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INCOMPRESSIBLE FLUIDS

One can describe the motion of an incompressible fluid inside a
bounded domain D in Rd by a time-dependent family t→ Mt of
maps, in the Hilbert space H = L2(D,Rd), valued in the subset
VPM(D) of all Lebesgue measure-preserving maps

VPM(D) = {M ∈ H,
∫

D
q(M(x))dx =

∫
D

q(x)dx, ∀q ∈ C(Rd)}
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POLAR FACTORIZATION OF A PERIODIC MAP

 

three maps of the periodic square: one is area preserving
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THE EULER EQUATIONS
OF INCOMPRESSIBLE FLUIDS

Solutions of the Euler equations, introduced in 1755, correspond
to those curves t→ Mt ∈ VPM(D) for which there exists a time
dependent scalar function pt, called ’pressure field’, defined on D,
such that

d2Mt

dt2 + (∇pt) ◦Mt = 0

where ∇ is the gradient operator on Rd (with respect to the
Euclidean norm | · |).
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THE PRINCIPLE OF LEAST ACTION

(easy) THEOREM Assume D to be convex. Let (Mt,pt) a solution
of the Euler equations, with pt(x) uniformly semi-concave in x.
Then, for every sufficiently short interval ]t0, t1[, Mt is the unique
minimizer, among all curves along VPM(D) that coincide with Mt
at t = t0, t = t1, of the following ACTION

1
2

∫ t1

t0

∫
D
|dMt(x)

dt
|2 dxdt

In other words, such a curve is nothing but a (constant speed)
minimizing geodesic along VPM(D), with respect to the metric
induced by H = L2(D,Rd) on VPM(D).
see Arnold 1966, Ebin-Marsden 1970, Arnold-Khesin book 1998
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VOLUME-PRESERVING MAPS
APPROXIMATED PAR PERMUTATIONS

Fix D = [0,1]d and consider its dyadic decomposition by N = 2nd

sub-cubes DN
i , of barycenters aN

i .

We may approximate the set VPM(D) of all volume-preserving
maps by the discrete set S = PN(D) of all rigids permutations of
the N sub-cubes.
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PENALIZATION OF THE EULER ACTION

Since minimizing geodesics along a discrete set such as the set
of rigid permutations S = PN(D) do not make much sense, we
rather consider a penalized version of the Euler action (*)∫ t1

t0

1
2
(||dMt

dt
||2 + 1

ε
Q[Mt])dt

Q[M] = inf
s∈S

1
2
||M− s||2

(*) For smooth sets, this is a consistent approximation to minimizing geodesics
(cf. Rubin-Ungar, CPAM 1957).
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FINITE-DIMENSIONAL REDUCTION
It is consistent to limit ourself to piecewise affine maps of form

Mt(x) = x− aN
i + Xi(t), x ∈ DN

i , i = 1, ...,N

Here X(t) ∈ (Rd)N becomes the new, finite-dimensional, unknown.

Accordingly, the penalized action becomes∫ t1

t0

1
2
(||dX(t)

dt
||2 + 1

ε
Q[X(t)])dt

Q[X] = inf
s∈S

1
2
||X− s||2, S = { (aN

σ1
, · · ·,aN

σN
), σ ∈ SN}

where || · || now denotes the euclidean norm in H = RdN and SN is
the set of all permutations of {1, · · ·,N}.
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THE RESULTING FINITE-DIMENSIONAL
DYNAMICAL SYSTEM

Using the least-action principle, we end up with the following
finite-dimensional dynamical system

ε
d2X
dt2 = X− π[X]

π[X] = (aN
σ1
, · · ·,aN

σN
), σ = Arginf{

N∑
i=1

|Xi − aN
σi
|2, σ ∈ SN}

Here | · | denotes the euclidean norm and SN is the set of all
permutations of {1, · · ·,N}.
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GRAVITATIONAL INTERPRETATION WHEN d=1

For d = 1 , we have H = RN which can be interpreted as the
configuration space of N points moving along the real line. We
have

S = { (aN
σ1
, · · ·,aN

σN
), σ ∈ SN}

where aN
j = j/N− 1/2.

We find

ε
d2Xi

dt2 = Xi −
1

2N

∑
j 6=i

sgn(Xi − Xj)

This describes the gravitational interaction of N parallel planes
("pancakes") with a repulsive background.
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GOING BACK TO THE CONTINUOUS LIMIT

It is now tempting to go back to the continuous limit in space,
while preserving the approximation parameter ε > 0. We get a
dynamical system in the Hilbert space H = L2(D,Rd)

ε
d2M
dt2 = M− π[M]

π[M] = Arginf{||M− s||2, s ∈ VPM(D)}

VPM(D) being the set of Lebesgue measure-preserving maps.

NB: Computing π[M] is equivalent to finding the optimal transport
map between the Lebesgue measure on D and its image by M.
(Strictly speaking, this is valid only in the non-degenerate case when this image
is absolutely continuous with respect to the Lebesgue measure, otherwise, π[M]

may be multivalued.)
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MONGE-AMPERE FORMULATION

According to standard optimal transport theory (Y.B. CPAM 1991)

π[M] = Arginf{||M− s||2, s ∈ VPM(D)}

can be written (*) in terms of Monge-Ampère equation

π[M] = (Id + ε∇ϕ) ◦M, det(I + εD2ϕ) =

∫
δ(· −M(a))da

Eventually, our dynamical system reads

d2M
dt2 = −∇ϕ ◦M,

∫
δ(· −M(a))da = det(I + εD2ϕ) ∼ 1 + ε4 ϕ
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THE EARLY UNIVERSE GRAVITATIONAL MODEL

Particle trajectories (t,a)→ X(t,a) are ruled by:

2t
3

d2X
dt2 +

dX
dt

+∇ϕ(t,X(t)) = 0

ρ(t,x) =
∫
δ(x− X(t,a))da = 1 + t4 ϕ(t,x)

where a denotes the initial position in R3 and ϕ the gravitational
potential.

This is a semi-Newtonian model.
All terms in red come from general relativity (Einstein-de Sitter
“big bang” universe) .
Notice that at early times t ↓ 0, "friction" takes over "inertia"
(Einstein+Newton go back to Aristoteles...)

Yann Brenier (CNRS) Fluids and gravitation McGILL, 21 Oct. 2014 14 / 28



THE EARLY UNIVERSE GRAVITATIONAL MODEL

Particle trajectories (t,a)→ X(t,a) are ruled by:

2t
3

d2X
dt2 +

dX
dt

+∇ϕ(t,X(t)) = 0

ρ(t,x) =
∫
δ(x− X(t,a))da = 1 + t4 ϕ(t,x)

where a denotes the initial position in R3 and ϕ the gravitational
potential.
This is a semi-Newtonian model.
All terms in red come from general relativity (Einstein-de Sitter
“big bang” universe) .
Notice that at early times t ↓ 0, "friction" takes over "inertia"
(Einstein+Newton go back to Aristoteles...)

Yann Brenier (CNRS) Fluids and gravitation McGILL, 21 Oct. 2014 14 / 28



INITIAL CONSTRAINTS

Observe the degeneracy of the model at time t = 0

2t
3

d2X
dt2 +

dX
dt

+∇ϕ(t,X(t)) = 0, 1 + t4 ϕ = ρ =

∫
δ(· − X(t,a))da

The only possible configuration for the particles at t = 0 is a
uniform continuum medium with a monokinetic velocity
distribution, in sharp contrast with classical Newton gravitation.

ρ0(x) = 1, X0(a) = a,
dX0

dt
(a) = −∇ϕ0(a)

Clusters of particles are not possible at t = 0 and come up later
due to the concentration mechanism known as Jeans’ instability.
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RECONSTRUCTION OF THE EARLY UNIVERSE
Notice that the ONLY free initial values at t = 0 are the initial
density fluctuations

ρ′0(x) = lim
t↓0

ρ(t,x)− 1
t

= 4ϕ0(x)

This makes plausible the EUR problem, which amounts to,
following Peebles 1989, Frisch and coauthors (Nature 417) 2002,
reconstructing the history of the Universe from the only
observation of the HIGHLY CONCENTRATED (with essentially no
Lebesgue component) density field ρ(T,x) at present time T.
Indeed, the only initial condition to recover is just a scalar field,
namely the density fluctuation field ρ′0(x) which is supposed to
be a random field of very small amplitude related to the quantum
theory of the VERY early universe.
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The present, highly concentrated, universe
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ZELDOVICH APPROXIMATION

A very simple approximate solution of the model

2t
3

d2X
dt2 +

dX
dt

+∇ϕ(t,X(t)) = 0

ρ(t,x) =
∫
δ(x− X(t,a))da = 1 + t4 ϕ(t,x)

due to Zeldovich ∼ 1970

X(t,a) = a− t∇ϕ0(a), 4ϕ0(x) = ρ′0(x)

makes the reconstruction possible as a standard Monge problem
with quadratic cost. (U. Frisch and coll. Nature 2002).
However, collisions cannot be taken into account this way.
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Example of "Zeldovich" solutions with sticky collisions

horizontal : space /vertical : time

 0.5

 1

 1.5

 2

 2.5

-1.5 -1 -0.5  0  0.5  1  1.5
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ZELDOVICH ANTICIPATED BY LUCRECIUS
∼ 99− 55 BC

DE RERUM NATURA LIBER SECUNDUS 216− 224

When atoms move straight down through the void by their own
weight, they deflect a bit in space at a quite uncertain time and in
uncertain places, just enough that you could say that their motion
has changed. But if they were not in the habit of swerving, they
would all fall straight down through the depths of the void, like
drops of rain, and no collision would occur, nor would any blow
be produced among the atoms. In that case, nature would never
have produced anything.
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FROM LUCRECIUS ∼ 99− 55 BC

DE RERUM NATURA LIBER SECUNDUS 216− 224

Illud in his quoque te rebus cognoscere avemus, corpora cum
deorsum rectum per inane feruntur ponderibus propriis, incerto
tempore ferme incertisque locis spatio depellere paulum, tantum
quod momen mutatum dicere possis. quod nisi declinare
solerent, omnia deorsum imbris uti guttae caderent per inane
profundum nec foret offensus natus nec plaga creata principiis;
ita nihil umquam natura creasset.
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AN ERSATZ: MONGE-AMPERE GRAVITATION

Following Y.B. Conflu. Math. 2011, let us substitute the
Monge-Ampère equation ρ(t,x) = det(I + tD2ϕ(t,x)) for the

Newtonian Poisson equation ρ(t,x) = 1 + t4 ϕ(t,x)

This approximation is exact for parallel pancakes, asymptotically
correct both at early times and for weak fields, makes Zeldovich
approximation exact.
This leads to the MONGE-AMPERE GRAVITATIONAL MODEL

2t
3

d2X
dt2 +

dX
dt

+∇ϕ(t,X(t)) = 0

ρ(t,x) =
∫
δ(x− X(t,a))da = det(1 + tD2ϕ(t,x))
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This leads to the MONGE-AMPERE GRAVITATIONAL MODEL

2t
3

d2X
dt2 +

dX
dt

+∇ϕ(t,X(t)) = 0

ρ(t,x) =
∫
δ(x− X(t,a))da = det(1 + tD2ϕ(t,x))
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A LEAST ACTION PRINCIPLE FOR MAG

The configuration space is the Hilbert space H of all L2 maps.
Using again optimal transport calculus, we get the following
action for the MAG model∫ t1

t0

t−1/2||tdX
dt
−∇Q[X(t)]||2 dt, Q[X] = inf

s∈S

||X− s||2

2

where S ⊂ H is the subset of all volume-preserving maps.

Observe that this action is just zero for Zeldovich solutions.
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A TIME-DISCRETE ACTION

We end up with the following time-discrete action

∑
n

t−1/2
n+1 ||tn+1

Xn+1 − Xn

tn+1 − tn
− (Xn − π[Xn])||2

which is easy to handle in one space dimension, using fast
sorting algorithms.
In that case, remarkably enough, the discrete action takes into
account sticky collisions, as shown by the following numerical
simulations.
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NUMERICS

In the next slides,
we show simulations of parallel pancake gravitational interactions
with sticky collisions directly based on the minimization of the
fully space and time discrete version of the action.

The calculation entirely relies on many (∼ 105) iterations of an
elementary sorting algorithm.
Unfortunately, calculations would be considerably more
expensive in 3D than the ones performed by Frisch and coll.
(Nature 2002).

Yann Brenier (CNRS) Fluids and gravitation McGILL, 21 Oct. 2014 25 / 28



NUMERICS

In the next slides,
we show simulations of parallel pancake gravitational interactions
with sticky collisions directly based on the minimization of the
fully space and time discrete version of the action.
The calculation entirely relies on many (∼ 105) iterations of an
elementary sorting algorithm.

Unfortunately, calculations would be considerably more
expensive in 3D than the ones performed by Frisch and coll.
(Nature 2002).

Yann Brenier (CNRS) Fluids and gravitation McGILL, 21 Oct. 2014 25 / 28



NUMERICS

In the next slides,
we show simulations of parallel pancake gravitational interactions
with sticky collisions directly based on the minimization of the
fully space and time discrete version of the action.
The calculation entirely relies on many (∼ 105) iterations of an
elementary sorting algorithm.
Unfortunately, calculations would be considerably more
expensive in 3D than the ones performed by Frisch and coll.
(Nature 2002).

Yann Brenier (CNRS) Fluids and gravitation McGILL, 21 Oct. 2014 25 / 28



reconstructed trajectories

horizontal : 51 grid points in x /vertical : 60 grid points in t
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IVP with reconstructed velocities

horizontal : 51 grid points in x /vertical : 60 grid points in t
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