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» If x+ee X then Acu(x) := u(x+e) —2u(x) + u(x —e).

» Otherwise A.u(x) involves boundary values of u, on 0.

Definition (Degenerate ellipticity)

An operator D : U — RX is Degenerate Elliptic with stencil
V C 72 if, for each x € X, Du(x) is a non-decreasing locally
Lipschitz function of A.u(x), e € V.

Du=p onX

Find u: XUO0Q — R s.t.
u=o on 09Q).
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Proposition (Approximate Consistency)
Wide Stencil

For any M € S}, by Hadamard'’s inequality

o\ MF) (g, Mg)
{fetcv (f,f) (g.8)

orthogonal

Dyup(x) =

> det(M).

Equality holds iff {f,g} is M-orthogonal (i.e. (f,Mg) =0).

Proof.
Denote f := 7 /||f]|, g := g/||lg]|, which form an orthonormal
basis of R?. Then, recognizing a Gram matrix

(f, Mf) (f, Mg)

de(M) = (f, Mg) (g, Mg)

= (f, Mf) (g, Mg) — (f, Mg)* [
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Figure : Relative consistency error (Dy(up) — det(M)) /Dy (um),
with several stencils V. Matrix M € S5 has condition number
k2 = ||[M||||M~1|| and eigenvector (cos®,sin®).
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Figure : Left: An M-obtuse superbase, and the unit ball
{(e,Me) <1}.



Monotone
Consistent
Monge-
Ampere

Jean-Marie
Mirebeau

MA-LBR

Monge-Ampere with Lattice Basis Reduction

Lattice Basis Reduction is the study of preferred coordinate
systems for lattices (discrete subgroups of RY).

Definition (Superbase of Z?)

A superbase is a triplet (e, f, g) € (%Z?)? such that
e+ f+g=0and |det(f,g)] = 1. Itissaid M-obtuse, where
M € S, iff (e, Mf) <0, (f,Mg) <0, (g, Me) < 0.

(3) (o (3)
(é% l

-1

Figure : Left: An M-obtuse superbase, and the unit ball
{(e, Me) < 1}. Right: Likewise under change of coordinates M?.
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-g e -g e - e
f f f f f f
-e g -e g -e g
- e
\
Q] f f
—

Figure : h(a, b, c) can be interpreted as a subgradient measure.

Proposition (Consistency)
For any M € S, x € X, Dyupm(x) > det(M), with equality iff
V contains an M obtuse superbase.
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Figure : Relative consistency error (Dy(up) — det(M))/Dy (um),
with several stencils V. Matrix M € S5 has condition number
k2 = ||[M||||M~1|| and eigenvector (cos®,sin®).
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v

Figure : Relative consistency error (Dy(um) — det(M))/Dy (um),
with several stencils V. Matrix M € S5 has condition number
2= |IM||[|[M~1]| and eigenvector (cos®,sin@).
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Figure : Relative consistency error (Dy (um) — det(M))/Dy (um),
with stencils V of radius 1,2,3. Top: wide stencil. Bottom:
MA-LBR. Matrix has eigenvalues 62,1, 1 and eigenvector v € S2.
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@

Figure : Relative consistency error (Dy(um) — det(M))/Dy(um),
with stencils V of radius 1,2, 3. Top: wide stencil. Bottom:
MA-LBR. Matrix has eigenvalues 672,1,1 and eigenvector v € 5.
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Figure : Relative consistency error (Dy(upm) — det(M))/Dy(um),
with stencils V of radius 1,2,3. Top: wide stencil. Bottom:
MA-LBR. Matrix RDiag(6,1,1/6)R where R is the reflexion of axis
v~ G2
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Figure : Left: largest element of an M-obtuse superbase. Right:
eigenvector of M. Matrix M € S has condition number
k2 = ||[M||||M~1|| and eigenvector (cos®,sin®).
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Consistency region associated to a stencil element
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Figure : Active stencil for quadratic forms uy;, M € S5, of various
orientations. Left: {up < 1}. Center: MA-LBR scheme. Right:
Wide-Stencil scheme.

Theorem (Optimal locality)

Let D : U — RX be a Degenerate Elliptic operator, with finite
symmetric stencil V. Let M € S, x € X.

If Dun(x) = det(N) for all N is a neighborhood of M,
then Hull(V') contains an M-obtuse superbase.
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Figure : Active stencil for quadratic forms uy;, M € S5, of various
orientations. Left: {up < 1}. Center: MA-LBR scheme. Right:
Wide-Stencil scheme.

Theorem (Optimal locality)

Let D : U — RX be a Degenerate Elliptic operator, with finite
symmetric stencil V. Let M € S, x € X.

If Dun(x) = det(N) for all N is a neighborhood of M,
then Hull(V') contains an M-obtuse superbase.
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orientations. Left: {up < 1}. Center: MA-LBR scheme. Right:
Wide-Stencil scheme.

Theorem (Optimal locality)

Let D : U — RX be a Degenerate Elliptic operator, with finite
symmetric stencil V. Let M € S, x € X.

If Dun(x) = det(N) for all N is a neighborhood of M,
then Hull(V') contains an M-obtuse superbase.
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orientations. Left: {up < 1}. Center: MA-LBR scheme. Right:
Wide-Stencil scheme.

Theorem (Optimal locality)

Let D : U — RX be a Degenerate Elliptic operator, with finite
symmetric stencil V. Let M € S, x € X.

If Dun(x) = det(N) for all N is a neighborhood of M,
then Hull(V') contains an M-obtuse superbase.
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Figure : Active stencil for quadratic forms uy;, M € S5, of various
orientations. Left: {up < 1}. Center: MA-LBR scheme. Right:
Wide-Stencil scheme.

Theorem (Optimal locality)

Let D : U — RX be a Degenerate Elliptic operator, with finite
symmetric stencil V. Let M € S, x € X.

If Dun(x) = det(N) for all N is a neighborhood of M,
then Hull(V') contains an M-obtuse superbase.
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orientations. Left: {up < 1}. Center: MA-LBR scheme. Right:
Wide-Stencil scheme.

Theorem (Optimal locality)

Let D : U — RX be a Degenerate Elliptic operator, with finite
symmetric stencil V. Let M € S, x € X.

If Dun(x) = det(N) for all N is a neighborhood of M,
then Hull(V') contains an M-obtuse superbase.
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Figure : Active stencil for quadratic forms uy;, M € S5, of various
orientations. Left: {up < 1}. Center: MA-LBR scheme. Right:
Wide-Stencil scheme.

Theorem (Optimal locality)

Let D : U — RX be a Degenerate Elliptic operator, with finite
symmetric stencil V. Let M € S, x € X.

If Dun(x) = det(N) for all N is a neighborhood of M,
then Hull(V') contains an M-obtuse superbase.
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Figure : Active stencil for quadratic forms uy;, M € S5, of various
orientations. Left: {up < 1}. Center: MA-LBR scheme. Right:
Wide-Stencil scheme.

Theorem (Optimal locality)

Let D : U — RX be a Degenerate Elliptic operator, with finite
symmetric stencil V. Let M € S, x € X.

If Dun(x) = det(N) for all N is a neighborhood of M,
then Hull(V') contains an M-obtuse superbase.
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Figure : Active stencil for quadratic forms uy;, M € S5, of various
orientations. Left: {up < 1}. Center: MA-LBR scheme. Right:
Wide-Stencil scheme.

Theorem (Optimal locality)

Let D : U — RX be a Degenerate Elliptic operator, with finite
symmetric stencil V. Let M € S, x € X.

If Dun(x) = det(N) for all N is a neighborhood of M,
then Hull(V') contains an M-obtuse superbase.
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Figure : Active stencil for quadratic forms uy;, M € S5, of various
orientations. Left: {up < 1}. Center: MA-LBR scheme. Right:
Wide-Stencil scheme.

Theorem (Optimal locality)

Let D : U — RX be a Degenerate Elliptic operator, with finite
symmetric stencil V. Let M € S, x € X.

If Dun(x) = det(N) for all N is a neighborhood of M,
then Hull(V') contains an M-obtuse superbase.
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Figure : Active stencil for quadratic forms uy;, M € S5, of various
orientations. Left: {uy < 1}. Center: MA-LBR scheme. Right:
Wide-Stencil scheme.

Theorem (Optimal locality)

Let D : U — RX be a Degenerate Elliptic operator, with finite
symmetric stencil V. Let M € S, x € X.

If Dun(x) = det(N) for all N is a neighborhood of M,
then Hull(V) contains an M-obtuse superbase.
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Figure : Active stencil for quadratic forms uy;, M € S5, of various
orientations. Left: {up < 1}. Center: MA-LBR scheme. Right:
Wide-Stencil scheme.

Theorem (Optimal locality)

Let D : U — RX be a Degenerate Elliptic operator, with finite
symmetric stencil V. Let M € S, x € X.

If Dun(x) = det(N) for all N is a neighborhood of M,
then Hull(V') contains an M-obtuse superbase.
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Figure : Active stencil for quadratic forms uy;, M € S5, of various
orientations. Left: {up < 1}. Center: MA-LBR scheme. Right:
Wide-Stencil scheme.

Theorem (Optimal locality)

Let D : U — RX be a Degenerate Elliptic operator, with finite
symmetric stencil V. Let M € S, x € X.

If Dun(x) = det(N) for all N is a neighborhood of M,
then Hull(V') contains an M-obtuse superbase.
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Figure : Active stencil for quadratic forms uy;, M € S5, of various
orientations. Left: {up < 1}. Center: MA-LBR scheme. Right:
Wide-Stencil scheme.

Theorem (Optimal locality)

Let D : U — RX be a Degenerate Elliptic operator, with finite
symmetric stencil V. Let M € S, x € X.

If Dun(x) = det(N) for all N is a neighborhood of M,
then Hull(V') contains an M-obtuse superbase.
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Figure : Active stencil for quadratic forms uy;, M € S5, of various
orientations. Left: {up < 1}. Center: MA-LBR scheme. Right:
Wide-Stencil scheme.

Theorem (Optimal locality)

Let D : U — RX be a Degenerate Elliptic operator, with finite
symmetric stencil V. Let M € S, x € X.

If Dun(x) = det(N) for all N is a neighborhood of M,
then Hull(V') contains an M-obtuse superbase.
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Figure : Active stencil for quadratic forms uy;, M € S5, of various
orientations. Left: {up < 1}. Center: MA-LBR scheme. Right:
Wide-Stencil scheme.

Theorem (Optimal locality)

Let D : U — RX be a Degenerate Elliptic operator, with finite
symmetric stencil V. Let M € S, x € X.

If Dun(x) = det(N) for all N is a neighborhood of M,
then Hull(V') contains an M-obtuse superbase.
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Figure : Active stencil for quadratic forms uy;, M € S5, of various
orientations. Left: {up < 1}. Center: MA-LBR scheme. Right:
Wide-Stencil scheme.

Theorem (Optimal locality)

Let D : U — RX be a Degenerate Elliptic operator, with finite
symmetric stencil V. Let M € S, x € X.

If Dun(x) = det(N) for all N is a neighborhood of M,
then Hull(V') contains an M-obtuse superbase.
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Figure : Active stencil for quadratic forms uy;, M € S5, of various
orientations. Left: {up < 1}. Center: MA-LBR scheme. Right:
Wide-Stencil scheme.

Theorem (Optimal locality)

Let D : U — RX be a Degenerate Elliptic operator, with finite
symmetric stencil V. Let M € S, x € X.

If Dun(x) = det(N) for all N is a neighborhood of M,
then Hull(V') contains an M-obtuse superbase.
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Figure : Active stencil for quadratic forms uy;, M € S5, of various
orientations. Left: {up < 1}. Center: MA-LBR scheme. Right:
Wide-Stencil scheme.

Theorem (Optimal locality)

Let D : U — RX be a Degenerate Elliptic operator, with finite
symmetric stencil V. Let M € S, x € X.

If Dun(x) = det(N) for all N is a neighborhood of M,
then Hull(V') contains an M-obtuse superbase.
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Figure : Active stencil for quadratic forms uy;, M € S5, of various
orientations. Left: {up < 1}. Center: MA-LBR scheme. Right:
Wide-Stencil scheme.

Theorem (Optimal locality)

Let D : U — RX be a Degenerate Elliptic operator, with finite
symmetric stencil V. Let M € S, x € X.

If Dun(x) = det(N) for all N is a neighborhood of M,
then Hull(V') contains an M-obtuse superbase.
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Figure : Active stencil for quadratic forms uy;, M € S5, of various
orientations. Left: {up < 1}. Center: MA-LBR scheme. Right:
Wide-Stencil scheme.

Theorem (Optimal locality)

Let D : U — RX be a Degenerate Elliptic operator, with finite
symmetric stencil V. Let M € S, x € X.

If Dun(x) = det(N) for all N is a neighborhood of M,
then Hull(V') contains an M-obtuse superbase.
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Existence of an M-obtuse superbase
Selling’s Algorithm (1857).
Set gy +— (—1,-1), e1 < (1,0), e «+ (0,1).
While the superbase (ep, €1, 2) is not M-obtuse do
Find 0 </ < j <2 such that (ej, Mej) > 0,
Set (60, €1, 6‘2) — (e,- — €, €, —e,-).
Proposition

Selling’s algorithm terminates, and the final state of (ep, €1, €2)
is an M-obtuse superbase.
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Ampere Selling’s Algorithm (1857).
et Set ey + (—1,—1), e + (1,0), e <« (0,1).
While the superbase (ep, €1, 2) is not M-obtuse do
Find 0 </ < j <2 such that (ej, Mej) > 0,

MA-LBR Set (60, e, 6‘2) — (e,- — €, €, —e,-).
Proposition

Selling’s algorithm terminates, and the final state of (ep, €1, €2)
is an M-obtuse superbase.

Proof.
Introduce the energy: with |le||p := \/ (e, Me)

E(eo, 1, 2) = [leollty + llexlty + llealliy-

Only finitely many superbases have their energy below a given
bound.
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Commens Existence of an M-obtuse superbase

Ampere Selling’s Algorithm (1857).
s Set eg  (—1,-1), e « (1,0), e + (0,1).
While the superbase (ep, €1, 2) is not M-obtuse do
Find 0 </ < j <2 such that (ej, Mej) > 0,
MA-LBR Set (eg, e1,e) < (ej — ¢}, €, —¢j).
Proposition
Selling’s algorithm terminates, and the final state of (ep, €1, €2)
is an M-obtuse superbase.

Proof.
Introduce the energy: with |le||p := \/ (e, Me)

E(eo, e1,€2) = |leollfy + lleallhs + lleallis-
Only finitely many superbases have their energy below a given
bound. Then observe that
8(6,’ — €, €, —e,-) = 5(60, €1, 62) — 4<e,-, I\/Iej>.
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Pros:

» More accurate than the Wide Stencil scheme, although not

(much) more costly or difficult to implement.
MA-LBR

» Consistency for all quadratic functions uy, with condition
number ||M||||M~1|| bounded by some kg, is achieved with
a finite stencil.

Cons:
» How to a-priori choose the stencil size 7
In the following, we introduce an automatic, guaranteed and

parameter free stencil construction, by reinterpreting and
extending Selling’s Algorithm to non-quadratic maps.
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Adaptivity, and the Stern-Brocot tree
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The Stern Brocot tree

e
@ |

AN AN
N\ /\ NN L

Q

o |

He

b b+B B B+l

Obtain the (n + 1)-th line by inserting b+b’ between
consecutive elements 7 and " of the n-th line.

» Each rational number appears exactly once, in its
irreducible form.

o



Comimeme - Off topic: Fun facts on the Stern-Brocot tree
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Figure : Dyadic rationals can be organized in a similar (complete
infinite binary) tree. Some images from Wikipedia.

Minkowski's question mark function, 7 : [0, 1] — [0, 1]
?(x) is the continuous function mapping the Stern-Brocot labels
in [0, 1] to the dyadic labels. Properties:

» 7(x) = 0 for almost every x. (“Slippery Devil's staircase”)

In2 @ ._ 145
2In®' ¥ T T 2 -

» ?(x) is rational for every quadratic irrational.

» 7 is Holder continuous, with exponent
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Figure : Dyadic rationals can be organized in a similar (complete
infinite binary) tree. Some images from Wikipedia.

Minkowski's question mark function, 7 : [0, 1] — [0, 1]
?(x) is the continuous function mapping the Stern-Brocot labels
in [0, 1] to the dyadic labels. Properties:

» ?(x) = 0 for almost every x. (“Slippery Devil's staircase”)

» 7 is Holder continuous, with exponent 2'|”n2¢, o= 1+2‘/§.

» 7(x) is rational for every quadratic irrational.
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Off topic: Fun facts on the Stern-Brocot tree
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Figure : Dyadic rationals can be organized in a similar (complete
infinite binary) tree. Some images from Wikipedia.

Minkowski's question mark function, 7 : [0, 1] — [0, 1]

?(x) is the continuous function mapping the Stern-Brocot labels

in [0, 1] to the dyadic labels. Properties:

» ?(x) = 0 for almost every x. (“Slippery Devil's staircase”)

In2 ¢ ._ 1+V5

» 7 is Holder continuous, with exponent SInd >

» 7(x) is rational for every quadratic irrational.
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Definition

For each node Zizl, of the Stern-Brocot tree introduce

=(ab), g=(d,V), e=(a+d,b+b)=Ffag.

Proposition

Ife=f @ g then (e, —f,—g) is a superbase of Z2. All
superbases are of that form, up to a permutation of their
elements, and a symmetry w.r.t. the origin or an axis.
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Adaptivity

Definition
/ .
For each node Ziz, of the Stern-Brocot tree introduce

f=(ab), g=(a,b), e=(a+d, b+bt)=Ffdg.

Proposition

Ife=f @ g then (e, —f,—g) is a superbase of Z2. All
superbases are of that form, up to a permutation of their
elements, and a symmetry w.r.t. the origin or an axis.

Proposition

Selling’s algorithm explores a single branch of the Stern-Brocot
tree, characterized by (f, Mg) < 0.

Tbb b e=fog
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From quadratic to discrete convex functions

Definition (Hexagonal test)
Lete=fpg,uecl xeX

Heu(x) := Acu(x) — Aru(x) — Agu(x).

For a quadratic function:

Heum(x) = ((f +g), M(f +g))—(f, Mf)— (g, Mg) = 2(f, Mg).
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Adaptivity

From quadratic to discrete convex functions

Definition (Hexagonal test)
Lete=fpg,uecl xeX

Heu(x) := Acu(x) — Aru(x) — Agu(x).
For a quadratic function:
Heum(x) = ((f+g), M(f +g)) —(f, Mf)— (g, Mg) = 2(f, Mg).

Test predicate is increasing along tree branches
The childrenof e=f @ g, are f deand ed g.

(f,Me) = (f, Mg) + (f, Mf)
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Adaptivity

From quadratic to discrete convex functions

Definition (Hexagonal test)
Lete=fpg,uecl xeX

Heu(x) := Acu(x) — Aru(x) — Agu(x).

For a quadratic function:

HeuM(X) = <(f+g)a M(f+g)>_<f7 Mf>_<g7 Mg> = 2<f7 Mg>
Test predicate is increasing along tree branches

The childrenof e=f @ g, are f deand ed g.

(f, Me) = (f, Mg) + (f, Mf)
Hrgeu(x) = Heu(x) + Aru(x + €) + Aru(x — e).

(Assuming x,x te,x + f,x £ g € Q)
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The adaptive MA-LBR operator Dy u(x)

Initialize D < oo, vector f < (1,0), list G « [(0,1),(—1,0)].
While G is non-empty do
Denote by g the first element of G, and set e := f + g.
If e € V(x), or [e € Va(x) and Heu(x) < 0]
then prepend e to G, and set
D <+ min{D, h(Aju(X),Afu(x),A;u(X))}
else remove g from G and set f < g.

Return Dyu(x) :=D.
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Adaptivity

The adaptive MA-LBR operator Dy u(x)

Initialize D < oo, vector f < (1,0), list G « [(0,1),(—1,0)].
While G is non-empty do
Denote by g the first element of G, and set e := f + g.
If e € V(x), or [e € Va(x) and Heu(x) < 0]
then prepend e to G, and set
D « min{D, h(Afu(x), Afu(x), Afu(x))}
else remove g from G and set f < g.
Return Dyu(x) :=D.
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The adaptive MA-LBR operator Dy u(x)

Initialize D < oo, vector f < (1,0), list G « [(0,1),(—1,0)].
While G is non-empty do
Denote by g the first element of G, and set e := f + g.
If e € V(x), or [e € Va(x) and Heu(x) < 0]
then prepend e to G, and set
D <+ min{D, h(Aju(X),Afu(x),A;u(X))}
else remove g from G and set f < g.

Return Dyu(x) :=D.
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Adaptivity

The adaptive MA-LBR operator Dy u(x)

Initialize D < oo, vector f < (1,0), list G « [(0,1),(—1,0)].
While G is non-empty do
Denote by g the first element of G, and set e := f + g.
If e € V(x), or [e € Va(x) and Heu(x) < 0]
then prepend e to G, and set
D <+ min{D, h(Aju(X),Afu(x),A;u(X))}
else remove g from G and set f < g.

Return Dyu(x) :=D.

Theorem (Adaptive pruning equals extensive sweeping)

Let V(x), x € X, be stencils (subject to mild conditions), and
let V(x) :=V(x) U Va(x). B
If Dyu >0 on X, or Dyu >0 on X, then Dyu = Dyuon X,
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Numerical results
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Domain Q2 =]0, 1[?. A strictly convex test function
U € C%(Q,R) is recovered by solving: a discretization of
Numerical det(V2u) = det(V2U) on Q

results

u=U on 00

u convex.
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Domain Q =]0,1[2. A strictly convex test function
U € C%(Q,R) is recovered by solving: find u: X U0Q — R
| such that
results Du = det(V2U) on X
{u =U on 0f2.



Comiseme Test protocol
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Domain Q =]0,1[2. A strictly convex test function
U € C%(Q,R) is recovered by solving: find u: X U0Q — R
| such that
results Du = det(V2U) on X
{u =U on 0f2.

We use a damped Newton solver, with a strictly convex
initialization satisfying the boundary conditions.
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Compared numerical schemes

» Finite Differences.

DFD = A(lyo)A(OJ) - (A(1,1) - A(l,—l))2/16'

Eight point
formula
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» Wide-Stencil scheme of Froese and Oberman.

Afu(x)  Afu(x)
DFOu(x) := f x —£
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Numerical orthogonal
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Comimene Compared numerical schemes

Monge-
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» Finite Differences.

Jean-Marie

Mirebeau ’DFD — A(170)A(071) - (A(171) - A(l,—l))2/16'

» Wide-Stencil scheme of Froese and Oberman.
Afu(x) Afu(x)

DYPu(x) == X
v {reicv |2 Igl1?
Numerical orthogonal
results
» MA-LBR scheme.
DIBR (%) = {e,m,ri?cv h(Afu(x), Afu(x), A;u(x)).
superbase

With
adaptivity



Monotone
Consistent
Monge-
Ampere

Quadratic test case: U(x) := 1(x, Mx), k =10, = 7/3

Jean-Marie

Mirebeau
_ Wide Stendil (WS), 48 points _ oy i e
__ __Wide Stencil (WS), 24 points vl T T T T T
_ __ Wide Stencil (WS), 16 points ;
__ WideStencil (WS), 8 points o
Finite Differences (FD) 12::
Numerical MA-LBR L
T 10 2 2 s 10 20

results



Monotone
Consistent
Monge-
Ampere

Jean-Marie
Mirebeau

Numerical
results

Quadratic test case: U(x) := 1(x, Mx), k =10, = 7/3

Wide Stencil (WS), 48 points Quadratic: L™ error

. . ) 1074
_ __ Wide Stencil (WS), 16 points. ,
10°
__ Wide Stencil (WS), 8 paints N
10
Finite Differences (FD)
1013

MA-LBR

10 20 30 50 100 200

Smoothed cone: U(x) := /62 + [|x — xo[|2, with 6 := 0.1
and xp := (1/2,1/2).

Cone: L* error
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Smoothed cone: U(x) := /62 + [|x — xo||2, with 6 := 0.1
and xp :=(1/2,1/2).

Cone: number of iterations




Monotone

oreme Quadratic test case: U(x) := 3(x, Mx), k = 10, § = /3

Monge-

Ampere
Jean-Marie ____Wide Stencil (WS), 48 points _ ___ Quadratic: L™ error
Mirebeau ) X . 0l — — — — — — — — —
__ __Wide Stencil (WS), 24 points ) e
10~
____ Wide Stencil (WS), 16 points s
10
_ _ WideStencil (WS), 8 points. o
10
Finite Differences (FD)
10
MA-LBR
10 2030 5 100 20
Numerical
results
Singular: U(x) = /2 — ||x||?
Singular: L* error
001 >
-y
S
0.001 \,\x ~
104 o

n
10 20 30 50 100 200




Monotone
Consistent
Monge-
Ampere

Jean-Marie
Mirebeau

Numerical
results

Quadratic test case: U(x) := 1(x, Mx), k =10, = 7/3
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Smoothed cone, L™ error

Figure : Log-Log plot of the L error, as a function of resolution n,
for the three 3D test cases. Discretization set X C Q has n® points.
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Mirebeau » Lattice classification: obtuse superbases.

» Arithmetic: the Stern-Brocot tree.

Monge-Ampere schemes developed with these tools are:

» Consistent (# approximately consistent Wide Stencil).
» Degenerate Elliptic (# naive finite differences).

Conclusion

» Cheap thanks to adaptivity.

Future work / Questions left open

» Alexandroff solutions of MA require other approaches, e.g.
“Geometric’ schemes.

» No Stern-Brocot tree in 3D.
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