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1 Partnership

1.1 Detailed list of participants

Jean-David Benamou (INRIA DR - Mokaplan AEX) works on numerical methods for
Optimal Transportation and related Monge-Ampère equations. He created the MOKA-
PLAN team in collaboration with G. Carlier.
https://who.rocq.inria.fr/Jean-David.Benamou/

Guillaume Carlier (U. Paris Dauphine Prof. - Mokaplan AEX) works in the fields of
mathematical economics, optimal transport and calculus of variations and published more
than 60 articles in these fields. He has been involved in the ANR projects OTARIE and
EVAMEF and has been part time professor at Ecole Normale Supérieure de Paris (2008-
2011).
https://www.ceremade.dauphine.fr/~carlier/

Luca Nenna (PhD Mokaplan) is starting a PhD on Multimarginal Optimal Transport.

Xavier Dupuis (Post Doc Mokaplan) is starting a PD on Infinite dimensional convexity
constrained optimization and the Principal-Agent Problem.

Edouard Oudet (Prof. U. Grenoble, Mokaplan associate member) has been involved
in several projects in the area of calculus of variations related to the approximation of
optimal transport. Its main contributions are related to the study of generalized energies
(crowd motion, incompresible flows) and optimization algorithms (Benamou-Brenier time-
dependent setting, discrete dual approach, convex parametrization).
http://www-ljk.imag.fr/membres/Edouard.Oudet/

Quentin Mérigot (Junior CNRS researcher LJK, Grenoble, Mokaplan associate member)
has been working on the numerical resolution of geometric instances of optimal transport
problems using tools from computational geometry, and on the handling of convexity con-
straints in numerical calculus of variations.
http://quentin.mrgt.fr/

Adam Oberman (McGill U., Associate Prof. - Dept. of Math) works on numerical meth-
ods for fully nonlinear and degenerate elliptic PDEs. He is a winner of the 2011 Monroe
H. Martin prize, and the 2011 CAIMS-PIMS Early Career Award in applied mathematics.
http://wiki.math.mcgill.ca/doku.php/personal/staff/aoberman/home

Brittany Froese (UT Austin Post-Doc - Department of Mathematics) works on nu-
merical methods for nonlinear PDE and optimal transportation.
http://www.ma.utexas.edu/users/bfroese/.

Tiago Salvador (McGill U. Phd Student) is in his second year of a PhD program at McGill.
He is working on filtered schemes for Non-Linear Elliptic equations. A. Oberman is his
advisor.

Brendan Pass, Assistant Prof. (U. Alberta) is a specialist of multimarginal Optimal Trans-
portation and is active in related problems in mathematical economics (including the
principal-agent problem and matching for teams type problems) and mathematical physics
(including Density Functional Theory). http://www.ualberta.ca/~pass/
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Martial Agueh, Associate Prof. (U. Victoria) works in the fields of Nonlinear partial dif-
ferential equations, kinetic theory and calculus of variations. He is interested in appli-
cations of optimal transport to geometric inequalities (e.g. Gagliardo-Nirenberg type
inequalities), nonlinear PDEs and kinetic equations, as well as their numerical aspects.
http://www.math.uvic.ca/~agueh/

Louis-Philippe Saumier, PhD (U. Victoria) is in his second year. Works on numerical
methods for Monge-Ampère based Optimal Transportation solvers under M. Agueh su-
pervision.

Adrien Blanchet (TSE, Assistant Prof.) works in the field of nonlinear PDEs with a spe-
cial emphasis on optimal transport methods and problems arising in economics, he was
the coordinator of the ANR resarch project EVAMEF.
http://idei.fr/vitae.php?i=1854&site=TSE&data=TSE&lang=fr

1.2 Nature and history of the collaboration

Oberman, Froese and Benamou collaborate on the application of Monge-Ampère solvers in
Optimal transportation since 2008.

Oberman was the advisor of Froese PhD at SFU (2009-2012) on the application of the Wide-
Stencil technique for non-linear elliptic problems in particular the Monge-Ampère problem.

Carlier and Benamou have recently started the MOKAPLAN INRIA ”exploratory action”,
they coadvise Nenna PhD on multi-marginal transport and Dupuis Post-Doc on the convexity
constraint/Principal Agent problem.

Carlier and Agueh collaborated in 2009 on a calculus of variation problem related to sharp
L1 Gagliardo-Nirenberg type inequalities and their applications to partial differential equations
involving the 1-Laplacian. They also collaborated on the notion of barycenters in the Wasser-
stein space which is related to optimal transportation.

Carlier and Blanchet started working together in 2010 within the scope of the ANR project
EVAMEF devoted to variational methods for mathematical finance and economics. They pro-
posed a new Optimal Transportation based modelisation of Cournot-Nash equilibria in Eco-
nomics.

Oudet and Mérigot have worked together on the numerical implementation of convexity
constraints in problems of calculus of variations such as the principal-agent problem, and on
discrete optimal transport.

Agueh and Blanchet worked on the long time asymptotics of the doubly nonlinear equation
using entropy methods in the case when the associated free energy functional in not displacement
convex.

In July 2013, Oudet, Carlier, Agueh, Pass, Oberman, Froese and Benamou gathered in Banff
for a ”focussed research group” week :
http://www.birs.ca/events/2013/focussed-research-groups/13frg167. The meeting was
very productive and several new collaborations were started on the occasion which are listed
in the objectives of this proposal. The proposed group is an natural extension of this French-
Canadian gathering. It brings together a combination of Optimal Transportation analysts
(Agueh, Pass) , Numericians (Oberman, Froese, Oudet, Mérigot, Benamou), Specialists of
mathematical economics (Carlier, Blanchet, Ekeland) and students

3

http://www.math.uvic.ca/~agueh/
http://idei.fr/vitae.php?i=1854&site=TSE&data=TSE&lang=fr
http://www.birs.ca/events/2013/focussed-research-groups/13frg167


2 Scientific program

2.1 Context

Optimal Transportation is a mathematical research topic which began two centuries ago with
Monge’s work on “des remblais et déblais”. This engineering problem consists in minimizing the
transport cost between two given mass densities. In the 40’s, Kantorovitch [Kan42] solved the
dual problem and interpreted it as an economic equilibrium. The Monge-Kantorovitch problem
became a specialized research topic in optimization and Kantorovitch obtained the 1975 Nobel
prize in economics for his contributions to resource allocations problems. Following the seminal
discoveries of Brenier in the 90’s, Optimal Transportation has received renewed attention from
mathematical analysts and the Fields Medal awarded in 2010 to C. Villani, who gave important
contributions to Optimal Transportation[Vil09], arrived at a culminating moment for this the-
ory. Optimal Transportation is today a mature area of mathematical analysis connected with :
regularity theory for nonlinear elliptic equations and in particular Monge-Ampère [CC95] ; gra-
dient flow formulation (a.k.a. JKO) of nonlinear diffusion equations [Ott01] [JKO98] ; image
warping [CWVB09] ; frontongenesis models in meteorology [CP84] ; mesh adaptation in fluid
models [CDF11] [CS11b] ; cosmology [FMMjS02] ; reflector design [CO08] [CKO99] ; finance
[GHLT11] and mathematical economics (see below).

The modern Optimal Transportation problem between two densities : µ defined on X ∈ Rd
and ν defined on Y ∈ Rd, can be mathematically sketched as

min
T :x∈X→y∈Y,T#µ=ν

∫
X
c(x, T (x))µ(x)dx

where c(x, y) is the ground cost measuring a ”traveling” distance (the Euclidean distance
squared is the classical Monge-Kantorovitch problem) and T#µ = ν is a notation (”push
forward”) expressing a conservation of mass property for the transportation map T .

Several important extension to the classical L2 Monge Kantorovich have recently received
attention : more general ground cost (c-convex functions, concave costs, non-linear mobili-
ties), multi-marginal Optimal Transportation, [GŚ98] [Pas12] [Pas13], partial optimal transport
[CM10] [Fig10].

These extension appear naturally in several academic economic models : the Principal
agent (aka Monopolist) problem [Car01] [Sal97] [FMCK11],, Equilibrium models [BC] [CS11a]
matching for teams [CE10], more matching [GS10] [GS11] ...
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2.2 Objectives (for the three years)

A - Improve and extend existing numerical method for ”classical” Optimal Transportation,
we mean here the L2 Monge-Kantorovitch problem. The main existing tool is the Benamou-
Froese-Oberman Monge-Ampere/Optimal Transportation solver [BFO]. Open problems are the
extension to 3D, the capture of weaker than viscosity (Aleksandrov) solutions, treatment of data
of unequal mass (aka partial Optimal Transportation).

B - Design or generalized numerical solution methods for more general ground cost c(x, y)
measuring the ”distance” between x and y appearing in Economic models [FMCK11] A con-
siderable theoretical effort has been devoted to understand the conditions on c to ensure that
well posenedness results obtained for the ”classical” Optimal Transportation (where c can be
simplified as −x · y) still hold see [Vil09]), the most recent result being known as the Ma-
Trudinger-Wang conditions [MTW05]. This leads to new Monge-Ampère equations where the
convexity of the solution is replaced by the possibly non-local notion of c-convexity. Numerics
are non existent.

C - A natural generalization of Optimal Transportation and of its relaxed Kantorovitch
formulation is the multi-marginal Optimal Transportation. This is when the data consists
in more than 2 (possibly an infinite number of) densities and the ground cost is now of the
form c(x, y, z, ...), each of these variables corresponding to each density space. Multi-marginal
Optimal Transportation appears naturally in the matching for teams paradigm. The simplest
ground cost has been studied in [GŚ98] and correspond to the generalization of the notion
of barycenters in the space of densities functions. An degraded numerical methods for this
problem is used in image processing [RPDB11]. Multi-marginal type problems also have have
applications in physics (Density Functional Theory [CFK13] [BDPGG12] , and finance (model
independent derivative pricing) [BHLP13] [GHLT]. A serious numerical effort in needed on this
problem.1.

D - An important by-product of Optimal Transportation is the observation that the Optimal
Transportation cost is a distance, called Wasserstein distance, in the space of density functions
and that in this metric a large number of non-linear diffusion equation (the prototype being the
Focker Planck equation) can be approximated by a time discrete gradient flow in the induced
metric. This is known as JKO gradient flows after their inventors [JKO98]. This idea is now
a popular analysis tool and some numerical studies have recently been published. Several of
our target equilibrium models can be formulated as one JKO step. The Wasserstein distance
and its gradient are unfortunately difficult and expensive to compute. We also plan to address
numerically this problem.

E - Because of the fundamental Brenier characterization of the Optimal Transportation map
as the gradient of a convex potential, the field is intimately linked with ”convexity constraint”
problem. By this we mean infinite dimensional optimization where the variable is constrained to
live in cone of convex functions.. A simplified version of the principal agent problem falls in this
category. Several member of the group already contributed (including very recently) numerical
method in this field [CLRM01] [EM10] [MO13] [Obe13]. A study/comparison of these methods
is needed and will possibly lead to new methods 2.

1This is the PhD subject of Luca Nenna
2This is the Post-Doc subject of Xavier Dupuis
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2.3 Work-program (for the first year)

A1 (Benamou, Froese, Oberman) - When the Optimal Transportation data is not balanced,
i.e. the densities do not have equal mass. A natural extension of the optimal transport has been
proposed by McCann and Caffareli [CM10] and revisited by Figalli [Fig10]. It is formulated as
an obstacle problem which automatically select the portion of mass corresponding to Optimal
Transportation. The numerical resolution of this problem is open and we believe ideas linked the
state constraint reformulation contained in paper [BFO] may be applied to obtain a tractable
reformulation.

A2 (Benamou, Froese) Design a scheme for Aleksandrov solution of Optimal Transportation
between atomic measure and continuous densities. The idea is to couple the notion of viscos-
ity solution with an adapted sub gradient discretization at dirac points where the notion of
Aleksandrov solution is relevant. This would offer a ”PDE” alternative to the classical gradient
methods based on costly computational geometry tools [M1́3].McCann

C1 (Carlier, Oudet, Oberman) A new numerical method for the Multi-Marginal Barycenter
problem [GŚ98]. The method uses linear programming, in an implementation that was more
efficient than expected: the cost is a multiple of the cost of the linear programming problem for
Optimal Transportation.

C2 (Benamou, Carlier, Nenna) Extension of the ALG2 CFD algorithm [BB00] to the
Barycenter problem of Gangbo-Swiech [GŚ98].

C3 (Agueh Carlier Pass Mérigot) Quantified stability for multi-marginal, barycenter and
matching for teams problems: In order to prove convergence and rate of convergence results for
numerical methods, it is pivotal to establish stability results with respect to perturbations of the
densities and weights. This is intimately related to the (uniform) convexity of the barycenter
functional. The only quantitative stability result for optimal transport plans is due to Gigli
[Gig11]. It relies on Caffarelli’s regularity theory and is therefore restricted to target measures
with density. An extension to more general target measures would have impact in the complexity
of numerical schemes for optimal transport such as [OP88].

D1 (Agueh Benamou Carlier Blanchet) Splitting methods for kinetic equations, the idea is
to use one JKO step to deal with the non-linear velocity advection part of kinetic equations
[CG04]. This seems to be relevant to granular media equation [Agu13], and also may offer a
completely new method for Liouville equations arising from Geometrical Optics [BCKP02].

D2 (Benamou Carlier Merigot Oudet Blanchet) A Steepest descent projected gradient algo-
rith for JKO type computations. The algorithm performs the optimization in the displacement
(optimal map) space. This offers nice convexity properties for the line search but requires con-
vexity constraints (objective E) projections. We think that this may be the cheapest way of
computing economic equilibrium such as Cournot-Nash [BC].

E1 (Benamou, Carlier, Dupuis, Oudet, Mérigot, Oberman) Convexity constraint algorithms
need to be compared and assessed. The Principal Agent problem will be numerically investi-
gated.

NOTA : Objective B is completely open and very challenging, we will discuss it but this is
prospective.
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3 Budget

• Based on our successful focused research group experience in Banff this summer, we plan
to bring everybody together and hold one research meeting (one week) per year. This
will consist in morning informal thematic presentations and research in groups in the
afternoon. This will be held alternately in France and Canada. The 20KEuro budget
will be devoted to fund travel and accommodation. Next meeting will be in France the
last one being in Banff. Budget permitting, seniors scientists of our networks may also be
invited (Brenier, Ekeland, McCann, Caffarelli, Gangbo, Villani, Figalli, ...)

• Participants already collaborate on regular bi-lateral basis and use their local funds for
this :

For the Mokaplan team, the ISOTACE contract (ANR-12-MONU-0013 (2012-2016)) 3.
https://project.inria.fr/isotace/

Oudet and Mérigot are active members of ANR Tommi : Transport optimal, mthodes
multiphysiques et image. http://tommi.imag.fr/

A. Oberman will apply for matching funds from the Applied Mathematics Laboratory at
the U. of Montreal Centre Recherche Mathematique http://www.crm.umontreal.ca/en/
to bring researchers from the group to work in Canada.

• We are also currently applying to organize a large BIRS Banff Meeting on Optimal Trans-
portation in 2015.

4 Added value

The team will naturally fit and strengthen the Mokaplan INRIA group of Carlier and Ben-
amou.

It will be most helpful to the students (Nenna, Dupuis, Saumier, Salvador) as their research
subjects are embedded in the objectives and the associate team brings some of the best inter-
national specialists in the field.

This project will unite mathematical economists, analysts, and numerical experts, whose
combined expertise should lead to numerical solvers for several difficult and important open
problems in economic theory. The developed numerical method will also be useful in other
applicative domains such as image processing, biology ... This should have a profound impact
on all the participants’ research, exposing those with a more theoretical background to state-
of-the-art numerical techniques, while introducing those with computational expertise to both
new problems and new insights into old problems, which are ripe for numerical exploration.

3It funds in particular the Post-Doc of X. Dupuis
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5 Other remarks
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[M1́3] Quentin Mérigot. A comparison of two dual methods for discrete optimal trans-
port. Geometric Science of Information, LNCS 8085, 389-396, 2013.
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MOKALIEN WS SCHEDULE

Sept 3-10 Sept 22-26 Oct 13-17 Oct 20-24

Oudet OK OK - OK

Brenier - OK OK OK ( partial)

Merigot - - OK OK

Blanchet OK OK OK OK

Mirebeau - OK OK OK

Benamou OK OK OK OK

Carlier OK OK OK OK

Santambrogio - OK OK OK (partial)

Oberman OK OK OK OK

Froese - - maybe maybe

Agueh maybe maybe OK maybe

Pass - - OK OK
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