Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Monotone and Consistent discretization of the Monge-Ampere operator

Jean-Marie Mirebeau

CNRS, University Paris Dauphine

October 21, 2014

Joint work with Jean-David Benamou and Francis Collino.

Jean-Marie

Motivations

Mirebeau Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

The Wide Stencil scheme

The MA-LBR scheme (Monge-Ampère with Lattice Basis Reduction)

Adaptivity, and the Stern-Brocot tree

Numerical results

Conclusion

Jean-Marie

Motivations

Mirebeau Motivations

The Wide Stencil scher

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

The MA-LBR scheme (Monge-Ampère with Lattice Basis Reduction)

Adaptivity, and the Stern-Brocot tree

Numerical results

Conclusion

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

The Monge-Ampere PDE

Let Ω be a bounded convex domain, let $\rho \in C^0(\overline{\Omega}, \mathbb{R}_+)$, and let $\sigma \in C^0(\partial\Omega, \mathbb{R}_+)$ be convex on any segment of $\partial\Omega$. Find u s.t.

	$\int \det(abla^2 u) = ho$	on Ω
ł	$u = \sigma$	on $\partial \Omega$
	u (u	convex

Motivation: isolate the difficulty associated to the Monge-Ampere operator $det(\nabla^2 u)$ appearing in OT.

Optimal transport

Let Ω' be another convex domain, and let $\rho' \in C^0(\overline{\Omega'}, \mathbb{R}_+)$ with $\int_{\Omega} \rho = \int_{\Omega'} \rho'$. OT $\rho \to \rho'$ is the gradient ∇u of a convex potential

 $\begin{cases} \rho'(\nabla u) \det(\nabla^2 u) = \rho & \text{on } \Omega\\ [\nabla u](\Omega) = \Omega'\\ u & \text{convex} \end{cases}$

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

The Monge-Ampere PDE

Let Ω be a bounded convex domain, let $\rho \in C^0(\overline{\Omega}, \mathbb{R}_+)$, and let $\sigma \in C^0(\partial\Omega, \mathbb{R}_+)$ be convex on any segment of $\partial\Omega$. Find u s.t.

$\int \det(\nabla^2 u) = \rho$	on Ω
$u = \sigma$	on $\partial \Omega$
Lu	convex

Motivation: isolate the difficulty associated to the Monge-Ampere operator $det(\nabla^2 u)$ appearing in OT.

Optimal transport

Let Ω' be another convex domain, and let $\rho' \in C^0(\overline{\Omega'}, \mathbb{R}_+)$ with $\int_{\Omega} \rho = \int_{\Omega'} \rho'$. OT $\rho \to \rho'$ is the gradient ∇u of a convex potential

 $\begin{cases} \rho'(\nabla u) \det(\nabla^2 u) = \rho & \text{on } \Omega\\ [\nabla u](\Omega) = \Omega'\\ u & \text{convex} \end{cases}$

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

The Monge-Ampere PDE

Let Ω be a bounded convex domain, let $\rho \in C^0(\overline{\Omega}, \mathbb{R}_+)$, and let $\sigma \in C^0(\partial\Omega, \mathbb{R}_+)$ be convex on any segment of $\partial\Omega$. Find u s.t.

$\int \det(\nabla^2 u) = \rho$	on Ω
$u = \sigma$	on $\partial \Omega$
Lu	convex

Motivation: isolate the difficulty associated to the Monge-Ampere operator $det(\nabla^2 u)$ appearing in OT.

Optimal transport

Let Ω' be another convex domain, and let $\rho' \in C^0(\overline{\Omega'}, \mathbb{R}_+)$ with $\int_{\Omega} \rho = \int_{\Omega'} \rho'$. OT $\rho \to \rho'$ is the gradient ∇u of a convex potential

$$\begin{cases} \rho'(\nabla u) \det(\nabla^2 u) = \rho & \text{on } \Omega\\ [\nabla u](\Omega) = \Omega' & \\ u & \text{convex} \end{cases}$$

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

The Monge-Ampere PDE

Let Ω be a bounded convex domain, let $\rho \in C^0(\overline{\Omega}, \mathbb{R}_+)$, and let $\sigma \in C^0(\partial\Omega, \mathbb{R}_+)$ be convex on any segment of $\partial\Omega$. Find u s.t.

$\int \det(\nabla^2 u) = \rho$	on Ω
$u = \sigma$	on $\partial \Omega$
Lu	convex

Motivation: isolate the difficulty associated to the Monge-Ampere operator $det(\nabla^2 u)$ appearing in OT.

Optimal transport

Let Ω' be another convex domain, and let $\rho' \in C^0(\overline{\Omega'}, \mathbb{R}_+)$ with $\int_{\Omega} \rho = \int_{\Omega'} \rho'$. OT $\rho \to \rho'$ is the gradient ∇u of a convex potential

$$\begin{cases} \rho'(\nabla u) \det(\nabla^2 u) = \rho & \text{on } \Omega\\ [\nabla u](\Omega) = \Omega'\\ u & \text{convex} \end{cases}$$

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

The Monge-Ampere PDE

Let Ω be a bounded convex domain, let $\rho \in C^0(\overline{\Omega}, \mathbb{R}_+)$, and let $\sigma \in C^0(\partial\Omega, \mathbb{R}_+)$ be convex on any segment of $\partial\Omega$. Find u s.t.

$\int \det(\nabla^2 u) = \rho$	on Ω
$u = \sigma$	on $\partial \Omega$
Lu	convex

Motivation: isolate the difficulty associated to the Monge-Ampere operator $det(\nabla^2 u)$ appearing in OT.

Optimal transport

Let Ω' be another convex domain, and let $\rho' \in C^0(\overline{\Omega'}, \mathbb{R}_+)$ with $\int_{\Omega} \rho = \int_{\Omega'} \rho'$. OT $\rho \to \rho'$ is the gradient ∇u of a convex potential

 $\begin{cases} \rho'(\nabla u) \det(\nabla^2 u) = \rho & \text{on } \Omega\\ [\nabla u](\Omega) = \Omega'\\ u & \text{convex} \end{cases}$

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Solution Regularity and Scheme Robustness

Each discretization of det $(\nabla^2 u)$ take clues from a regularity theory for the Monge-Ampere PDE.

► Smooth solutions ~> Finite Differences schemes.

Pros: Simple implementation. Accurate when they work. Cons: Solver needs a good guess. Only capture smooth solutions.

Viscosity solutions ~ Degenerate Elliptic schemes. Pros: Convergence guarantees for some discrete iterative solvers. Cons: Only capture viscosity solutions.

• Alexandroff solutions \sim Power-Diagram based schemes. Pros: Capture the most general solutions, e.g. $u = |\cdot|$, $\rho = \pi \delta_0$. Cons: Complex implementation, involving a global adaptive mesh

Jean-Marie Mirebeau

- Motivations
- Wide Stencil
- MA-LBR
- Adaptivity
- Numerical results
- Conclusion

Solution Regularity and Scheme Robustness

Each discretization of det $(\nabla^2 u)$ take clues from a regularity theory for the Monge-Ampere PDE.

- ► Smooth solutions ~→ Finite Differences schemes.
 - Pros: Simple implementation. Accurate when they work. Cons: Solver needs a good guess. Only capture smooth solutions.
- ► Viscosity solutions ~> Degenerate Elliptic schemes. Pros: Convergence guarantees for some discrete iterative solvers. Cons: Only capture viscosity solutions.
- Alexandroff solutions \rightsquigarrow Power-Diagram based schemes. Pros: Capture the most general solutions, e.g. $u = |\cdot|$, $\rho = \pi \delta_0$. Cons: Complex implementation, involving a global adaptive mesh.

Jean-Marie Mirebeau

- Motivations
- Wide Stencil
- MA-LBR
- Adaptivity
- Numerical results
- Conclusion

Solution Regularity and Scheme Robustness

Each discretization of det $(\nabla^2 u)$ take clues from a regularity theory for the Monge-Ampere PDE.

- ► Smooth solutions ~→ Finite Differences schemes.
 - Pros: Simple implementation. Accurate when they work. Cons: Solver needs a good guess. Only capture smooth solutions.
- ► Viscosity solutions ~> Degenerate Elliptic schemes. Pros: Convergence guarantees for some discrete iterative solvers. Cons: Only capture viscosity solutions.
- Alexandroff solutions \rightsquigarrow Power-Diagram based schemes. Pros: Capture the most general solutions, e.g. $u = |\cdot|$, $\rho = \pi \delta_0$. Cons: Complex implementation, involving a global adaptive mesh.

Jean-Marie Mirebeau

- Motivations
- Wide Stencil
- MA-LBR
- Adaptivity
- Numerical results
- Conclusion

Solution Regularity and Scheme Robustness

Each discretization of det $(\nabla^2 u)$ take clues from a regularity theory for the Monge-Ampere PDE.

- ► Smooth solutions ~→ Finite Differences schemes.
 - Pros: Simple implementation. Accurate when they work. Cons: Solver needs a good guess. Only capture smooth solutions.
- ► Viscosity solutions ~> Degenerate Elliptic schemes. Pros: Convergence guarantees for some discrete iterative solvers. Cons: Only capture viscosity solutions.
- Alexandroff solutions \rightsquigarrow Power-Diagram based schemes. Pros: Capture the most general solutions, e.g. $u = |\cdot|$, $\rho = \pi \delta_0$. Cons: Complex implementation, involving a global adaptive mesh.

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Grid based degenerate elliptic schemes

 Ω : open bounded convex domain $\subset \mathbb{R}^2$.

Grid discretization. $X := \Omega \cap hR(\xi + \mathbb{Z}^2).$

U denotes the collection of maps $u: X \cup \partial \Omega o \mathbb{R}.$

Definition (Second order finite differences $\approx \langle e, \nabla^2 u(x)e \rangle$) Let $u \in \mathbb{U}, x \in X, e \in \mathbb{Z}^2$.

If x ± e ∈ X then Δ_eu(x) := u(x + e) − 2u(x) + u(x − e).
 Otherwise Δ_eu(x) involves boundary values of u, on ∂Ω.

Definition (Degenerate ellipticity)

Find
$$u: X \cup \partial \Omega \to \mathbb{R}$$
 s.t.
$$\begin{cases} \mathcal{D}u = \rho & \text{on } X \\ u = \sigma & \text{on } \partial \Omega. \end{cases}$$

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Grid based degenerate elliptic schemes

 Ω : open bounded convex domain $\subset \mathbb{R}^2$.

Grid discretization. $X := \Omega \cap \mathbb{Z}^2$.

Definition (Second order finite differences $\approx \langle e, \nabla^2 u(x) e \rangle$) Let $u \in \mathbb{U}, x \in X, e \in \mathbb{Z}^2$.

If $x \pm e \in X$ then $\Delta_e u(x) := u(x+e) - 2u(x) + u(x-e)$.

• Otherwise $\Delta_e u(x)$ involves boundary values of u, on $\partial \Omega$.

Definition (Degenerate ellipticity)

Find
$$u: X \cup \partial \Omega \to \mathbb{R}$$
 s.t.
$$\begin{cases} \mathcal{D}u = \rho & \text{on } X \\ u = \sigma & \text{on } \partial \Omega. \end{cases}$$

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Grid based degenerate elliptic schemes

 Ω : open bounded convex domain $\subset \mathbb{R}^2$.

Grid discretization. $X := \Omega \cap \mathbb{Z}^2$. U denotes the collection of maps $u : X \cup \partial \Omega \to \mathbb{R}$.

Definition (Second order finite differences $\approx \langle e, \nabla^2 u(x) e \rangle$) Let $u \in \mathbb{U}, x \in X, e \in \mathbb{Z}^2$.

If $x \pm e \in X$ then $\Delta_e u(x) := u(x+e) - 2u(x) + u(x-e)$.

• Otherwise $\Delta_e u(x)$ involves boundary values of u, on $\partial \Omega$.

Definition (Degenerate ellipticity)

Find
$$u: X \cup \partial \Omega \to \mathbb{R}$$
 s.t.
$$\begin{cases} \mathcal{D}u = \rho & \text{on } X \\ u = \sigma & \text{on } \partial \Omega. \end{cases}$$

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBF

Adaptivity

Numerical results

Conclusion

Ω: open bounded convex domain $⊂ ℝ^2$. Grid discretization. $X := Ω ∩ ℤ^2$. U denotes the collection of maps u : X ∪ ∂Ω → ℝ.

Grid based degenerate elliptic schemes

Definition (Second order finite differences $\approx \langle e, \nabla^2 u(x)e \rangle$) Let $u \in \mathbb{U}$, $x \in X$, $e \in \mathbb{Z}^2$.

• If $x \pm e \in X$ then $\Delta_e u(x) := u(x+e) - 2u(x) + u(x-e)$.

• Otherwise $\Delta_e u(x)$ involves boundary values of u, on $\partial \Omega$.

Definition (Degenerate ellipticity)

Find
$$u: X \cup \partial \Omega \to \mathbb{R}$$
 s.t.
$$\begin{cases} \mathcal{D}u = \rho & \text{on } X \\ u = \sigma & \text{on } \partial \Omega. \end{cases}$$

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBF

Adaptivity

Numerical results

Conclusion

Grid based degenerate elliptic schemes

 Ω : open bounded convex domain $\subset \mathbb{R}^2$.

Grid discretization. $X := \Omega \cap \mathbb{Z}^2$. U denotes the collection of maps $u : X \cup \partial\Omega \to \mathbb{R}$.

Definition (Second order finite differences $\approx \langle e, \nabla^2 u(x)e \rangle$) Let $u \in \mathbb{U}$, $x \in X$, $e \in \mathbb{Z}^2$.

• If $x \pm e \in X$ then $\Delta_e u(x) := u(x+e) - 2u(x) + u(x-e)$.

• Otherwise $\Delta_e u(x)$ involves boundary values of u, on $\partial \Omega$.

Definition (Degenerate ellipticity)

Find
$$u: X \cup \partial \Omega \to \mathbb{R}$$
 s.t.
$$\begin{cases} \mathcal{D}u = \rho & \text{on } X \\ u = \sigma & \text{on } \partial \Omega. \end{cases}$$

Jean-Marie Mirebeau

Motivations

The Wide Stencil scheme

Wide Stencil

Adaptivity

Numerical results

Conclusion

The MA-LBR scheme (Monge-Ampère with Lattice Basis Reduction)

Adaptivity, and the Stern-Brocot tree

Numerical results

Conclusion

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

The Wide Stencil scheme

Definition (WS scheme with finite stencil $V \subset \mathbb{Z}^2$) For any $u \in \mathbb{U}$, $x \in X$, denoting $\alpha^+ := \max\{\alpha, 0\}$

$$\mathcal{D}_{V}u(x) := \min_{\substack{\{f,g\} \subset V\\ \text{orthogonal}}} \frac{\Delta_{f}^{+}u(x)}{\|f\|^{2}} \times \frac{\Delta_{g}^{+}u(x)}{\|g\|^{2}}$$

Degenerate elliptic scheme, with stencil V.

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

The Wide Stencil scheme

Definition (WS scheme with finite stencil $V \subset \mathbb{Z}^2$) For any $u \in \mathbb{U}$, $x \in X$, denoting $\alpha^+ := \max\{\alpha, 0\}$

$$\mathcal{D}_{V}u(x) := \min_{\substack{\{f,g\} \subset V\\ \text{orthogonal}}} \frac{\Delta_{f}^{+}u(x)}{\|f\|^{2}} \times \frac{\Delta_{g}^{+}u(x)}{\|g\|^{2}}$$

Degenerate elliptic scheme, with stencil V.

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

The Wide Stencil scheme

Definition (WS scheme with finite stencil $V \subset \mathbb{Z}^2$) For any $u \in \mathbb{U}$, $x \in X$, denoting $\alpha^+ := \max\{\alpha, 0\}$

$$\mathcal{D}_{V}u(x) := \min_{\substack{\{f,g\} \subset V\\ \text{orthogonal}}} \frac{\Delta_{f}^{+}u(x)}{\|f\|^{2}} \times \frac{\Delta_{g}^{+}u(x)}{\|g\|^{2}}$$

Degenerate elliptic scheme, with stencil V.

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

The Wide Stencil scheme

Definition (WS scheme with finite stencil $V \subset \mathbb{Z}^2$) For any $u \in \mathbb{U}$, $x \in X$, denoting $\alpha^+ := \max\{\alpha, 0\}$

$$\mathcal{D}_V u(x) := \min_{\substack{\{f,g\} \subset V\\ \text{orthogonal}}} \frac{\Delta_f^+ u(x)}{\|f\|^2} \times \frac{\Delta_g^+ u(x)}{\|g\|^2}.$$

Degenerate elliptic scheme, with stencil V.

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

The Wide Stencil scheme

Definition (WS scheme with finite stencil $V \subset \mathbb{Z}^2$) For any $u \in \mathbb{U}$, $x \in X$, denoting $\alpha^+ := \max\{\alpha, 0\}$

$$\mathcal{D}_{V}u(x) := \min_{\substack{\{f,g\} \subset V\\ \text{orthogonal}}} \frac{\Delta_{f}^{+}u(x)}{\|f\|^{2}} \times \frac{\Delta_{g}^{+}u(x)}{\|g\|^{2}}$$

Degenerate elliptic scheme, with stencil V.

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

The Wide Stencil scheme

Definition (WS scheme with finite stencil $V \subset \mathbb{Z}^2$) For any $u \in \mathbb{U}$, $x \in X$, denoting $\alpha^+ := \max\{\alpha, 0\}$

$$\mathcal{D}_{V}u(x) := \min_{\substack{\{f,g\} \subset V\\ \text{orthogonal}}} \frac{\Delta_{f}^{+}u(x)}{\|f\|^{2}} \times \frac{\Delta_{g}^{+}u(x)}{\|g\|^{2}}$$

Degenerate elliptic scheme, with stencil V.

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

The Wide Stencil scheme

Definition (WS scheme with finite stencil $V \subset \mathbb{Z}^2$) For any $u \in \mathbb{U}$, $x \in X$, denoting $\alpha^+ := \max\{\alpha, 0\}$

$$\mathcal{D}_V u(x) := \min_{\substack{\{f,g\} \subset V\\ \text{orthogonal}}} \frac{\Delta_f^+ u(x)}{\|f\|^2} \times \frac{\Delta_g^+ u(x)}{\|g\|^2}.$$

Degenerate elliptic scheme, with stencil V.

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

The Wide Stencil scheme

Definition (WS scheme with finite stencil $V \subset \mathbb{Z}^2$) For any $u \in \mathbb{U}$, $x \in X$, denoting $\alpha^+ := \max\{\alpha, 0\}$

$$\mathcal{D}_{V}u(x) := \min_{\substack{\{f,g\} \subset V\\ \text{orthogonal}}} \frac{\Delta_{f}^{+}u(x)}{\|f\|^{2}} \times \frac{\Delta_{g}^{+}u(x)}{\|g\|^{2}}$$

Degenerate elliptic scheme, with stencil V.

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

The Wide Stencil scheme

Definition (WS scheme with finite stencil $V \subset \mathbb{Z}^2$) For any $u \in \mathbb{U}$, $x \in X$, denoting $\alpha^+ := \max\{\alpha, 0\}$

$$\mathcal{D}_V u(x) := \min_{\substack{\{f,g\} \subset V\\ \text{orthogonal}}} \frac{\Delta_f^+ u(x)}{\|f\|^2} \times \frac{\Delta_g^+ u(x)}{\|g\|^2}.$$

Degenerate elliptic scheme, with stencil V.

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

The Wide Stencil scheme

Definition (WS scheme with finite stencil $V \subset \mathbb{Z}^2$) For any $u \in \mathbb{U}$, $x \in X$, denoting $\alpha^+ := \max\{\alpha, 0\}$

$$\mathcal{D}_V u(x) := \min_{\substack{\{f,g\} \subset V\\ \text{orthogonal}}} \frac{\Delta_f^+ u(x)}{\|f\|^2} \times \frac{\Delta_g^+ u(x)}{\|g\|^2}.$$

Degenerate elliptic scheme, with stencil V.

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Let S_2^+ denote positive definite matrices. For each $M \in S_2^+$ $u_M(x) := \frac{1}{2} \langle x, Mx \rangle, \qquad \Delta_e u_M(x) = \langle e, Me \rangle.$

Proposition (Approximate Consistency) For any $M \in S_2^+$, by Hadamard's inequality $\langle f, Mf \rangle \langle g, Mg \rangle$

 $\mathcal{D}_{V}u_{M}(x) = \min_{\substack{\{f,g\} \subset V \\ orthogonal}} \frac{\langle f, Mf \rangle}{\langle f, f \rangle} \frac{\langle g, Mg \rangle}{\langle g, g \rangle} \ge \det(M).$

Equality holds of $|f_{i}| g := g/||g||$, which form an orthonormal basis of \mathbb{R}^2 . Then, recognizing a Gram matrix

 $\det(M) = \begin{vmatrix} \langle \mathbf{f}, M\mathbf{f} \rangle & \langle \mathbf{f}, M\mathbf{g} \rangle \\ \langle \mathbf{f}, M\mathbf{g} \rangle & \langle \mathbf{g}, M\mathbf{g} \rangle \end{vmatrix} = \langle \mathbf{f}, M\mathbf{f} \rangle \langle \mathbf{g}, M\mathbf{g} \rangle - \langle \mathbf{f}, M\mathbf{g} \rangle^2 \square$

Let S_2^+ denote positive definite matrices. For each $M \in S_2^+$ Monotone Consistent Monge $u_M(x) := \frac{1}{2} \langle x, Mx \rangle, \qquad \Delta_e u_M(x) = \langle e, Me \rangle.$ Ampere Jean-Marie Mirebeau Wide Stencil Adaptivity Numerical

 $\det(M) = \begin{vmatrix} \langle \mathbf{f}, M\mathbf{f} \rangle & \langle \mathbf{f}, M\mathbf{g} \rangle \\ \langle \mathbf{f}, M\mathbf{g} \rangle & \langle \mathbf{g}, M\mathbf{g} \rangle \end{vmatrix} = \langle \mathbf{f}, M\mathbf{f} \rangle \langle \mathbf{g}, M\mathbf{g} \rangle - \langle \mathbf{f}, M\mathbf{g} \rangle^2 \square$

Jean-Marie Mirebeau

Wide Stencil

Adaptivity Numerical

Let
$$S_2^+$$
 denote positive definite matrices. For each $M \in S_2^+$
 $u_M(x) := \frac{1}{2} \langle x, Mx \rangle, \qquad \Delta_e u_M(x) = \langle e, Me \rangle.$

Proposition (Approximate Consistency) For any $M \in S_2^+$, by Hadamard's inequality

$$\mathcal{D}_{V}u_{M}(x) = \min_{\substack{\{f,g\} \subset V \\ orthogonal}} \frac{\langle f, Mf \rangle}{\langle f, f \rangle} \frac{\langle g, Mg \rangle}{\langle g, g \rangle} \ge \det(M).$$

Equality holds iff $\{f, g\}$ is M-orthogonal (i.e. $\langle f, Mg \rangle = 0$). Proof. Denote $\mathbf{f} := f/||f||$, $\mathbf{g} := g/||g||$, which form an orthonormal

$$\det(M) = \begin{vmatrix} \langle \mathbf{f}, M\mathbf{f} \rangle & \langle \mathbf{f}, M\mathbf{g} \rangle \\ \langle \mathbf{f}, M\mathbf{g} \rangle & \langle \mathbf{g}, M\mathbf{g} \rangle \end{vmatrix} = \langle \mathbf{f}, M\mathbf{f} \rangle \langle \mathbf{g}, M\mathbf{g} \rangle - \langle \mathbf{f}, M\mathbf{g} \rangle^2 \square$$

Jean-Marie Mirebeau

Wide Stencil

Adaptivity

Numerical

Let S_2^+ denote positive definite matrices. For each $M \in S_2^+$ $u_M(x) := \frac{1}{2} \langle x, Mx \rangle, \qquad \Delta_e u_M(x) = \langle e, Me \rangle.$

Proposition (Approximate Consistency) For any $M \in S_2^+$, by Hadamard's inequality

 $\mathcal{D}_V u_M(x) = \min_{\substack{\{f,g\} \subset V \\ orthogonal}} \frac{\langle f, Mf \rangle}{\langle f, f \rangle} \frac{\langle g, Mg \rangle}{\langle g, g \rangle} \ge \det(M).$

Equality holds iff $\{f, g\}$ is M-orthogonal (i.e. $\langle f, Mg \rangle = 0$). Proof.

Denote f := f/||f||, g := g/||g||, which form an orthonormal basis of \mathbb{R}^2 . Then, recognizing a Gram matrix

 $\det(M) = \begin{vmatrix} \langle \mathbf{f}, M\mathbf{f} \rangle & \langle \mathbf{f}, M\mathbf{g} \rangle \\ \langle \mathbf{f}, M\mathbf{g} \rangle & \langle \mathbf{g}, M\mathbf{g} \rangle \end{vmatrix} = \langle \mathbf{f}, M\mathbf{f} \rangle \langle \mathbf{g}, M\mathbf{g} \rangle - \langle \mathbf{f}, M\mathbf{g} \rangle^2 \square$

Jean-Marie Mirebeau

Wide Stencil

Adaptivity Numerical

Let S_2^+ denote positive definite matrices. For each $M \in S_2^+$ $u_M(x) := \frac{1}{2} \langle x, Mx \rangle, \qquad \Delta_e u_M(x) = \langle e, Me \rangle.$

Proposition (Approximate Consistency) For any $M \in S_2^+$, by Hadamard's inequality

$$\mathcal{D}_{V}u_{M}(x) = \min_{\substack{\{f,g\} \subset V \\ orthogonal}} \frac{\langle f, Mf \rangle}{\langle f, f \rangle} \frac{\langle g, Mg \rangle}{\langle g, g \rangle} \ge \det(M).$$

Equality holds iff $\{f, g\}$ is *M*-orthogonal (i.e. $\langle f, Mg \rangle = 0$). Proof. Denote f := f/||f||, g := g/||g||, which form an orthonormal

pasis of
$$\mathbb{R}^2$$
. Then, recognizing a Gram matrix

$$\det(M) = \begin{vmatrix} \langle \mathbf{f}, M\mathbf{f} \rangle & \langle \mathbf{f}, M\mathbf{g} \rangle \\ \langle \mathbf{f}, M\mathbf{g} \rangle & \langle \mathbf{g}, M\mathbf{g} \rangle \end{vmatrix} = \langle \mathbf{f}, M\mathbf{f} \rangle \langle \mathbf{g}, M\mathbf{g} \rangle - \langle \mathbf{f}, M\mathbf{g} \rangle^2 \square$$

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Let S_2^+ denote positive definite matrices. For each $M \in S_2^+$ $u_M(x) := \frac{1}{2} \langle x, Mx \rangle, \qquad \Delta_e u_M(x) = \langle e, Me \rangle.$

Proposition (Approximate Consistency) For any $M \in S_2^+$, by Hadamard's inequality $\mathcal{D}_V u_M(x) = \min_{\{f,g\} \subset V} \frac{\langle f, Mf \rangle}{\langle f, f \rangle} \frac{\langle g, Mg \rangle}{\langle g, g \rangle} \ge \det(M).$

orthogonal

Equality holds iff $\{f, g\}$ is M-orthogonal (i.e. $\langle f, Mg \rangle = 0$). Proof. Denote $\mathbf{f} := f/||f||$, $\mathbf{g} := g/||g||$, which form an orthonormal basis of \mathbb{R}^2 . Then, recognizing a Gram matrix

$$\det(M) = \begin{vmatrix} \langle \mathbf{f}, M\mathbf{f} \rangle & \langle \mathbf{f}, M\mathbf{g} \rangle \\ \langle \mathbf{f}, M\mathbf{g} \rangle & \langle \mathbf{g}, M\mathbf{g} \rangle \end{vmatrix} = \langle \mathbf{f}, M\mathbf{f} \rangle \langle \mathbf{g}, M\mathbf{g} \rangle - \langle \mathbf{f}, M\mathbf{g} \rangle^2 \square$$

Relative Consistency error

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Figure : Relative consistency error $(\mathcal{D}_V(u_M) - \det(M))/\mathcal{D}_V(u_M)$, with several stencils V. Matrix $M \in S_2^+$ has condition number $\kappa^2 := \|M\| \|M^{-1}\|$ and eigenvector $(\cos \theta, \sin \theta)$.

Jean-Marie Mirebeau

Motivations

The Wide Stencil scheme

Wide Stencil MA-LBR

Adaptivity

Numerical results

Conclusion

The MA-LBR scheme (Monge-Ampère with Lattice Basis Reduction)

Adaptivity, and the Stern-Brocot tree

Numerical results

Conclusion
Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Monge-Ampere with Lattice Basis Reduction

Lattice Basis Reduction is the study of preferred coordinate systems for lattices (discrete subgroups of \mathbb{R}^d).

Definition (Superbase of \mathbb{Z}^2)

A superbase is a triplet $(e, f, g) \in (\mathbb{Z}^2)^3$ such that e + f + g = 0 and $|\det(f, g)| = 1$. It is said *M*-obtuse, where $M \in S_2^+$, iff $\langle e, Mf \rangle \leq 0$, $\langle f, Mg \rangle \leq 0$, $\langle g, Me \rangle \leq 0$.

Figure : Left: An *M*-obtuse superbase, and the unit ball $\{\langle e, Me \rangle \leq 1\}$. Right: Likewise under change of coordinates $M^{\frac{1}{2}}$.

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Monge-Ampere with Lattice Basis Reduction

Lattice Basis Reduction is the study of preferred coordinate systems for lattices (discrete subgroups of \mathbb{R}^d).

Definition (Superbase of \mathbb{Z}^2)

A superbase is a triplet $(e, f, g) \in (\mathbb{Z}^2)^3$ such that e + f + g = 0 and $|\det(f, g)| = 1$. It is said *M*-obtuse, where $M \in S_2^+$, iff $\langle e, Mf \rangle \leq 0$, $\langle f, Mg \rangle \leq 0$, $\langle g, Me \rangle \leq 0$.

Figure : Left: An *M*-obtuse superbase, and the unit ball $\{\langle e, Me \rangle \leq 1\}$. Right: Likewise under change of coordinates $M^{\frac{1}{2}}$.

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Monge-Ampere with Lattice Basis Reduction

Lattice Basis Reduction is the study of preferred coordinate systems for lattices (discrete subgroups of \mathbb{R}^d).

Definition (Superbase of \mathbb{Z}^2)

A superbase is a triplet $(e, f, g) \in (\mathbb{Z}^2)^3$ such that e + f + g = 0 and $|\det(f, g)| = 1$. It is said *M*-obtuse, where $M \in S_2^+$, iff $\langle e, Mf \rangle \leq 0$, $\langle f, Mg \rangle \leq 0$, $\langle g, Me \rangle \leq 0$.

Figure : Left: An *M*-obtuse superbase, and the unit ball $\{\langle e, Me \rangle \leq 1\}$. Right: Likewise under change of coordinates $M^{\frac{1}{2}}$.

Jean-Marie Mirebeau

$$\mathcal{D}_{V}u(x) := \min_{\substack{\{e,f,g\} \subset V \\ superbase}} h(\Delta_{e}^{+}u(x), \Delta_{f}^{+}u(x), \Delta_{g}^{+}u(x))$$

Definition (MA-LBR scheme with finite stencil $V \subset \mathbb{Z}^2$)

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

 $(a,b,c) = \begin{cases} bc \text{ if } a \ge b+c \text{ (and likewise permuting a,b,c)} \\ rac{1}{4}(2ab+2bc+2ca-a^2-b^2-c^2) \text{ otherwise.} \end{cases}$

Jean-Marie Mirebeau

$$\mathcal{D}_{V}u(x) := \min_{\substack{\{e,f,g\} \subset V\\ superbase}} h(\Delta_{e}^{+}u(x), \Delta_{f}^{+}u(x), \Delta_{g}^{+}u(x))$$

Definition (MA-LBR scheme with finite stencil $V \subset \mathbb{Z}^2$)

Motivations

Wide Stencil

where
$$h: \mathbb{R}^3_+ o \mathbb{R}_+$$
 is

MA-LBR

Adaptivity

Numerical results

 $h(a, b, c) = \begin{cases} bc \text{ if } a \ge b + c \text{ (and likewise permuting a,b,c)}, \\ \frac{1}{4}(2ab + 2bc + 2ca - a^2 - b^2 - c^2) \text{ otherwise}. \end{cases}$

Jean-Marie Mirebeau

$$\mathcal{D}_{V}u(x) := \min_{\substack{\{e,f,g\} \subset V\\ superbase}} h(\Delta_{e}^{+}u(x), \Delta_{f}^{+}u(x), \Delta_{g}^{+}u(x))$$

Definition (MA-LBR scheme with finite stencil $V \subset \mathbb{Z}^2$)

Motivations

Wide Stencil

where
$$h: \mathbb{R}^3_+ \to \mathbb{R}_+$$
 is

MA-LBR

Adaptivity

Numerical results

$$h(a,b,c) = egin{cases} bc ext{ if } a \geq b+c ext{ (and likewise permuting a,b,c)}, \ rac{1}{4}(2ab+2bc+2ca-a^2-b^2-c^2) ext{ otherwise}. \end{cases}$$

Jean-Marie Mirebeau

$$\mathcal{D}_{V}u(x) := \min_{\substack{\{e,f,g\} \subset V\\ superbase}} h(\Delta_{e}^{+}u(x), \Delta_{f}^{+}u(x), \Delta_{g}^{+}u(x))$$

Definition (MA-LBR scheme with finite stencil $V \subset \mathbb{Z}^2$)

Motivations

Wide Stencil

where
$$h: \mathbb{R}^3_+ o \mathbb{R}_+$$
 is

MA-LBR

Adaptivity

Numerical results

$$h(a, b, c) = egin{cases} bc ext{ if } a \geq b + c ext{ (and likewise permuting a,b,c)}, \ rac{1}{4}(2ab + 2bc + 2ca - a^2 - b^2 - c^2) ext{ otherwise}. \end{cases}$$

Jean-Marie Mirebeau

$$\mathcal{D}_{V}u(x) := \min_{\substack{\{e,f,g\} \subset V\\ superbase}} h(\Delta_{e}^{+}u(x), \Delta_{f}^{+}u(x), \Delta_{g}^{+}u(x))$$

Definition (MA-LBR scheme with finite stencil $V \subset \mathbb{Z}^2$)

Motivations

Wide Stencil

where
$$h: \mathbb{R}^3_+ o \mathbb{R}_+$$
 is

MA-LBR

Adaptivity

Numerical results

$$h(a, b, c) = egin{cases} bc ext{ if } a \geq b + c ext{ (and likewise permuting a,b,c)}, \ rac{1}{4}(2ab + 2bc + 2ca - a^2 - b^2 - c^2) ext{ otherwise}. \end{cases}$$

Jean-Marie Mirebeau

$$\mathcal{D}_{V}u(x) := \min_{\substack{\{e,f,g\} \subset V\\ superbase}} h(\Delta_{e}^{+}u(x), \Delta_{f}^{+}u(x), \Delta_{g}^{+}u(x))$$

Definition (MA-LBR scheme with finite stencil $V \subset \mathbb{Z}^2$)

Motivations

Wide Stencil

where
$$h: \mathbb{R}^3_+ o \mathbb{R}_+$$
 is

MA-LBR

Adaptivity

Numerical results

$$h(a,b,c) = egin{cases} bc ext{ if } a \geq b+c ext{ (and likewise permuting a,b,c)}, \ rac{1}{4}(2ab+2bc+2ca-a^2-b^2-c^2) ext{ otherwise}. \end{cases}$$

Jean-Marie Mirebeau

$$\mathcal{D}_{V}u(x) := \min_{\substack{\{e,f,g\} \subset V\\ superbase}} h(\Delta_{e}^{+}u(x), \Delta_{f}^{+}u(x), \Delta_{g}^{+}u(x))$$

Definition (MA-LBR scheme with finite stencil $V \subset \mathbb{Z}^2$)

Motivations

Wide Stencil

where
$$h: \mathbb{R}^3_+ \to \mathbb{R}_+$$
 is

MA-LBR

Adaptivity

Numerical results

$$h(a, b, c) = egin{cases} bc ext{ if } a \geq b + c ext{ (and likewise permuting a,b,c)}, \ rac{1}{4}(2ab + 2bc + 2ca - a^2 - b^2 - c^2) ext{ otherwise}. \end{cases}$$

Jean-Marie Mirebeau

$$\mathcal{D}_{V}u(x) := \min_{\substack{\{e,f,g\} \subset V\\ superbase}} h(\Delta_{e}^{+}u(x), \Delta_{f}^{+}u(x), \Delta_{g}^{+}u(x))$$

Definition (MA-LBR scheme with finite stencil $V \subset \mathbb{Z}^2$)

Motivations

Wide Stencil

where
$$h: \mathbb{R}^3_+ \to \mathbb{R}_+$$
 is

MA-LBR

Adaptivity

Numerical results

 $h(a, b, c) = \begin{cases} bc \text{ if } a \ge b + c \text{ (and likewise permuting a,b,c)}, \\ \frac{1}{4}(2ab + 2bc + 2ca - a^2 - b^2 - c^2) \text{ otherwise}. \end{cases}$

Jean-Marie Mirebeau

$$\mathcal{D}_{V}u(x) := \min_{\substack{\{e,f,g\} \subset V\\ superbase}} h(\Delta_{e}^{+}u(x), \Delta_{f}^{+}u(x), \Delta_{g}^{+}u(x))$$

Definition (MA-LBR scheme with finite stencil $V \subset \mathbb{Z}^2$)

Motivations

Wide Stencil

where
$$h: \mathbb{R}^3_+ \to \mathbb{R}_+$$
 is

MA-LBR

Adaptivity

Numerical results

$$h(a, b, c) = egin{cases} bc ext{ if } a \geq b + c ext{ (and likewise permuting a,b,c)}, \ rac{1}{4}(2ab + 2bc + 2ca - a^2 - b^2 - c^2) ext{ otherwise}. \end{cases}$$

Jean-Marie Mirebeau

$$\mathcal{D}_{V}u(x) := \min_{\substack{\{e,f,g\} \subset V\\ superbase}} h(\Delta_{e}^{+}u(x), \Delta_{f}^{+}u(x), \Delta_{g}^{+}u(x))$$

Definition (MA-LBR scheme with finite stencil $V \subset \mathbb{Z}^2$)

Motivations

Wide Stencil

where
$$h: \mathbb{R}^3_+ o \mathbb{R}_+$$
 is

MA-LBR

Adaptivity

Numerical results

$$h(a, b, c) = \begin{cases} bc \text{ if } a \ge b + c \text{ (and likewise permuting } a, b, c), \\ \frac{1}{4}(2ab + 2bc + 2ca - a^2 - b^2 - c^2) \text{ otherwise.} \end{cases}$$

Figure : h(a, b, c) can be interpreted as a subgradient measure.

Proposition (Consistency)

For any $M \in S_2^+$, $x \in X$, $\mathcal{D}_V u_M(x) \ge \det(M)$, with equality iff V contains an M obtuse superbase.

Relative Consistency error

Figure : Relative consistency error $(\mathcal{D}_V(u_M) - \det(M))/\mathcal{D}_V(u_M)$, with several stencils V. Matrix $M \in S_2^+$ has condition number $\kappa^2 := \|M\| \|M^{-1}\|$ and eigenvector $(\cos \theta, \sin \theta)$.

Relative Consistency error

Figure : Relative consistency error $(\mathcal{D}_V(u_M) - \det(M))/\mathcal{D}_V(u_M)$, with several stencils V. Matrix $M \in S_2^+$ has condition number $\kappa^2 := \|M\| \|M^{-1}\|$ and eigenvector $(\cos \theta, \sin \theta)$.

Jean-Marie Mirebeau

Motivations Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Figure : Relative consistency error $(\mathcal{D}_V(u_M) - \det(M))/\mathcal{D}_V(u_M)$, with stencils V of radius 1, 2, 3. Top: wide stencil. Bottom: MA-LBR. Matrix has eigenvalues 6^2 , 1, 1 and eigenvector $v \in S^2$.

Jean-Marie Mirebeau

Motivations Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Figure : Relative consistency error $(\mathcal{D}_V(u_M) - \det(M))/\mathcal{D}_V(u_M)$, with stencils V of radius 1, 2, 3. Top: wide stencil. Bottom: MA-LBR. Matrix has eigenvalues 6^{-2} , 1, 1 and eigenvector $v \in S^2$.

Jean-Marie Mirebeau

Motivations Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Figure : Relative consistency error $(\mathcal{D}_V(u_M) - \det(M))/\mathcal{D}_V(u_M)$, with stencils V of radius 1, 2, 3. Top: wide stencil. Bottom: MA-LBR. Matrix RDiag(6, 1, 1/6)R where R is the reflexion of axis $v \in S^2$.

Figure : Left: largest element of an *M*-obtuse superbase. Right: eigenvector of *M*. Matrix $M \in S_2^+$ has condition number $\kappa^2 := \|M\| \|M^{-1}\|$ and eigenvector $(\cos \theta, \sin \theta)$.

Figure : Left: largest element of an *M*-obtuse superbase. Right: eigenvector of *M*. Matrix $M \in S_2^+$ has condition number $\kappa^2 := \|M\| \|M^{-1}\|$ and eigenvector $(\cos \theta, \sin \theta)$.

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Figure : Active stencil for quadratic forms u_M , $M \in S_2^+$, of various orientations. Left: $\{u_M \leq 1\}$. Center: MA-LBR scheme. Right: Wide-Stencil scheme.

Theorem (Optimal locality)

Numerical results

Conclusion

Figure : Active stencil for quadratic forms u_M , $M \in S_2^+$, of various orientations. Left: $\{u_M \leq 1\}$. Center: MA-LBR scheme. Right: Wide-Stencil scheme.

Theorem (Optimal locality)

Adaptivity

Numerical results

Conclusion

Figure : Active stencil for quadratic forms u_M , $M \in S_2^+$, of various orientations. Left: $\{u_M \leq 1\}$. Center: MA-LBR scheme. Right: Wide-Stencil scheme.

Theorem (Optimal locality)

Numerical results

Conclusion

Figure : Active stencil for quadratic forms u_M , $M \in S_2^+$, of various orientations. Left: $\{u_M \leq 1\}$. Center: MA-LBR scheme. Right: Wide-Stencil scheme.

Theorem (Optimal locality)

Numerical results

Conclusion

Figure : Active stencil for quadratic forms u_M , $M \in S_2^+$, of various orientations. Left: $\{u_M \leq 1\}$. Center: MA-LBR scheme. Right: Wide-Stencil scheme.

Theorem (Optimal locality)

Numerical results

Conclusion

Figure : Active stencil for quadratic forms u_M , $M \in S_2^+$, of various orientations. Left: $\{u_M \leq 1\}$. Center: MA-LBR scheme. Right: Wide-Stencil scheme.

Theorem (Optimal locality)

Numerical results

Conclusion

Figure : Active stencil for quadratic forms u_M , $M \in S_2^+$, of various orientations. Left: $\{u_M \leq 1\}$. Center: MA-LBR scheme. Right: Wide-Stencil scheme.

Theorem (Optimal locality)

Numerical results

Conclusion

Figure : Active stencil for quadratic forms u_M , $M \in S_2^+$, of various orientations. Left: $\{u_M \leq 1\}$. Center: MA-LBR scheme. Right: Wide-Stencil scheme.

Theorem (Optimal locality)

Numerical results

Conclusion

Figure : Active stencil for quadratic forms u_M , $M \in S_2^+$, of various orientations. Left: $\{u_M \leq 1\}$. Center: MA-LBR scheme. Right: Wide-Stencil scheme.

Theorem (Optimal locality)

Numerical results

Conclusion

Figure : Active stencil for quadratic forms u_M , $M \in S_2^+$, of various orientations. Left: $\{u_M \leq 1\}$. Center: MA-LBR scheme. Right: Wide-Stencil scheme.

Theorem (Optimal locality)

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Figure : Active stencil for quadratic forms u_M , $M \in S_2^+$, of various orientations. Left: $\{u_M \leq 1\}$. Center: MA-LBR scheme. Right: Wide-Stencil scheme.

Theorem (Optimal locality)

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Figure : Active stencil for quadratic forms u_M , $M \in S_2^+$, of various orientations. Left: $\{u_M \leq 1\}$. Center: MA-LBR scheme. Right: Wide-Stencil scheme.

Theorem (Optimal locality)

Monotone

Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Figure : Active stencil for quadratic forms u_M , $M \in S_2^+$, of various orientations. Left: $\{u_M \leq 1\}$. Center: MA-LBR scheme. Right: Wide-Stencil scheme.

Theorem (Optimal locality)

Monotone

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Figure : Active stencil for quadratic forms u_M , $M \in S_2^+$, of various orientations. Left: $\{u_M \leq 1\}$. Center: MA-LBR scheme. Right: Wide-Stencil scheme.

Theorem (Optimal locality)

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Figure : Active stencil for quadratic forms u_M , $M \in S_2^+$, of various orientations. Left: $\{u_M \leq 1\}$. Center: MA-LBR scheme. Right: Wide-Stencil scheme.

Theorem (Optimal locality)

- Jean-Marie Mirebeau
- Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Figure : Active stencil for quadratic forms u_M , $M \in S_2^+$, of various orientations. Left: $\{u_M \leq 1\}$. Center: MA-LBR scheme. Right: Wide-Stencil scheme.

Theorem (Optimal locality)

- Jean-Marie Mirebeau
- Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Figure : Active stencil for quadratic forms u_M , $M \in S_2^+$, of various orientations. Left: $\{u_M \leq 1\}$. Center: MA-LBR scheme. Right: Wide-Stencil scheme.

Theorem (Optimal locality)

- Jean-Marie Mirebeau
- Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Figure : Active stencil for quadratic forms u_M , $M \in S_2^+$, of various orientations. Left: $\{u_M \leq 1\}$. Center: MA-LBR scheme. Right: Wide-Stencil scheme.

Theorem (Optimal locality)

Adaptivity

Numerical results

Conclusion

Figure : Active stencil for quadratic forms u_M , $M \in S_2^+$, of various orientations. Left: $\{u_M \leq 1\}$. Center: MA-LBR scheme. Right: Wide-Stencil scheme.

Theorem (Optimal locality)

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Figure : Active stencil for quadratic forms u_M , $M \in S_2^+$, of various orientations. Left: $\{u_M \leq 1\}$. Center: MA-LBR scheme. Right: Wide-Stencil scheme.

Theorem (Optimal locality)

Adaptivity

Numerical results

Conclusion

Figure : Active stencil for quadratic forms u_M , $M \in S_2^+$, of various orientations. Left: $\{u_M \leq 1\}$. Center: MA-LBR scheme. Right: Wide-Stencil scheme.

Theorem (Optimal locality)

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Existence of an *M*-obtuse superbase Selling's Algorithm (1857). Set $e_0 \leftarrow (-1, -1)$, $e_1 \leftarrow (1, 0)$, $e_2 \leftarrow (0, 1)$. While the superbase (e_0, e_1, e_2) is not *M*-obtuse do Find $0 \le i < j \le 2$ such that $\langle e_i, Me_j \rangle > 0$, Set $(e_0, e_1, e_2) \leftarrow (e_i - e_j, e_j, -e_i)$. Proposition

Selling's algorithm terminates, and the final state of (e_0, e_1, e_2) is an M-obtuse superbase.

Proof.

Introduce the energy: with $||e||_M := \sqrt{\langle e, Me \rangle}$

 $\mathcal{E}(e_0, e_1, e_2) := \|e_0\|_M^2 + \|e_1\|_M^2 + \|e_2\|_M^2.$

Only finitely many superbases have their energy below a given bound. Then observe that

 $\mathcal{E}(e_i - e_j, e_j, -e_i) = \mathcal{E}(e_0, e_1, e_2) - 4\langle e_i, Me_j \rangle.$

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Existence of an *M*-obtuse superbase Selling's Algorithm (1857). Set $e_0 \leftarrow (-1, -1)$, $e_1 \leftarrow (1, 0)$, $e_2 \leftarrow (0, 1)$. While the superbase (e_0, e_1, e_2) is not *M*-obtuse do Find $0 \le i < j \le 2$ such that $\langle e_i, Me_j \rangle > 0$, Set $(e_0, e_1, e_2) \leftarrow (e_i - e_j, e_j, -e_i)$. Proposition

Selling's algorithm terminates, and the final state of (e_0, e_1, e_2) is an M-obtuse superbase.

Proof.

Introduce the energy: with $||e||_M := \sqrt{\langle e, Me \rangle}$

$$\mathcal{E}(e_0, e_1, e_2) := \|e_0\|_M^2 + \|e_1\|_M^2 + \|e_2\|_M^2.$$

Only finitely many superbases have their energy below a given bound. Then observe that

 $\mathcal{E}(e_i - e_j, e_j, -e_i) = \mathcal{E}(e_0, e_1, e_2) - 4\langle e_i, Me_j \rangle$

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Existence of an *M*-obtuse superbase Selling's Algorithm (1857). Set $e_0 \leftarrow (-1, -1)$, $e_1 \leftarrow (1, 0)$, $e_2 \leftarrow (0, 1)$. While the superbase (e_0, e_1, e_2) is not *M*-obtuse do Find $0 \le i < j \le 2$ such that $\langle e_i, Me_j \rangle > 0$, Set $(e_0, e_1, e_2) \leftarrow (e_i - e_j, e_j, -e_i)$. Proposition

Selling's algorithm terminates, and the final state of (e_0, e_1, e_2) is an M-obtuse superbase.

Proof.

Introduce the energy: with $||e||_M := \sqrt{\langle e, Me \rangle}$

$$\mathcal{E}(e_0, e_1, e_2) := \|e_0\|_M^2 + \|e_1\|_M^2 + \|e_2\|_M^2.$$

Only finitely many superbases have their energy below a given bound. Then observe that

$$\mathcal{E}(e_i - e_j, e_j, -e_i) = \mathcal{E}(e_0, e_1, e_2) - 4\langle e_i, Me_j \rangle.$$

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Conclusion on the non-adaptive MA-LBR operator

Pros:

- More accurate than the Wide Stencil scheme, although not (much) more costly or difficult to implement.
- Consistency for all quadratic functions u_M, with condition number ||M|||M⁻¹|| bounded by some κ₀, is achieved with a finite stencil.

Cons:

▶ How to a-priori choose the stencil size ?

In the following, we introduce an automatic, guaranteed and parameter free stencil construction, by reinterpreting and extending Selling's Algorithm to non-quadratic maps.

Jean-Marie Mirebeau

Motivations

The Wide Stencil scheme

Wide Stencil

Adaptivity

Numerical results

Conclusion

The MA-LBR scheme (Monge-Ampère with Lattice Basis Reduction)

Adaptivity, and the Stern-Brocot tree

Numerical results

Conclusion

Obtain the (n + 1)-th line by inserting $\frac{a+a'}{b+b'}$ between consecutive elements $\frac{a}{b}$ and $\frac{a'}{b'}$ of the *n*-th line.

 Each rational number appears exactly once, in its irreducible form.

Numerical results

Conclusion

Figure : Dyadic rationals can be organized in a similar (complete infinite binary) tree. Some images from Wikipedia.

Minkowski's question mark function, $?: [0,1] \rightarrow [0,1]$

?(x) is the continuous function mapping the Stern-Brocot labels in [0, 1] to the dyadic labels. Properties:

16 8 16 2 16 8 16 4 16

▶ ?'(x) = 0 for almost every x. ("Slippery Devil's staircase")

- > ? is Holder continuous, with exponent $\frac{\ln 2}{2 \ln \Phi}$, $\Phi := \frac{1+\sqrt{5}}{2}$.
- ?(x) is rational for every quadratic irrational.

Figure : Dyadic rationals can be organized in a similar (complete infinite binary) tree. Some images from Wikipedia.

Minkowski's question mark function, $?: [0, 1] \rightarrow [0, 1]$?(x) is the continuous function mapping the Stern-Brocot labels in [0, 1] to the dyadic labels. Properties:

- ▶ ?'(x) = 0 for almost every x. ("Slippery Devil's staircase")
- > ? is Holder continuous, with exponent $\frac{\ln 2}{2 \ln \Phi}$, $\Phi := \frac{1+\sqrt{5}}{2}$.
- ?(x) is rational for every quadratic irrational.

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Off topic: Fun facts on the Stern-Brocot tree

Figure : Dyadic rationals can be organized in a similar (complete infinite binary) tree. Some images from Wikipedia.

Minkowski's question mark function, $?: [0,1] \rightarrow [0,1]$?(x) is the continuous function mapping the Stern-Brocot labels in [0,1] to the dyadic labels. Properties:

- ▶ ?'(x) = 0 for almost every x. ("Slippery Devil's staircase")
- ▶ ? is Holder continuous, with exponent $\frac{\ln 2}{2 \ln \Phi}$, $\Phi := \frac{1+\sqrt{5}}{2}$.
- ?(x) is rational for every quadratic irrational.

Jean-Marie Mirebeau

$$f = (a, b), \quad g = (a', b'), \quad e = (a + a', b + b') = f + g$$

For each node $\frac{a+a'}{b+b'}$ of the Stern-Brocot tree introduce

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

$f e = f \oplus g$ then (e, -f, -g) is a superbase of \mathbb{Z}^2 . All superbases are of that form, up to a permutation of their elements, and a symmetry w.r.t. the origin or an axis.

Proposition

Definition

Jean-Marie Mirebeau

$$f = (a, b), \quad g = (a', b'), \quad e = (a + a', b + b') = f \oplus g$$

For each node $\frac{a+a'}{b+b'}$ of the Stern-Brocot tree introduce

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

$f e = f \oplus g$ then (e, -f, -g) is a superbase of \mathbb{Z}^2 . All superbases are of that form, up to a permutation of their elements, and a symmetry w.r.t. the origin or an axis.

Proposition

Definition

Jean-Marie Mirebeau

$$f=(a,b), \quad g=(a',b'), \quad e=(a+a',b+b')=f\oplus g.$$

For each node $\frac{a+a'}{b+b'}$ of the Stern-Brocot tree introduce

Motivations

Wide Stencil

MA-LBF

Adaptivity

Numerical results

Conclusion

If $e = f \oplus g$ then (e, -f, -g) is a superbase of \mathbb{Z}^2 . All superbases are of that form, up to a permutation of their elements, and a symmetry w.r.t. the origin or an axis.

Proposition

Proposition

Definition

Jean-Marie Mirebeau

$$f=(a,b), \quad g=(a',b'), \quad e=(a+a',b+b')=f\oplus g.$$

For each node $\frac{a+a'}{b+b'}$ of the Stern-Brocot tree introduce

Motivations

Wide Stencil

MA-LBF

Adaptivity

Numerical results

Conclusion

If $e = f \oplus g$ then (e, -f, -g) is a superbase of \mathbb{Z}^2 . All superbases are of that form, up to a permutation of their elements, and a symmetry w.r.t. the origin or an axis.

Proposition

Proposition

Definition

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

For a quadratic function:

Numerical results

Conclusion

From quadratic to discrete convex functions

Definition (Hexagonal test) Let $e = f \oplus g$, $u \in \mathbb{U}$, $x \in X$

$$H_e u(x) := \Delta_e u(x) - \Delta_f u(x) - \Delta_g u(x).$$

 $H_e u_M(x) = \langle (f+g), M(f+g) \rangle - \langle f, Mf \rangle - \langle g, Mg \rangle = 2 \langle f, Mg \rangle.$

Test predicate is increasing along tree branches The children of $e = f \oplus g$, are $f \oplus e$ and $e \oplus g$.

 $\langle f, Me \rangle = \langle f, Mg \rangle + \langle f, Mf \rangle$

 $H_{f\oplus e}u(x) = H_eu(x) + \Delta_f u(x+e) + \Delta_f u(x-e).$

 $(\mathsf{Assuming}\; x, x\pm e, x\pm f, x\pm g\in \Omega)$

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

For a quadratic function:

Numerical results

Conclusion

From quadratic to discrete convex functions

Definition (Hexagonal test) Let $e = f \oplus g$, $u \in \mathbb{U}$, $x \in X$

$$H_e u(x) := \Delta_e u(x) - \Delta_f u(x) - \Delta_g u(x).$$

 $H_e u_M(x) = \langle (f+g), M(f+g) \rangle - \langle f, Mf \rangle - \langle g, Mg \rangle = 2 \langle f, Mg \rangle.$

Test predicate is increasing along tree branches The children of $e = f \oplus g$, are $f \oplus e$ and $e \oplus g$.

 $\langle f, Me \rangle = \langle f, Mg \rangle + \langle f, Mf \rangle$

 $H_{f\oplus e}u(x) = H_eu(x) + \Delta_f u(x+e) + \Delta_f u(x-e).$

(Assuming $x, x \pm e, x \pm f, x \pm g \in \Omega$)

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

For a quadratic function:

Numerical results

Conclusion

From quadratic to discrete convex functions Definition (Hexagonal test)

Let
$$e = f \oplus g$$
, $u \in \mathbb{U}$, $x \in X$

$$H_e u(x) := \Delta_e u(x) - \Delta_f u(x) - \Delta_g u(x).$$

 $H_e u_M(x) = \langle (f+g), M(f+g) \rangle - \langle f, Mf \rangle - \langle g, Mg \rangle = 2 \langle f, Mg \rangle.$

Test predicate is increasing along tree branches The children of $e = f \oplus g$, are $f \oplus e$ and $e \oplus g$.

> $\langle f, Me \rangle = \langle f, Mg \rangle + \langle f, Mf \rangle$ $H_{f \oplus e}u(x) = H_eu(x) + \Delta_f u(x + e) + \Delta_f u(x - e).$

(Assuming $x, x \pm e, x \pm f, x \pm g \in \Omega$)

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

$$\mathcal{V}_{\Omega}(x) := \{ e = f \oplus g; x \pm e, x \pm f, x \pm g \in \Omega \}.$$

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

The adaptive MA-LBR operator $\mathcal{D}_{\mathcal{V}}u(x)$ Initialize $\mathbb{D} \leftarrow \infty$, vector $f \leftarrow (1,0)$, list $G \leftarrow [(0,1), (-1,0)]$. While G is non-empty do Denote by g the first element of G, and set e := f + g. If $e \in \mathcal{V}(x)$, or $[e \in \mathcal{V}_{\Omega}(x)$ and $H_eu(x) < 0]$

then prepend e to G, and set

 $\mathbb{D} \leftarrow \min\{\mathbb{D}, \ h(\Delta_e^+ u(x), \Delta_f^+ u(x), \Delta_g^+ u(x))\}$

else remove g from G and set $f \leftarrow g$.

Return $\overline{\mathcal{D}}_{\mathcal{V}}u(x) := \mathbb{D}.$

Jean-Marie Mirebeau

Motivations

Wide Stenci

MA-LBR

Adaptivity

Numerical results

Conclusion

The adaptive MA-LBR operator $\mathcal{D}_{\mathcal{V}}u(x)$ Initialize $\mathbb{D} \leftarrow \infty$, vector $f \leftarrow (1,0)$, list $G \leftarrow [(0,1), (-1,0)]$. While G is non-empty do Denote by g the first element of G, and set e := f + g. If $e \in \mathcal{V}(x)$, or $[e \in \mathcal{V}_{\Omega}(x)$ and $H_eu(x) < 0]$

then prepend e to G, and set

 $\mathbb{D} \leftarrow \min\{\mathbb{D}, h(\Delta_e^+ u(x), \Delta_f^+ u(x), \Delta_g^+ u(x))\}$

else remove g from G and set $f \leftarrow g$.

Return $\overline{\mathcal{D}}_{\mathcal{V}}u(x) := \mathbb{D}.$

Jean-Marie Mirebeau

Motivations

Wide Stenci

MA-LBR

Adaptivity

Numerical results

Conclusion

The adaptive MA-LBR operator $\mathcal{D}_{\mathcal{V}}u(x)$ Initialize $\mathbb{D} \leftarrow \infty$, vector $f \leftarrow (1,0)$, list $G \leftarrow [(0,1), (-1,0)]$. While G is non-empty do Denote by g the first element of G, and set e := f + g. If $e \in \mathcal{V}(x)$, or $[e \in \mathcal{V}_{\Omega}(x) \text{ and } H_e u(x) < 0]$ then prepend e to G, and set $\mathbb{D} \leftarrow \min\{\mathbb{D}, h(\Delta_e^+ u(x), \Delta_f^+ u(x), \Delta_e^+ u(x))\}$ else remove g from G and set $f \leftarrow g$. Return $\overline{\mathcal{D}}_{\mathcal{V}}u(x) := \mathbb{D}$.

Jean-Marie Mirebeau

Motivations

Wide Stenci

MA-LBR

Adaptivity

Numerical results

Conclusion

The adaptive MA-LBR operator $\mathcal{D}_{\mathcal{V}}u(x)$

Initialize $\mathbb{D} \leftarrow \infty$, vector $f \leftarrow (1,0)$, list $G \leftarrow [(0,1), (-1,0)]$. While G is non-empty do

Denote by g the first element of G, and set e := f + g. If $e \in \mathcal{V}(x)$, or $[e \in \mathcal{V}_{\Omega}(x)$ and $H_e u(x) < 0]$ then prepend e to G, and set $\mathbb{D} \leftarrow \min\{\mathbb{D}, h(\Delta_e^+ u(x), \Delta_f^+ u(x), \Delta_g^+ u(x))\}$ else remove g from G and set $f \leftarrow g$. Return $\overline{\mathcal{D}}_{\mathcal{V}}u(x) := \mathbb{D}$.

Jean-Marie Mirebeau

Motivations

The Wide Stencil scheme

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

The MA-LBR scheme (Monge-Ampère with Lattice Basis Reduction)

Adaptivity, and the Stern-Brocot tree

Numerical results

Conclusion

```
Monotone
Consistent
Monge-
Ampere
```

Test protocol

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Domain $\Omega =]0, 1[^2$. A strictly convex test function $U \in C^0(\overline{\Omega}, \mathbb{R})$ is recovered by solving: a discretization of $\begin{cases} \det(\nabla^2 u) = \det(\nabla^2 U) & \text{on } \Omega \\ u = U & \text{on } \partial\Omega \\ u & \text{convex.} \end{cases}$

(1)

We use a damped Newton solver, with a strictly convex initialization satisfying the boundary conditions.

Test protocol

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Domain $\Omega =]0, 1[^2$. A strictly convex test function $U \in C^0(\overline{\Omega}, \mathbb{R})$ is recovered by solving: find $u : X \cup \partial\Omega \to \mathbb{R}$ such that $\begin{cases}
\mathcal{D}u = \det(\nabla^2 U) & \text{on } X \\
u = U & \text{on } \partial\Omega.
\end{cases}$

We use a damped Newton solver, with a strictly convex initialization satisfying the boundary conditions.

Test protocol

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Domain $\Omega =]0, 1[^2$. A strictly convex test function $U \in C^0(\overline{\Omega}, \mathbb{R})$ is recovered by solving: find $u : X \cup \partial\Omega \to \mathbb{R}$ such that

$$\left\{ egin{array}{ll} \mathcal{D}u = \mathsf{det}(
abla^2 U) & ext{on } X \ u = U & ext{on } \partial\Omega. \end{array}
ight.$$

We use a damped Newton solver, with a strictly convex initialization satisfying the boundary conditions.

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Compared numerical schemes

Finite Differences.

$$\mathcal{D}^{\rm FD} := \Delta_{(1,0)} \Delta_{(0,1)} - (\Delta_{(1,1)} - \Delta_{(1,-1)})^2 / 16.$$

► Wide-Stencil scheme of Froese and Oberman.

$$\mathcal{D}_V^{\rm FO}u(x) := \min_{\substack{\{f,g\} \subset V\\ \text{orthogonal}}} \frac{\Delta_f^+u(x)}{\|f\|^2} \times \frac{\Delta_g^+u(x)}{\|g\|^2}.$$

MA-LBR scheme

 $\mathcal{D}_{V}^{\text{LBR}}u(x) := \min_{\substack{\{e,f,g\} \subset V\\ superbase}} h(\Delta_{e}^{+}u(x), \Delta_{f}^{+}u(x), \Delta_{g}^{+}u(x)).$

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Compared numerical schemes

Finite Differences.

$$\mathcal{D}^{\mathrm{FD}} := \Delta_{(1,0)} \Delta_{(0,1)} - (\Delta_{(1,1)} - \Delta_{(1,-1)})^2 / 16.$$

Wide-Stencil scheme of Froese and Oberman.

$$\mathcal{D}_{V}^{\mathrm{FO}}u(x) := \min_{\substack{\{f,g\} \subset V\\ \text{orthogonal}}} \frac{\Delta_{f}^{+}u(x)}{\|f\|^{2}} \times \frac{\Delta_{g}^{+}u(x)}{\|g\|^{2}}.$$

MA-LBR scheme

 $\mathcal{D}_{V}^{\text{LBR}}u(x) := \min_{\substack{\{e,f,g\} \subset V\\ superbase}} h(\Delta_{e}^{+}u(x), \Delta_{f}^{+}u(x), \Delta_{g}^{+}u(x)).$

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

Compared numerical schemes

Finite Differences.

$$\mathcal{D}^{\rm FD} := \Delta_{(1,0)} \Delta_{(0,1)} - (\Delta_{(1,1)} - \Delta_{(1,-1)})^2 / 16.$$

Wide-Stencil scheme of Froese and Oberman.

$$\mathcal{D}_V^{\rm FO}u(x) := \min_{\substack{\{f,g\} \subset V\\ \text{orthogonal}}} \frac{\Delta_f^+u(x)}{\|f\|^2} \times \frac{\Delta_g^+u(x)}{\|g\|^2}.$$

MA-LBR scheme.

 $\mathcal{D}_{V}^{\text{LBR}}u(x) := \min_{\substack{\{e,f,g\} \subset V\\ superbase}} h(\Delta_{e}^{+}u(x), \Delta_{f}^{+}u(x), \Delta_{g}^{+}u(x)).$

Jean-Marie Mirebeau

Quadratic test case: $U(x) := \frac{1}{2} \langle x, Mx \rangle$, $\kappa = 10$, $\theta = \pi/3$

Adaptivity

Numerical results

and $x_0 := (1/2, 1/2)$.

Adaptivity

Numerical results

Conclusion

Smoothed cone: $U(x) := \sqrt{\delta^2 + ||x - x_0||^2}$, with $\delta := 0.1$ and $x_0 := (1/2, 1/2)$.

20 30

50 100 200

10

Adaptivity

Numerical results

Conclusion

Singular: $U(x) = \sqrt{2 - ||x||^2}$

20 30 50 100

200

10

Numerical results

Conclusion

Singular: $U(x) = \sqrt{2 - ||x||^2}$

Conclusion

Singular: $U(x) = \sqrt{2 - ||x||^2}$

Figure : Log-Log plot of the L^{∞} error, as a function of resolution *n*, for the three 3D test cases. Discretization set $X \subset \Omega$ has n^3 points.

Monotone Consistent Monge-Ampere

Jean-Marie Mirebeau

Motivations

The Wide Stencil scheme

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

The MA-LBR scheme (Monge-Ampère with Lattice Basis Reduction)

Adaptivity, and the Stern-Brocot tree

Numerical results

Conclusion

Monotone Consistent Monge-Ampere

ngepere Anisotropic PDEs discretizations on Cartesian grids are tied to:

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

• Lattice classification: obtuse superbases.

• Arithmetic: the Stern-Brocot tree.

longe-Ampere schemes developed with these tools are:

- ► Consistent (≠ approximately consistent Wide Stencil).
- ▶ Degenerate Elliptic (≠ naïve finite differences).
- Cheap thanks to adaptivity.

Future work / Questions left open

- Alexandroff solutions of MA require other approaches, e.g. "Geometric" schemes.
- ▶ No Stern-Brocot tree in 3D.

Monotone Consistent Monge-

Monge-Ampere Anisotropic PDEs discretizations on Cartesian grids are tied to:

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

• Lattice classification: obtuse superbases.

• Arithmetic: the Stern-Brocot tree.

Monge-Ampere schemes developed with these tools are:

- Consistent (\neq approximately consistent Wide Stencil).
- ► Degenerate Elliptic (≠ naïve finite differences).
- Cheap thanks to adaptivity.

Future work / Questions left open

- Alexandroff solutions of MA require other approaches, e.g. "Geometric" schemes.
- ▶ No Stern-Brocot tree in 3D.

Monotone Consistent Monge-

Monge-Ampere Anisotropic PDEs discretizations on Cartesian grids are tied to:

Jean-Marie Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical results

Conclusion

• Lattice classification: obtuse superbases.

• Arithmetic: the Stern-Brocot tree.

Monge-Ampere schemes developed with these tools are:

- Consistent (\neq approximately consistent Wide Stencil).
- ▶ Degenerate Elliptic (≠ naïve finite differences).
- Cheap thanks to adaptivity.

Future work / Questions left open

- Alexandroff solutions of MA require other approaches, e.g. "Geometric" schemes.
- No Stern-Brocot tree in 3D.