫
A{g∧<fi}

|Sij(x) − x|2(f i − g∧)dx ≤ 0 for each

j. Suppose that there is equality for every 1 ≤ j ≤ N , this would imply
that Sij is the identity map a.e. on A{g∧<f i} for every j as well. However,
there exists some set Aj′ ⊂ A{g∧<f i} with strictly positive measure on which

g∧ ≡ gj′ for some index 1 ≤ j′ ≤ N . This would imply that (using the a.e.
injectivity of Sij′ on spt νi)

µi≤j′(Aj′) = νi(
(
Sij′
)−1

(Aj′))

=

∫
Aj′

f idx

>

∫
Aj′

g∧dx

= µj′(Aj′),

contradicting that µi≤j′ ≤ µj′ . Thus by summing (13) over 1 ≤ j ≤ N , we

obtain (12), leading to the desired contradiction and finishing the proof. �

4. Other properties of the multi-marginal optimal partial
transport problem and the partial barycenter problem

In this section, we will discuss other analytic properties of minimizers
in (MMm). We begin with a counterexample to the monotonicity property,
in contrast to the two marginal case of (OTm) (see [6, Theorem 3.4] and [10,
Remark 3.4]).

Proposition 4.1. There exist measures µ1, µ2, µ3 on R and 0 < m < m̄ <
minj=1,2,3M (µj) for which:

(1) The barycenters νm and νm̄, minimizing
∑3

j=1MK
2
2,m (µj , ν) and∑3

j=1MK
2
2,m̄ (µj , ν) over Pmac and Pm̄ac respectively, are not mono-

tone; that is, νm 6≤ νm̄.
(2) The active submarginals µm≤3 := (π3)# (σm) and µm̄≤3 := (π3)# (σm̄)

(where σm ∈ Optm (µ1, µ2, µ3) and σm̄ ∈ Optm̄ (µ1, µ2, µ3)) are not
monotone; that is, µm≤3 6≤ µm̄≤3.
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In fact, as we will see in the proof below, even more is true; the barycenter
of the first two measures is not monotone.

It may be helpful to see Figures 1 and 2 below while following the proof.

Figure 1. Here we have shown graphically the three domi-
nating measures µ1, µ2, and µ3 in Proposition 4.1.

Figure 2. This figure illustrates the active submeasures in
Proposition 4.1 for two different values 1

2 < m < m̄ < 1.
Note that in each case, the partial barycenter is equal to the
third active submeasure, which is not monotone (as demon-
strated by the dashed vertical lines).
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Proof. Take µ1 to be uniform measure on [0, 1] with density 1 and take µ2

to be absolutely continuous, supported on [2, 3] with density given by

g2(x) =

{
1
ε on [2, 2 + ε

2 ],

1 on [2 + ε
2 , 3].

First, consider the optimal partial transport problem between the two
marginals µ1 and µ2. For 1

2 < m < 1, it is an easy consequence of [6,
Corollary 2.4] combined with [10, Theorem 2.6] that if γm ∈ Optm (µ1, µ2)
then the active submeasures µm≤1 := (π1)# γm and µm≤2 := (π2)# γm are the

measures µ1 and µ2, restricted to the intervals [1−m, 1] and [2, 3
2 + ε

2 +m], re-
spectively (these are the “right most” piece of the first measure and the “left
most” piece of the second). In addition we can write γm = (Id×Tm)# µ

m
≤1,

where the optimal map Tm between the two active submeasures is the unique
increasing map pushing µm≤1 forward to µm≤2, given by:

Tm(x) =

{
εx+ 2− ε(1−m) on [1−m, 3

2 −m],

x+ 1+ε
2 +m on [3

2 −m, 1].

By Proposition 1.1, the partial barycenter νm :=
(
x+Tm(x)

2

)
#
µm≤1 minimizes∑2

j=1MK
2
2,m (µj , ν) over Pmac; thus νm is supported on [3−m

2 , 5+ε
4 + m

2 ], with
a density given by

fm(x) =

{
2
ε+1 on [3−m

2 , 7+ε
4 −

m
2 ],

1 on [7+ε
4 −

m
2 ,

5+ε
4 + m

2 ].

In particular, note that the partial barycenter of µ1 and µ2 is not monotone;
the location of the jump in fm moves to the left as m increases, hence
νm 6≤ νm̄ when 1

2 < m < m̄ < 1.

Now, take µ3 to be uniform on [1, 2], with density g3 > 2
ε+1 . Then

each νm ≤ µ3, and it is straightforward to see that νm minimizes ν 7→∑3
j=1MK

2
2,m (µj , ν) over Pmac, (as νm minimizes ν 7→ MK2

2,m (µ1, ν) +

MK2
2,m (µ2, ν) while MK2

2,m (µ3, ν
m) = 0, it clearly minimizes their sum).

As the active submeasure µm≤3 corresponding to µ3 is precisely νm, this
shows that the active submeasures are not monotone either. �

Remark 4.2. The example in the preceding proof also implies that the
naive multi-marginal analogue of [10, Proposition 2.4] fails.

The analogous statement would be the following: if σ solves (MMm) with
marginals µ1, . . . , µN and µ≤j := (πj)# σ, then

σ̄ := σ +

 N⊗
j=1

Id


#

 N∑
j=1

(µj − µ≤j)


solves (MM) with marginals µ1+

∑
j 6=1(µj−µ≤j), . . . , µN+

∑
j 6=N (µj−µ≤j).
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However, we can see that already in the case N = 3, this statement does
not hold for the example given above in Proposition 4.1. Indeed, note that
for x ∈ [7+ε

4 −
m
2 ,

5+ε
4 + m

2 ] we have g≤3(x) = 1 < 2
ε+1 < g3(x); therefore the

density g3− g≤3 of µ3−µ≤3 is strictly positive on this interval. As a result,

for each x3 ∈ [7+ε
4 −

m
2 ,

5+ε
4 + m

2 ] the support of σ̄ includes (x3, x3, x3) (via

(Id× Id× Id)#

(
µ3 − µ≤3

)
) as well as points of the form (x1, x2, x3), where

xj ∈ spt(g≤j) for j = 1, 2 (via σ). In particular, σ̄ is not concentrated on

a graph over the third marginal, and so, by [13, Theorem 2.1] σ̄ cannot be
optimal in (MM).

As Proposition 2.4 of [10] plays a key role in Figalli’s proof of Theorem
2.10 there, this indicates that a direct application of the techniques in [10]
does not translate to the multi-marginal case.

The next example shows that, in contrast to a result of Caffarelli and
McCann in the N = 2 case, monotonicity of the active submeasures can fail
even for discrete measures (compare [6, Proposition 3.1]).

Example 4.3. Consider the real line R and take

µ1 = δ−5 + δ−3,

µ2 = δ−1 + δ0 + δ1,

µ3 = δ3 + δ5.

Taking m = 1, it is easy to see that the optimizer is δ(−3,0,3) which couples the
Dirac masses at −3, 0, and 3, while for m = 2, the optimizer is δ(−5,−1,3) +
δ(−3,1,5) which couples the masses at −5, −1, and 3; and −3, 1, and 5
respectively. This shows that even the support of the active submeasure of
µ2 is not monotone.

An example with absolutely continuous measures where the supports of
the active submeasures are not monotone can be constructed by replacing
the Dirac masses with uniform measure on small disjoint intervals; however
it is not clear to us whether an example can be constructed in which the
marginals are absolutely continuous with connected supports.

As the above two examples illustrate, when there are three or more
marginals in (MMm), an optimal coupling may move mass away from a
location where the active submeasure does not saturate the dominating mea-
sure: in Proposition 4.1 above, on sptµ3 we have g≤3 < g3 (where g≤3 is

the density of µ≤3), yet under the optimal coupling none of the mass of µ≤3
remains in place. At first glance, this seems to be a sharp distinction from
the two marginal case, [10, Theorem 2.6], however we now show there is an
appropriate analogous statement for the multi-marginal case, in the form of
Corollary 4.5.

Proposition 4.4. Suppose that σ ∈ Optm (µ1, . . . , µN ), and gj is the den-
sity of µj. Then for a.e. xj in {g≤j < gj}, where g≤j is the density of
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Figure 3. This figure illustrates the active submeasures in
Example 4.3 for m = 1 and m = 2. Filled in dots repre-
sent the support of the active submeasure of µ1, empty dots
the active submeasure of µ2, and the crosses are the active
submeasure of µ3. Each submeasure is a sum of unit Dirac
measures supported at the various points. Again in each
case, the partial barycenter (whose couplings are illustrated
by the solid and dotted arrows) is equal to the third active
submeasure, which fails to be monotone (in fact, the support
itself fails to be monotone).

(πj)# σ,

xj =
1

N − 1

∑
k 6=j

xk

where {xk}k 6=j is the unique collection of points such that (x1, . . . , xN ) ∈
sptσ.
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Proof. Let us write

γj : = (πj ×A)# σ,

µ≤j : = (πj)# σ

(recall the definition of A is given by (1)). By Proposition 1.1, we have
γj ∈ Optm (µj , A#σ), thus by the absolute continuity of µj there exists an

a.e. defined mapping Tj on sptµ≤j such that γj =
(

Id×Tj
)

#
µ≤j . By [10,

Theorem 2.6], for a.e. xj ∈ {g≤j < gj} we have

Tj(xj) = xj , (14)

note that for a.e. xj ∈ sptµ≤j ,

(xj , y) ∈ spt γj =⇒ y = Tj(xj). (15)

On the other hand, by [13, Theorem 2.1, Corollary 2.2] for a.e. xj , there
exists a unique set of points {xk}k 6=j such that (x1, . . . , xN ) ∈ sptσ. Thus
for a.e. xj ∈ sptµ≤j , we see that

(xj , A(x1, . . . , xN )) ∈ spt γj

which combined with (15) implies

A(x1, . . . , xN ) = Tj(xj).

Finally, combining this with (14) we find that for a.e. xj ∈ {g≤j < gj},
there exists unique {xk}k 6=j such that (x1, . . . , xN ) ∈ sptσ and

xj = Tj(xj) = A(x1, . . . , xN ) =
1

N

N∑
k=1

xk.

By rearranging, we obtain the conclusion of the proposition. �

Corollary 4.5. Let σ, gj, and g≤j be as above. Also fix an integer 1 ≤
K < N , and some subcollection of indices I := {j1, . . . , jK} ⊂ {1, . . . , N}.
Then for (Rn)K-Lebesgue a.e. (xj1 , . . . , xjK ) ∈

∏
j∈I{g≤j < gj} which can

be completed to some (x1, . . . , xN ) ∈ sptσ, the following hold:

xj1 = . . . = xjK , (16)

xj1 =
1

N −K
∑
k 6∈I

xk. (17)

Proof. The case K = 1 and N = 2 is exactly [10, Theorem 2.6], so let

us assume that N > 2. Clearly there is a (Rn)K-Lebesgue full measure
subset of

∏
j∈I{g≤j < gj} on which Proposition 4.4 applies to every compo-

nent; fix one such point (xj1 , . . . , xjK ) in that set and complete it to some
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(x1, . . . , xN ) ∈ sptσ. Then we can see, for example,

xj1 =
1

N − 1

∑
k 6=j1

xk,

xj2 =
1

N − 1

∑
k 6=j2

xk,

and by subtracting and rearranging (since N > 2) we find that xj1 =
xj2 . Proceeding as such for other indices in I, we immediately obtain the
claim (16).

Now, by another application of Proposition 4.4,

xj1 =
1

N − 1

∑
k 6=j1

xk

⇐⇒ (N − 1)xj1 =

(K − 1)xj1 +
∑
k 6∈I

xk


⇐⇒ (N −K)xj1 =

∑
k 6∈I

xk,

and we obtain (17). �

In particular, if K = N − 1 above, we recover an appropriate analogue
of [10, Theorem 2.6] in the multi-marginal case: if N − 1 of the active
submeasures do not saturate the original measures at an N -tuple in the
optimal coupling, then all of the coupled points must be the same (up to a
set of measure zero).

Remark 4.6 (Semiconcavity of the free boundary). Lastly we remark that
under certain conditions, we can obtain the semiconcavity of the free bound-
ary “for free” simply by applying the theory of the two marginal case. As-
sume that each support sptµj , 1 ≤ j ≤ N is separated by a hyperplane from
their Minkowski average. Note the support of any ν that minimizes (BCm)
is contained in this Minkowski average by [1, Proposition 4.2]. Then, the
marginal of any optimizer in (MMm) can be thought of as the left marginal
of (OTm) with right marginal ν , hence we may apply [6, Proposition 5.2]
to conclude that the “free boundary” (as defined in [6]) in sptµj enjoys
the same semiconcavity. However, since one cannot make any assumptions
about convexity of spt ν and bounds on the density of ν , arguments based
on Caffarelli’s regularity theory (see [4]) to obtain higher regularity of the
free boundary cannot be applied.

5. Extension to more general cost functions

Here we mention that our main result can be extended to a more general
class of cost functions. Consider a cost function of the form
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c(x1, . . . , xN ) = inf
y∈Y

N∑
j=1

cj(xj , y), (18)

where cj : Ωj × Y → R for some fixed, open domains Ωj and Y . Also
consider the generalized partial barycenter problem:

min
ν∈Pm

ac

N∑
j=1

Tcj ,m(µj , ν) (19)

where Tcj ,m is the partial transport distance with cost cj :

Tcj ,m(µj , ν) := min
γ′∈Π≤(µj ,ν ), M(γ′)=m

∫
Rn×Rn

cj(xj , y)γ′(dx, dy).

In order to obtain the equivalent of Proposition 1.1, we will require the
following assumptions:

[H1]: For all j, the costs cj are C2 and detD2
xjycj 6= 0 on Ωj × Y .

[H2]: For all j, the mappings Dxjcj(xj , ·) are injective for each xj , and
Dycj(·, y) are injective for each y

[H3]: For each (x1, x2, . . . , xN ) the infimum in (18) is attained by a
unique y = y(x1, x2, . . . , xN ) ∈ Y .

[H4]: The matrixB(x1, x2, . . . , xN ) :=
∑N

i=1D
2
yycj(xj , y(x1, x2, . . . , xN ))

is non-singular.

Additionally, to obtain the equivalent of Theorem 1.2, we must also assume
the following condition:

[H5]: For all j, we have cj(xj , y) ≥ 0 with cj(xj , y) = 0 if and only if
xj = y.

Under these assumptions, we can generalize the main results to a more
general class of cost functions.

Theorem 5.1. Fix compactly supported, absolutely continuous measures µj,
for j = 1, . . . , N , let 0 ≤ m ≤ min1≤j≤N {M (µj)}, and assume that the cost
functions cj for 1 ≤ j ≤ N satisfy conditions [H1]-[H5] above. Then the
following hold:

(1) If σ is a solution to (MMm) with cost (18), then ν = ȳ#σ is a
solution to (19). On the other hand, if ν is a solution to (19), then

σ = (Sν1 , . . . , S
ν
N )# ν is a solution to (MMm), where

(
Sνj × Id

)
#
ν

is the (unique) minimizer in Tcj ,m (µj , ν).
(2) Assume in addition that m ≥M (µ∧) where µ∧ is the measure with

density min1≤j≤N gj. Then both the multi-marginal optimal partial
transport problem (MMm) with cost function given by (18), and the
generalized partial barycenter problem (19) admit unique solutions.
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The proof of the preceding theorem is a straightforward adaptation of
the proof of our main results. The necessary ingredients are a relation-
ship between the partial transport problem and the partial barycenter prob-
lem, established by Carlier and Ekeland [8, Proposition 3]. The conditions
[H1] - [H4] guarantee the uniqueness of the solution to the standard multi-
marginal problem with cost (18), and absolute continuity of the standard
generalized barycenter [18], necessary ingredients in our argument here.

On the other hand, condition [H5] (together with [H1] and [H2]) are
necessary to invoke the results of Figalli in the two marginal case (OTm)
that we have relied on to prove the results of Section 3 (see [10, Remark
2.11] for details).

References

[1] Martial Agueh and Guillaume Carlier. Barycenters in the Wasserstein space. SIAM
J. Math. Anal., 43(2):904–924, 2011.

[2] Yann Brenier. Décomposition polaire et réarrangement monotone des champs de
vecteurs. C. R. Acad. Sci. Paris Sér. I Math., 305(19):805–808, 1987.

[3] Yann Brenier. Polar factorization and monotone rearrangement of vector-valued func-
tions. Comm. Pure Appl. Math., 44(4):375–417, 1991.

[4] Luis A. Caffarelli. The regularity of mappings with a convex potential. J. Amer. Math.
Soc., 5(1):99–104, 1992.

[5] Luis A. Caffarelli. Allocation maps with general cost functions. In Partial differential
equations and applications, volume 177 of Lecture Notes in Pure and Appl. Math.,
pages 29–35. Dekker, New York, 1996.

[6] Luis A. Caffarelli and Robert J. McCann. Free boundaries in optimal transport and
Monge-Ampère obstacle problems. Ann. of Math. (2), 171(2):673–730, 2010.

[7] G. Carlier. On a class of multidimensional optimal transportation problems. J. Convex
Anal., 10(2):517–529, 2003.

[8] G. Carlier and I. Ekeland. Matching for teams. Econom. Theory, 42(2):397–418, 2010.
[9] G. Carlier and B. Nazaret. Optimal transportation for the determinant. ESAIM

Control Optim. Calc. Var., 14(4):678–698, 2008.
[10] Alessio Figalli. The optimal partial transport problem. Arch. Ration. Mech. Anal.,

195(2):533–560, 2010.
[11] W. Gangbo. Habilitation thesis, Universite de Metz, available at

http://people.math.gatech.edu/ gangbo/publications/habilitation.pdf, 1995.
[12] Wilfrid Gangbo and Robert J. McCann. The geometry of optimal transportation.

Acta Math., 177(2):113–161, 1996.
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