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The Monge-Ampere PDE
Let Ω be a bounded convex domain, let ρ ∈ C 0(Ω,R+), and let
σ ∈ C 0(∂Ω,R+) be convex on any segment of ∂Ω. Find u s.t.

det(∇2u) = ρ on Ω

u = σ on ∂Ω

u convex

Motivation: isolate the difficulty associated to the
Monge-Ampere operator det(∇2u) appearing in OT.

Optimal transport
Let Ω′ be another convex domain, and let ρ′ ∈ C 0(Ω′,R+) with∫

Ω ρ =
∫

Ω′ ρ
′. OT ρ→ ρ′ is the gradient ∇u of a convex

potential 
ρ′(∇u) det(∇2u) = ρ on Ω

[∇u](Ω) = Ω′

u convex
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Solution Regularity and Scheme Robustness
Each discretization of det(∇2u) take clues from a regularity
theory for the Monge-Ampere PDE.

I Smooth solutions ; Finite Differences schemes.
Pros: Simple implementation. Accurate when they work.
Cons: Solver needs a good guess. Only capture smooth solutions.

I Viscosity solutions ; Degenerate Elliptic schemes.
Pros: Convergence guarantees for some discrete iterative solvers.
Cons: Only capture viscosity solutions.

I Alexandroff solutions ; Power-Diagram based schemes.
Pros: Capture the most general solutions, e.g. u = | · |, ρ = πδ0.
Cons: Complex implementation, involving a global adaptive mesh.
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Grid based degenerate elliptic schemes
Ω: open bounded convex domain ⊂ R2.

Grid discretization. X := Ω ∩ hR(ξ + Z2).
U denotes the collection of maps u : X ∪ ∂Ω→ R.

Definition (Second order finite differences ≈ 〈e,∇2u(x)e〉)
Let u ∈ U, x ∈ X , e ∈ Z2.

I If x ± e ∈ X then ∆eu(x) := u(x + e)− 2u(x) + u(x − e).
I Otherwise ∆eu(x) involves boundary values of u, on ∂Ω.

Definition (Degenerate ellipticity)
An operator D : U → RX is Degenerate Elliptic with stencil
V ⊂ ZZ2 if, for each x ∈ X , Du(x) is a non-decreasing locally
Lipschitz function of ∆eu(x), e ∈ V .

Find u : X ∪ ∂Ω→ R s.t.

{
Du = ρ on X

u = σ on ∂Ω.
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The Wide Stencil scheme
Definition (WS scheme with finite stencil V ⊂ Z2)
For any u ∈ U, x ∈ X , denoting α+ := max{α, 0}

DV u(x) := min
{f ,g}⊂V
orthogonal

∆+
f u(x)

‖f ‖2
×

∆+
g u(x)

‖g‖2
.

Degenerate elliptic scheme, with stencil V .

� Brittany D Froese and Adam M Oberman. Convergent Finite
Difference Solvers for Viscosity Solutions of the Elliptic
Monge-Ampère Equation in Dimensions Two and Higher. SIAM
Journal on Numerical Analysis, 2011.
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Let S+
2 denote positive definite matrices. For each M ∈ S+

2

uM(x) :=
1
2
〈x ,Mx〉, ∆euM(x) = 〈e,Me〉.

Proposition (Approximate Consistency)
For any M ∈ S+

2 , by Hadamard’s inequality

DV uM(x) = min
{f ,g}⊂V
orthogonal

〈f ,Mf 〉
〈f , f 〉

〈g ,Mg〉
〈g , g〉

≥ det(M).

Equality holds iff {f , g} is M-orthogonal (i.e. 〈f ,Mg〉 = 0).

Proof.
Denote f := f /‖f ‖, g := g/‖g‖, which form an orthonormal
basis of R2. Then, recognizing a Gram matrix

det(M) =

∣∣∣∣∣〈f,Mf〉 〈f,Mg〉
〈f,Mg〉 〈g,Mg〉

∣∣∣∣∣ = 〈f,Mf〉〈g,Mg〉− 〈f,Mg〉2
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Relative Consistency error

Figure : Relative consistency error (DV (uM)− det(M))/DV (uM),
with several stencils V . Matrix M ∈ S+

2 has condition number
κ2 := ‖M‖‖M−1‖ and eigenvector (cos θ, sin θ).
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Monge-Ampere with Lattice Basis Reduction
Lattice Basis Reduction is the study of preferred coordinate
systems for lattices (discrete subgroups of Rd).

Definition (Superbase of Z2)
A superbase is a triplet (e, f , g) ∈ (ZZ2)3 such that
e + f + g = 0 and | det(f , g)| = 1. It is said M-obtuse, where
M ∈ S+

2 , iff 〈e,Mf 〉 ≤ 0, 〈f ,Mg〉 ≤ 0, 〈g ,Me〉 ≤ 0.
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Figure : Left: An M-obtuse superbase, and the unit ball
{〈e,Me〉 ≤ 1}. Right: Likewise under change of coordinates M

1
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Definition (MA-LBR scheme with finite stencil V ⊂ ZZ2)

DV u(x) := min
{e,f ,g}⊂V
superbase

h(∆+
e u(x),∆+

f u(x),∆+
g u(x)).

where h : R3
+ → R+ is

h(a, b, c) =

{
bc if a ≥ b + c (and likewise permuting a,b,c),
1
4(2ab + 2bc + 2ca− a2 − b2 − c2) otherwise.
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Figure : h(a, b, c) can be interpreted as a subgradient measure.

Proposition (Consistency)
For any M ∈ S+

2 , x ∈ X , DV uM(x) ≥ det(M), with equality iff
V contains an M obtuse superbase.
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Relative Consistency error

Figure : Relative consistency error (DV (uM)− det(M))/DV (uM),
with several stencils V . Matrix M ∈ S+

2 has condition number
κ2 := ‖M‖‖M−1‖ and eigenvector (cos θ, sin θ).
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Figure : Relative consistency error (DV (uM)− det(M))/DV (uM),
with several stencils V . Matrix M ∈ S+

2 has condition number
κ2 := ‖M‖‖M−1‖ and eigenvector (cos θ, sin θ).



Monotone
Consistent
Monge-
Ampere

Jean-Marie
Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical
results

Conclusion

Figure : Relative consistency error (DV (uM)− det(M))/DV (uM),
with stencils V of radius 1, 2, 3. Top: wide stencil. Bottom:
MA-LBR. Matrix has eigenvalues 62, 1, 1 and eigenvector v ∈ S2.



Monotone
Consistent
Monge-
Ampere

Jean-Marie
Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical
results

Conclusion

Figure : Relative consistency error (DV (uM)− det(M))/DV (uM),
with stencils V of radius 1, 2, 3. Top: wide stencil. Bottom:
MA-LBR. Matrix has eigenvalues 6−2, 1, 1 and eigenvector v ∈ S2.
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Figure : Relative consistency error (DV (uM)− det(M))/DV (uM),
with stencils V of radius 1, 2, 3. Top: wide stencil. Bottom:
MA-LBR. Matrix RDiag(6, 1, 1/6)R where R is the reflexion of axis
v ∈ S2.
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Consistency region associated to a stencil element
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Figure : Left: largest element of an M-obtuse superbase. Right:
eigenvector of M. Matrix M ∈ S+

2 has condition number
κ2 := ‖M‖‖M−1‖ and eigenvector (cos θ, sin θ).
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Figure : Active stencil for quadratic forms uM , M ∈ S+
2 , of various

orientations. Left: {uM ≤ 1}. Center: MA-LBR scheme. Right:
Wide-Stencil scheme.

Theorem (Optimal locality)
Let D : U→ RX be a Degenerate Elliptic operator, with finite
symmetric stencil V . Let M ∈ S+

2 , x ∈ X .
If DuN(x) = det(N) for all N is a neighborhood of M,
then Hull(V ) contains an M-obtuse superbase.
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Existence of an M-obtuse superbase
Selling’s Algorithm (1857).
Set e0 ← (−1,−1), e1 ← (1, 0), e2 ← (0, 1).
While the superbase (e0, e1, e2) is not M-obtuse do

Find 0 ≤ i < j ≤ 2 such that 〈ei ,Mej〉 > 0,
Set (e0, e1, e2)← (ei − ej , ej , −ei ).

Proposition
Selling’s algorithm terminates, and the final state of (e0, e1, e2)
is an M-obtuse superbase.

Proof.
Introduce the energy: with ‖e‖M :=

√
〈e,Me〉

E(e0, e1, e2) := ‖e0‖2M + ‖e1‖2M + ‖e2‖2M .

Only finitely many superbases have their energy below a given
bound. Then observe that

E(ei − ej , ej , −ei ) = E(e0, e1, e2)− 4〈ei ,Mej〉.
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Conclusion on the non-adaptive MA-LBR operator

Pros:
I More accurate than the Wide Stencil scheme, although not

(much) more costly or difficult to implement.
I Consistency for all quadratic functions uM , with condition

number ‖M‖‖M−1‖ bounded by some κ0, is achieved with
a finite stencil.

Cons:
I How to a-priori choose the stencil size ?

In the following, we introduce an automatic, guaranteed and
parameter free stencil construction, by reinterpreting and
extending Selling’s Algorithm to non-quadratic maps.
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Motivations

The Wide Stencil scheme

The MA-LBR scheme (Monge-Ampère with Lattice Basis
Reduction)

Adaptivity, and the Stern-Brocot tree

Numerical results

Conclusion



Monotone
Consistent
Monge-
Ampere

Jean-Marie
Mirebeau

Motivations

Wide Stencil

MA-LBR

Adaptivity

Numerical
results

Conclusion

The Stern Brocot tree

a

b

A

B
=

a + a¢

b + b¢

a¢

b¢

a

b

a + A

b + B

A

B

A + a¢

B + b¢

a¢

b¢

Obtain the (n + 1)-th line by inserting a+a′

b+b′ between
consecutive elements a

b and a′

b′ of the n-th line.
I Each rational number appears exactly once, in its

irreducible form.
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Off topic: Fun facts on the Stern-Brocot tree
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7
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Figure : Dyadic rationals can be organized in a similar (complete
infinite binary) tree. Some images from Wikipedia.

Minkowski’s question mark function, ? : [0, 1]→ [0, 1]

?(x) is the continuous function mapping the Stern-Brocot labels
in [0, 1] to the dyadic labels. Properties:

I ?′(x) = 0 for almost every x . (“Slippery Devil’s staircase”)

I ? is Holder continuous, with exponent ln 2
2 ln Φ , Φ := 1+

√
5

2 .
I ?(x) is rational for every quadratic irrational.
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Definition
For each node a+a′

b+b′ of the Stern-Brocot tree introduce

f = (a, b), g = (a′, b′), e = (a + a′, b + b′) = f + g .

Proposition
If e = f ⊕ g then (e,−f ,−g) is a superbase of Z2. All
superbases are of that form, up to a permutation of their
elements, and a symmetry w.r.t. the origin or an axis.

Proposition
Selling’s algorithm explores a single branch of the Stern-Brocot
tree, characterized by 〈f ,Mg〉 < 0.

a

b

A

B
=

a + a¢

b + b¢

a¢

b¢

a

b

a + A

b + B

A

B

A + a¢

B + b¢

a¢

b¢

f e= f Åg g

f f Åe e eÅg g
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From quadratic to discrete convex functions

Definition (Hexagonal test)
Let e = f ⊕ g , u ∈ U, x ∈ X

Heu(x) := ∆eu(x)−∆f u(x)−∆gu(x).

For a quadratic function:

HeuM(x) = 〈(f +g),M(f +g)〉−〈f ,Mf 〉−〈g ,Mg〉 = 2〈f ,Mg〉.

Test predicate is increasing along tree branches
The children of e = f ⊕ g , are f ⊕ e and e ⊕ g .

〈f ,Me〉 = 〈f ,Mg〉+ 〈f ,Mf 〉
Hf⊕eu(x) = Heu(x) + ∆f u(x + e) + ∆f u(x − e).

(Assuming x , x ± e, x ± f , x ± g ∈ Ω)
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f Åe

f

e

-1-1

-1

-1

+1

+1

+2 =
e

f

g

-1-1

-1

-1

+1

+1

+2 +
f Åeeg=e- f

- f Åe -e -g

-2

-2

+1+1

+1 +1

VΩ(x) := {e = f ⊕ g ; x ± e, x ± f , x ± g ∈ Ω}.
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The adaptive MA-LBR operator DVu(x)

Initialize D←∞, vector f ← (1, 0), list G ← [(0, 1), (−1, 0)].
While G is non-empty do

Denote by g the first element of G , and set e := f + g .
If e ∈ V(x), or [e ∈ VΩ(x) and Heu(x) < 0]

then prepend e to G , and set
D← min{D, h(∆+

e u(x),∆+
f u(x),∆+

g u(x))}
else remove g from G and set f ← g .

Return DVu(x) := D.

Theorem (Adaptive pruning equals extensive sweeping)
Let V(x), x ∈ X , be stencils (subject to mild conditions), and
let V(x) := V(x) ∪ VΩ(x).
If DVu > 0 on X , or DVu > 0 on X , then DVu = DVu on X .
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Initialize D←∞, vector f ← (1, 0), list G ← [(0, 1), (−1, 0)].
While G is non-empty do

Denote by g the first element of G , and set e := f + g .
If e ∈ V(x), or [e ∈ VΩ(x) and Heu(x) < 0]

then prepend e to G , and set
D← min{D, h(∆+

e u(x),∆+
f u(x),∆+

g u(x))}
else remove g from G and set f ← g .

Return DVu(x) := D.

Theorem (Adaptive pruning equals extensive sweeping)
Let V(x), x ∈ X , be stencils (subject to mild conditions), and
let V(x) := V(x) ∪ VΩ(x).
If DVu > 0 on X , or DVu > 0 on X , then DVu = DVu on X .
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Test protocol

Domain Ω =]0, 1[2. A strictly convex test function
U ∈ C 0(Ω,R) is recovered by solving: a discretization of

det(∇2u) = det(∇2U) on Ω

u = U on ∂Ω

u convex.

(1)

We use a damped Newton solver, with a strictly convex
initialization satisfying the boundary conditions.
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Test protocol

Domain Ω =]0, 1[2. A strictly convex test function
U ∈ C 0(Ω,R) is recovered by solving: find u : X ∪ ∂Ω→ R
such that {

Du = det(∇2U) on X

u = U on ∂Ω.

We use a damped Newton solver, with a strictly convex
initialization satisfying the boundary conditions.
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initialization satisfying the boundary conditions.
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Compared numerical schemes
I Finite Differences.

DFD := ∆(1,0)∆(0,1) − (∆(1,1) −∆(1,−1))2/16.

I Wide-Stencil scheme of Froese and Oberman.

DFO
V u(x) := min

{f ,g}⊂V
orthogonal

∆+
f u(x)

‖f ‖2
×

∆+
g u(x)

‖g‖2
.

I MA-LBR scheme.

DLBR
V u(x) := min

{e,f ,g}⊂V
superbase

h(∆+
e u(x),∆+

f u(x),∆+
g u(x)).

Eight point
formula
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Compared numerical schemes
I Finite Differences.

DFD := ∆(1,0)∆(0,1) − (∆(1,1) −∆(1,−1))2/16.

I Wide-Stencil scheme of Froese and Oberman.

DFO
V u(x) := min

{f ,g}⊂V
orthogonal

∆+
f u(x)

‖f ‖2
×

∆+
g u(x)

‖g‖2
.

I MA-LBR scheme.

DLBR
V u(x) := min

{e,f ,g}⊂V
superbase

h(∆+
e u(x),∆+

f u(x),∆+
g u(x)).

Different
stencils
tested
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Compared numerical schemes
I Finite Differences.

DFD := ∆(1,0)∆(0,1) − (∆(1,1) −∆(1,−1))2/16.

I Wide-Stencil scheme of Froese and Oberman.

DFO
V u(x) := min

{f ,g}⊂V
orthogonal

∆+
f u(x)

‖f ‖2
×

∆+
g u(x)

‖g‖2
.

I MA-LBR scheme.

DLBR
V u(x) := min

{e,f ,g}⊂V
superbase

h(∆+
e u(x),∆+

f u(x),∆+
g u(x)).

With
adaptivity
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Quadratic test case: U(x) := 1
2〈x ,Mx〉, κ = 10, θ = π/3

MA-LBR

Finite Differences HFDL
Wide Stencil HWSL, 8 points

Wide Stencil HWSL, 16 points

Wide Stencil HWSL, 24 points

Wide Stencil HWSL, 48 points

10 20 30 50 100 200
n

10-13

10-10

10-7

10-4

0.1

Quadratic: L¥ error

Smoothed cone: U(x) :=
√
δ2 + ‖x − x0‖2, with δ := 0.1

and x0 := (1/2, 1/2).
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Quadratic test case: U(x) := 1
2〈x ,Mx〉, κ = 10, θ = π/3
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δ2 + ‖x − x0‖2, with δ := 0.1
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Quadratic test case: U(x) := 1
2〈x ,Mx〉, κ = 10, θ = π/3
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Cone: number of iterations
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FiniteDifferences
Proposed, Small V
Proposed, Large V

WS, Small B
WS, Medium B
WS, Large B
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0.001

0.01

Quadratic, L¥ error
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Smoothed cone, L¥ error
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Figure : Log-Log plot of the L∞ error, as a function of resolution n,
for the three 3D test cases. Discretization set X ⊂ Ω has n3 points.
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Anisotropic PDEs discretizations on Cartesian grids are tied to:

I Lattice classification: obtuse superbases.
I Arithmetic: the Stern-Brocot tree.

Monge-Ampere schemes developed with these tools are:

I Consistent ( 6= approximately consistent Wide Stencil).
I Degenerate Elliptic ( 6= naïve finite differences).
I Cheap thanks to adaptivity.

Future work / Questions left open

I Alexandroff solutions of MA require other approaches, e.g.
“Geometric” schemes.

I No Stern-Brocot tree in 3D.
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