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Figure 4. Surface plot of the Pucci solution, for � = 3, n = 256.
Plot of the midline of the solutions, increasing with � = 2, 2.5, 3, 5,
n = 256.

6.4. Discrete Comparison Principle. Numerical solutions of respected the dis-
crete comparison principle, when it was true at the continuous level. For example,
if u1 is the solution of the convex envelope equation,

�⇥�[u1] = 0,

and u2 is the solution of the Pucci equation

�(2⇥� + ⇥+)[u2] = 0,

with the same boundary data g(x) for each equation, then

�(2⇥� + ⇥+)[u1] = �⇥+[u1] ⇥ 0.

So u1 is a subsolution of the Pucci equation. By the comparison principle (2.1), we
conclude

u1 ⇥ u2.

By Theorem 2, we expect that numerical solutions of the di�erence equations solved
on the same grid respect the comparison principle as well. We verified that this
held numerically, for each of the equations, and also using coe⇤cients which were
functions of x. For example the variable coe⇤cient Pucci equations (A(x)⇥�+⇥+),
where 1 ⇥ A(x) ⇥ 2. See Figure 5.

6.5. Boundary continuity of solutions. We remark that solutions need not be
continuous up to the boundary. For example, If the boundary data is not convex,
then there is no way to build a convex function which agrees at the boundary.
Since both solutions of (MA) and (CE) are required to be convex, we can’t expect
boundary continuity. However this is a feature of the equation, not the scheme, so
it shows the robustness of the scheme.

6.6. Accelerating Iterations. The iteration (5.2) is a simple, explicit, convergent
method to find the solution of the di�erence equation. While it may thousands of
iterations to converge, on the largest grids used, solution time was a few minutes.
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Fig. 3. Surface plot: initial data, and solution at time .03

the nθ = 4 scheme on a 2002 grid. The solution is displayed in Figures 2
and 3.
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Fig. 1. Illustration of the schemes used for nS = 8, 12, 16

Table 3. Error in the maximum norm for different schemes, as a function of the number
of grid points used and the stencil size

Grid nS = 4 nS = 8 nS = 12 nS = 16 nS = 32

20 × 20 .110 .080 .035 .020 .024
40 × 40 .115 .080 .035 .024 .022
80 × 80 .119 .080 .035 .027 .013
160 × 160 .118 .080 .035 .027 .010
240 × 240 * .080 .035 .027 .010
360 × 360 * * .035 .027 .010
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Fig. 2. Contour plots of the −.02, and .02 contours at times 0, .015, .03, .045

test of the dθ error. Taking the minimum with zero is convenient as it allows
homogeneous Neumann boundary conditions to be used. The numerical error
in the maximum norm, after solving for t = .2 is presented in Table 3.

Finally, we present an example which demonstrated the fattening phenom-
ena [ES91]. Taking as initial data |x| − |y|, we compute the solution using

Mean Curvature
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Consider then

∆∞u =
1

|Du|2
m∑

i,j=1

uxixj uxiuxj = 0(IL)

for x in a bounded, open set U in Rm, along with Dirichlet boundary conditions
u = g on the boundary of U . Here |Du| = (u2

x1
. . . u2

xm
)1/2 is the length of the

gradient of the function u. (The definition above is the one which arises naturally
in our discretization schemes, but it is different from the one used by some authors,
who may omit the factor of 1/|Du|2.) A more suggestive form is to rewrite the
equation as the second derivative in the direction of the gradient,

∆∞u =
d2u

dv2
, where v =

Du

|Du| .(1.1)

The infinity Laplacian operator appears in the equation for the motion of level sets
by mean curvature, ∆1u = ∆u −∆∞u, where ∆1 is the level set mean curvature
operator, and ∆ is the usual Laplacian.

The scheme is defined by locally minimizing the discrete Lipschitz constant of the
solution, which leads to a one-dimensional, nonsmooth convex optimization prob-
lem, to be solved at each grid point. This optimization problem may be interpreted
as the minimization of the relaxed gradient. An explicit solution of the optimization
problem is found, which is then used to produce a consistent, monotone scheme.
Convergence (as the grid parameters go to zero) to the viscosity solution of (IL)
follows from Barles-Souganidis [7]. The discretized problem is solved iteratively,
using an explicit scheme that is equivalent to the explicit Euler discretization of
ut = ∆∞u. This scheme is a contraction in L∞; consequently, the iterations con-
verge exponentially to the solution.

In the next few paragraphs we discuss the infinity Laplacian PDE in more detail,
connections with other areas of mathematics, and some applications. The contents
of the remainder of article follow at the end of the section.

The classical problem of Lipschitz extensions. A classical problem in real analysis
is to extend a given function to a larger domain without increasing its Lipschitz
constant. Given the function g defined on a closed set C ⊂ Rm, with K the least
constant for which

f(x) − f(y) ≤ K|x − y| for all x, y ∈ C

holds, the problem is to build a Lipschitz continuous extension of g with the smallest
possible Lipschitz constant. There are multiple solutions to the Lipschitz extension
problem. The Whitney [20] and McShane [17] extensions,

Φ(x) = inf
y∈C

(f(y) + K|x − y|), Λ(x) = sup
y∈C

(f(y) − K|x − y|),

are both solutions. In fact they are the maximal and minimal extensions, respec-
tively. Unfortunately, the McShane and Whitney extensions do not have certain
desirable properties. For example, repeated applications of the operators may lo-
cally improve the Lipschitz constant [5].
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Figure 4. Surface and contour plots using the 25 neighbor
method, for boundary data |x|, and x3 � 3xy2, on a square, and
boundary data the characteristic function of a point, on a circle.

Infinity Laplacian
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Obtain High Accuracy in 1d
(even if solutions not smooth)



Obtain 2nd order accuracy in 2d



General Convex Envelopes
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Four D (2X2) Example



Numerical Solution of 
the Infinity Laplace Equation

via
solution of the absolutely minimizing Lipschitz extension 

problem in a discrete setting



The discrete Lipschitz extension problem.
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if D⇥(x) ⌅= 0, and

� ⇥ lim inf
dx,d�⇥0

Fdx,d�(⇥)(x) ⇥ lim sup
dx,d�⇥0

Fdx,d�(⇥)(x) ⇥ �

where �, � are the least and greatest eigenvalues of D2⇥(x), otherwise.

By a theorem of Barles-Souganidis [?], consistent, monotone schemes
converge to the unique viscosity solution of the PDE.

4. Discrete minimal Lipschitz extensions

In this section we define and solve the discrete minimal Lipschitz
extension problem, which will then be used to define the consistent,
discretely elliptic approximation scheme.

We mention that the discrete minimal Lipschitz extension problem
is formulated for points in Euclidean space, but the arguments apply
equally to points in a metric space. This approach may be useful
for more general problems, for example inpainting on a surface, or
extending function in a metric space.

Definition. Given distinct x0, . . . , xn in Rm, and values ui = u(xi),
for i = 1, . . . n, the discrete Lipschitz constant at x0, is

L(u0) =
n

max
i=1

Li(u0) =
n

max
i=1

|u0 � ui|
|x0 � xi|

Problem. Minimize the discrete Lipschitz constant of u at x0, (com-
puted with respect to the points x1, . . . , xn) over the value u0 = u(x0)

min
u0

L(u0)

Remark (Geometrical interpretation of Problem ??). Consider Rn im-
bued with the metric d(x, y) = maxn

i=1 |xi � yi|/di, where di > 0, i =
1, . . . , n. Then Problem ?? consists of finding the minimum distance
from the point (u(x1), . . . , u(xn)) to the diagonal line (t, . . . , t), t ⇤ R.

Theorem 5 (Solution of the discrete minimal Lipschitz extension prob-
lem). The unique solution of the discrete minimal Lipschitz extension
problem is

(4.1) u� =
diuj + djui

di + dj

where i, j are the indices which maximize the relaxed discrete gradient

(4.2)
|ui � uj|
di + dj

=
n

max
k,l=1

�
|uk � ul|
dk + dl

⇥
.



Now solve the problem at every point on a 
grid.
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Consider then
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problem is found, which is then used to produce a consistent, monotone scheme.
Convergence (as the grid parameters go to zero) to the viscosity solution of (IL)
follows from Barles-Souganidis [7]. The discretized problem is solved iteratively,
using an explicit scheme that is equivalent to the explicit Euler discretization of
ut = ∆∞u. This scheme is a contraction in L∞; consequently, the iterations con-
verge exponentially to the solution.

In the next few paragraphs we discuss the infinity Laplacian PDE in more detail,
connections with other areas of mathematics, and some applications. The contents
of the remainder of article follow at the end of the section.

The classical problem of Lipschitz extensions. A classical problem in real analysis
is to extend a given function to a larger domain without increasing its Lipschitz
constant. Given the function g defined on a closed set C ⊂ Rm, with K the least
constant for which

f(x) − f(y) ≤ K|x − y| for all x, y ∈ C

holds, the problem is to build a Lipschitz continuous extension of g with the smallest
possible Lipschitz constant. There are multiple solutions to the Lipschitz extension
problem. The Whitney [20] and McShane [17] extensions,

Φ(x) = inf
y∈C

(f(y) + K|x − y|), Λ(x) = sup
y∈C

(f(y) − K|x − y|),

are both solutions. In fact they are the maximal and minimal extensions, respec-
tively. Unfortunately, the McShane and Whitney extensions do not have certain
desirable properties. For example, repeated applications of the operators may lo-
cally improve the Lipschitz constant [5].
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Figure 4. Surface and contour plots using the 25 neighbor
method, for boundary data |x|, and x3 � 3xy2, on a square, and
boundary data the characteristic function of a point, on a circle.

Infinity Laplacian

CONVERGENT SCHEME FOR INFINITY LAPLACE 3

A classical problem in real analysis: extend g to a larger domain
without increasing its Lipschitz constant.

Given f(x) : C ⇤ Rm ⌅ R, with K the least constant for which

f(x)� f(y) ⇥ K|x� y| for all x, y ⌃ C.

Problem: build a Lipschitz continuous extension of f with the small-
est possible Lipschitz constant.

Multiple solutions: e.g. Whitney and McShane extensions,

⇤(x) = inf
y⇤C

(f(y) + K|x� y|), ⇥(x) = sup
y⇤C

(f(y)�K|x� y|)

are both solutions. In fact: maximal and minimal, extensions, respec-
tively.

Unfortunately, the McShane and Whitney extensions do not have
certain desirable properties. For example, repeated applications of the
operators may locally improve the Lipschitz constant [?].

Given boundary data g, on ⇤U , the extension u is:
minimizing if |Du|L�(U) ⇥ |Dv|L�(U) for all other extensions v.
absolutely minimizing, minimizing on every open, bounded subset

of U .
Aronsson: formal limit, as p⌅⇧,

min Ip(u) =

�

U

|Du|p dx

under given boundary conditions. The Euler-Lagrange equation for Ip

is
div(|Du|p�2Du) = |Du|p�2 (�u + (p� 2)�⇥u) ,

gives �⇥u when p⌅⇧.

The problem of finding absolute minimizers of |Du|⇥ is the proto-
typical problem in the calculus of variations in L⇥. Barron, Jensen
and Wang [?, ?] prove the existence of absolute minimizers and derive
the corresponding Aronsson-Euler equations for more general problems
in the calculus of variations in L⇥.

Existence and uniqueness of viscosity solutions. The function

f(x, y) = |x|4/3� |y|4/3, is a solution, clearly not twice di⌅erentiable.

is an example, due to Aronsson [?], of a function which is absolutely
minimizing, but not twice di⌅erentiable. As of the date of this article,
the di⌅erentiability of solutions of (IL) remains an open question.



Metric induced by different stencils
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dθ
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} }
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Figure 1. Grids for the 5, 9, and 17 point schemes, and level sets
of the cones for the corresponding schemes.

Circle: # points 16 32 64 200 1000 105

error .1553 .0123 .0.123 -0.016 -0.0024 -.00008
Square: # levels 2 4 8 16 32 64 128 256

error q1 .11 .11 .11 -.11 .05 .027 -.013 .0068
error q2 -.2 -.2 -.2 .05 -.004 -.004 -.004 .0015

Figure 2. Discretization error as a function of d�, computed using
neighbors on the boundary of a circle, and on a square, for di�erent
choices of quadratic functions.

Stencil n = 41 n = 81 n = 161 n = 241 n = 401
5 .09 .09 .067 .015 .0057
9 .023 .018 .0058 .0028 .00079
25 .0052 .0057 .0033 .0035 .00072

Figure 3. Numerical error computed in the maximum norm for
the 5 point, 9 point, and 25 point stencils, on a grid with n2 points.
Calculated using the exact Aronsson solution x4/3 � y4/3 .

Numerical convergence. The observed convergence was much better than predicted
by the analysis: the observed error was linear in dx, even for fixed d�, as evidenced
by Table 5, where the error was computed using the exact solution x4/3 � y4/3.

Implementation. The scheme was implemented on a uniform grid. The number of
grid points used varied from 412 to 4012. The implementation was performed in



Convergence of the scheme
12 ADAM M. OBERMAN

Theorem. Let u be a C2 function in a neighborhood of x0. Suppose we
are given neighbors x1, . . . , xn, arranged symmetrically on a grid. Let
u� be the solution of the discrete minimal Lipschitz extension problem
computed with respect to the points x1, . . . , xn, and let i, j be the
indices which maximize the relaxed discrete gradient. Then

��⇥u(x0) =
1

didj
(u(x0)� u�) + O(d� + dx)

Proof. 1. First assume Du ⌅= 0. The Taylor expansion gives

(4.9) ui = u(x0) + div̂iDu(x0) +
d2

i

2
v̂T

i D2u v̂i + O(dx3), i = 1, . . . , n.

Then (??), which is to be maximized, gives,

uk � ul

dk + dl
= (v̂k � v̂l)Du + O(dx)

Up to order dx, the last expression is maximized by choosing v̂k as
close as possible to ⇤Du and v̂l close to �⇤Du. Furthermore, taking
dx, d� small enough, by (4.7) we may assume that

(4.10) v̂i = �v̂j.

By assumption, there are indices i, j so that

(4.11) |v̂i � ⇤Du|, |v̂j + ⇤Du| ⇥ d�

Then using the Taylor expansion (4.10) and the solution formula
(??), gives

u� = u0 +
didj

di + dj
(v̂i + v̂j)Du +

1

2
didj(v̂iD

2uv̂i + v̂jD
2uv̂j) + O(dx3)

and using (4.11) and applying (4.12), we get (4.9), as desired.
2. Next, assume Du = 0. Then for any indices i, j, we have from

(4.10)

1

didj

�
u0 �

djui + diuj

di + dj

⇥
=

1

2
(v̂iD

2uv̂i + v̂jD
2uv̂j) + O(dx)

which is consistent up to O(dx) with ��⇥u in the viscosity sense. �
Theorem (Convergence). The solution of the di⇥erence scheme de-
fined above converges (uniformly on compact sets) as dx, d� ⇤ 0 to
the solution of (IL).

Proof. Convergence to the solution of (IL) follows from consistency
and degenerate ellipticity (monotonicity) of the scheme by [Barles-
Souganidis]. �
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Interpretations

• Catte-Dibos-Koepfler (1985) morphological 
scheme for mean curvature

• Kohn-Serfaty (2005) deterministic control based 
approach to motion by mean curvature.

• Ryo Takei (2007) M.S. thesis: www.sfu.ca/~rrtakei

http://www.sfu.ca/~rrtakei
http://www.sfu.ca/~rrtakei


Failure of naive difference scheme

• Simply replace all the terms 
in the equation by a finite 
difference.  Explicit in time.  

• Use exact steady solution 
(with straight level sets) on 
periodic domain.

• Numerical solution 
contracts over time to a 
constant. 

• Monotone scheme 
converges for this example.
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Other schemes 

• discretize equation written in divergence structure

• will get “capping” at local min/max of level set function. 

• div( grad u/ |grad u|).   When u has local max, get nonzero 
divergence, even if function has straight level sets.

• Expect similar behavior for FEM method.

2 ADAM M. OBERMAN

Figure 1. Initial data. Solution of the Canonical scheme and the
Median scheme after t = 0.4. Error in the respective solutions.
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Scheme: part 1 of 2
ut

|Du|
= ⇥ = div

�
Du

|Du|

⇥

ut = |Du|div

�
Du

|Du|

⇥

=
d2u

dt2
, t =

(uy,�ux)⇤
u2

x + u2
y

d2u

dt2
=

u(x + dx t)� 2u(x) + u(x + dx t)

dx2 + O(dx2)

d2u

dt2
=

2u⇥ � 2u(x)

dx2 + O(dx2 + d�)

if u(x,0) ⇤ v(x,0) then u(x, t) ⇤ v(x, t)

PDE:



Scheme: part 1 of 2
ut

|Du|
= ⇥ = div

�
Du

|Du|

⇥

ut = |Du|div

�
Du

|Du|

⇥

=
d2u

dt2
, t =

(uy,�ux)⇤
u2

x + u2
y

d2u

dt2
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PDE:

Use this interpretation to discretize spatial 
operator by finite differences

Vn = � = div

�
Du

|Du|

⇥

ut = |Du|div

�
Du

|Du|

⇥

=
d2u

dt2
, t =

(uy,�ux)⇤
u2

x + u2
y

d2u

dt2
=

u(x + dx t)� 2u(x) + u(x� dx t)

dx2 + O(dx2)

d2u

dt2
=

2u⇥ � 2u(x)

dx2 + O(dx2 + dw)

u⇥ = median {u1, u2, . . . , u12}

=
u2 + u7

2

=
u(x + dx t) + u(x� dx t)

2
+ O(dw)



Scheme: part 1 of 2

Q: How to find a monotone discretization of this 
operator?
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2u⇥ � 2u(x)

dx2 + O(dx2 + dw)

u⇥ = median {u1, u2, . . . , u12}

=
u2 + u7

2

=
u(x + dx t) + u(x� dx t)

2
+ O(dw)



Scheme: part 2 of 2 



Scheme: part 2 of 2 

Vn = � = div

�
Du

|Du|

⇥

ut = |Du|div

�
Du

|Du|

⇥

=
d2u

dt2
, t =

(uy,�ux)⇤
u2

x + u2
y

d2u

dt2
=

u(x + dx t)� 2u(x) + u(x + dx t)

dx2 + O(dx2)

d2u

dt2
=

2u⇥ � 2u(x)

dx2 + O(dx2 + dw)

u⇥ = median {u1, u2, . . . , u12}

=
u2 + u7

2

=
u(x + dx t) + u(x� dx t)

2
+ O(dw)



Scheme: part 2 of 2 

Vn = � = div

�
Du

|Du|

⇥

ut = |Du|div

�
Du

|Du|

⇥

=
d2u

dt2
, t =

(uy,�ux)⇤
u2

x + u2
y

d2u

dt2
=

u(x + dx t)� 2u(x) + u(x + dx t)

dx2 + O(dx2)

d2u

dt2
=

2u⇥ � 2u(x)

dx2 + O(dx2 + dw)

u⇥ = median {u1, u2, . . . , u12}

=
u2 + u7

2

=
u(x + dx t) + u(x� dx t)

2
+ O(dw)

Vn = � = div

�
Du

|Du|

⇥

ut = |Du|div

�
Du

|Du|

⇥

=
d2u

dt2
, t =

(uy,�ux)⇤
u2

x + u2
y

d2u

dt2
=

u(x + dx t)� 2u(x) + u(x + dx t)

dx2 + O(dx2)

d2u

dt2
=

2u⇥ � 2u(x)

dx2 + O(dx2 + dw)

u⇥ = median {u1, u2, . . . , u12}

=
u2 + u7

2

=
u(x + dx t) + u(x� dx t)

2
+ O(dw)



Scheme: part 2 of 2 

Vn = � = div

�
Du

|Du|

⇥

ut = |Du|div

�
Du

|Du|

⇥

=
d2u

dt2
, t =

(uy,�ux)⇤
u2

x + u2
y

d2u

dt2
=

u(x + dx t)� 2u(x) + u(x + dx t)

dx2 + O(dx2)

d2u

dt2
=

2u⇥ � 2u(x)

dx2 + O(dx2 + dw)

u⇥ = median {u1, u2, . . . , u12}

=
u2 + u7

2

=
u(x + dx t) + u(x� dx t)

2
+ O(dw)

Vn = � = div

�
Du

|Du|

⇥

ut = |Du|div

�
Du

|Du|

⇥

=
d2u

dt2
, t =

(uy,�ux)⇤
u2

x + u2
y

d2u

dt2
=

u(x + dx t)� 2u(x) + u(x + dx t)

dx2 + O(dx2)

d2u

dt2
=

2u⇥ � 2u(x)

dx2 + O(dx2 + dw)

u⇥ = median {u1, u2, . . . , u12}

=
u2 + u7

2

=
u(x + dx t) + u(x� dx t)

2
+ O(dw)

Vn = � = div

�
Du

|Du|

⇥

ut = |Du|div

�
Du

|Du|

⇥

=
d2u

dt2
, t =

(uy,�ux)⇤
u2

x + u2
y

d2u

dt2
=

u(x + dx t)� 2u(x) + u(x + dx t)

dx2 + O(dx2)

d2u

dt2
=

2u⇥ � 2u(x)

dx2 + O(dx2 + dw)

u⇥ = median {u1, u2, . . . , u12}

=
u2 + u7

2

=
u(x + dx t) + u(x� dx t)

2
+ O(dw)



Scheme: part 2 of 2 

Scheme is consistent, with additional error due to 
directional resolution, decreased by widening stencil.  

Vn = � = div

�
Du

|Du|

⇥

ut = |Du|div

�
Du

|Du|

⇥

=
d2u

dt2
, t =

(uy,�ux)⇤
u2

x + u2
y

d2u

dt2
=

u(x + dx t)� 2u(x) + u(x + dx t)

dx2 + O(dx2)

d2u

dt2
=

2u⇥ � 2u(x)

dx2 + O(dx2 + dw)

u⇥ = median {u1, u2, . . . , u12}

=
u2 + u7

2

=
u(x + dx t) + u(x� dx t)

2
+ O(dw)

Vn = � = div

�
Du

|Du|

⇥

ut = |Du|div

�
Du

|Du|

⇥

=
d2u

dt2
, t =

(uy,�ux)⇤
u2

x + u2
y

d2u

dt2
=

u(x + dx t)� 2u(x) + u(x + dx t)

dx2 + O(dx2)

d2u

dt2
=

2u⇥ � 2u(x)

dx2 + O(dx2 + dw)

u⇥ = median {u1, u2, . . . , u12}

=
u2 + u7

2

=
u(x + dx t) + u(x� dx t)

2
+ O(dw)

Vn = � = div

�
Du

|Du|

⇥

ut = |Du|div

�
Du

|Du|

⇥

=
d2u

dt2
, t =

(uy,�ux)⇤
u2

x + u2
y

d2u

dt2
=

u(x + dx t)� 2u(x) + u(x + dx t)

dx2 + O(dx2)

d2u

dt2
=

2u⇥ � 2u(x)

dx2 + O(dx2 + dw)

u⇥ = median {u1, u2, . . . , u12}

=
u2 + u7

2

=
u(x + dx t) + u(x� dx t)

2
+ O(dw)



image: Evans-Spruck

Fattening



image: Evans-Spruck

Fattening
378 A. M. Oberman

Fig. 3. Surface plot: initial data, and solution at time .03

the nθ = 4 scheme on a 2002 grid. The solution is displayed in Figures 2
and 3.
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Fig. 1. Illustration of the schemes used for nS = 8, 12, 16

Table 3. Error in the maximum norm for different schemes, as a function of the number
of grid points used and the stencil size

Grid nS = 4 nS = 8 nS = 12 nS = 16 nS = 32

20 × 20 .110 .080 .035 .020 .024
40 × 40 .115 .080 .035 .024 .022
80 × 80 .119 .080 .035 .027 .013
160 × 160 .118 .080 .035 .027 .010
240 × 240 * .080 .035 .027 .010
360 × 360 * * .035 .027 .010
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Fig. 2. Contour plots of the −.02, and .02 contours at times 0, .015, .03, .045

test of the dθ error. Taking the minimum with zero is convenient as it allows
homogeneous Neumann boundary conditions to be used. The numerical error
in the maximum norm, after solving for t = .2 is presented in Table 3.

Finally, we present an example which demonstrated the fattening phenom-
ena [ES91]. Taking as initial data |x| − |y|, we compute the solution using


