Numerical Solutions of Geometric Partial
Differential Equations
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Sample Equations and Schemes




onlinear Pucci Equation
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FIGURE 4. Surface plot of the Pucci solution, for a = 3, n = 256

Plot of the midline of the solutions, increasing with a = 2,2.5,3,5
n = 250.




Mean Curvature

image: Evans-Spruck
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Fig. 2. Contour plots of the —.02, and .02 contours at times 0, .015, .03, .045

Fig. 3. Surface plot: initial data, and solution at time .03
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Fractional Obstacle Problem

w> o in R", (with) Yanghong Huang

(—A)“/Qu > 0, in R",
(—=A)¥2u(z) = 0, on {z € R" | u(z) > p(z)}.

—k— Numerical (—A)a/zu

Exact (—A)a/zu PR

====1u




Filtered Schemes for Hamilton Jacobi
with Tiago Salvador

{\Vu(:z:)\ = f(x), for z outside T,

u(x) = g(x), for z on T.

Py — {Fg[u], if |Fi[u] - Flylul] < VA
Fyrlu], otherwise.

F'u] = Flu[u] + O(hY/?).




Obtain High Accuracy in Id
(even if solutions not smooth)

8- Monotone
~—ag— Filtered (2nd)
~—&— Filtered (2ndUpwind)
iy~ Filtered (3rdUpwind)
=4 Filtered (4thUpwind)
Filtered (2ndENQ)
~afp— Filtered (3rdENO)
~——t— Filtered (4thENO)

10°




Obtain 2nd order accuracy in 2d




General Convex Envelopes

Directionally Convex Envelopes

Rank | Convex Envelope: Laminate
(scalar) quasi-convex envelope: make level sets of
function convex

With Yanglong Ruan




Microstructure in Laminates

Figure 1: Microstructure in a Cu-Al-Ni single crystal: the imaged area is
approximately 2 mm x 3 mm (courtesy of C. Chu and R.D. James, University
of Minnesota)




Four Gradient Example

energy of 4-gradient example envelope of 4-gradient example




Four Gradient Example

4-gradient example, order = 1 4—gradient example, order = 2
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4-gradient example, order = 3 4-—gradient example, order = 5
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Four D (2X2) Example

4D 8-gradient example 4D B-gradient example

bl | P

i

BRI

FIGURE 10. Laminate projected onto z —w and y —w plane. The
starting point does not fall on any coordinate plane.




Numerical Solution of
the Infinity Laplace Equation

via

solution of the absolutely minimizing Lipschitz extension
problem in a discrete setting




The discrete Lipschitz extension problem.

Definition. Given distinct xg,...,z, in R™, and values u; = u(x;),
tor = 1,...n, the discrete Lipschitz constant at x, is
n |U0 — UZ‘

L(ug) = max L*(ug) =
(uo) = max L*(ug) = max p——

Problem. Minimize the discrete Lipschitz constant of u at xg, (com-
puted with respect to the points 1, ..., x,) over the value ug = u(xg)

min L(ug)
uo




Now solve the problem at every point on a
grid.

e e e e e e e+ & e s




Infinity Laplacian

1 m
Aot = —|Du|2 E Ug,z, U, Ug; =0
1,7=1

fzy) = [al™? = [y, %}\\7&
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Metric induced by different stencils

FIGURE 1. Grids for the 5, 9, and 17 point schemes, and level sets
of the cones for the corresponding schemes.




Convergence of the scheme

Theorem. Let u be a C? function in a neighborhood of zy. Suppose we
are given neighbors x1, ..., z,, arranged symmetrically on a grid. Let
us be the solution of the discrete minimal Lipschitz extension problem
computed with respect to the points z1,...,x,, and let 7,5 be the
indices which maximize the relaxed discrete gradient. Then

1

—Aju(zg) = )
i

(u(xo) — us) + O(dl + dz)

Theorem (Convergence). The solution of the difference scheme de-

fined above converges (uniformly on compact sets) as dx,df — 0 to
the solution of (IL).

Proof. Convergence to the solution of (IL) follows from consistency
and degenerate ellipticity (monotonicity) of the scheme by [Barles-
Souganidis|. []




Mean Curvature




Interpretations

Catte-Dibos-Koepfler (1985) morphological
scheme for mean curvature

Kohn-Serfaty (2005) deterministic control based
approach to motion by mean curvature.

Ryo Takei (2007) M.S. thesis: www.sfu.ca/~rrtakei



http://www.sfu.ca/~rrtakei
http://www.sfu.ca/~rrtakei

Failure of naive difference scheme

Simply replace all the terms
in the equation by a finite
difference. Explicit in time.

Use exact steady solution
(with straight level sets) on
periodic domain.

Numerical solution
contracts over time to a
constant.

Monotone scheme
converges for this example.




Other schemes

discretize equation written in divergence structure
will get “capping’ at local min/max of level set function.

div( grad u/ |grad u|). When u has local max, get nonzero
divergence, even if function has straight level sets.

Expect similar behavior for FEM method.










Scheme: part 1 of 2

D d2 8
PDE: ‘v |Du|dz’v< u> - A e (uy, —uz)

Use this interpretation fo discretize spatial
operator by finite differences

d?u T ulr ety SRR e T t).

dt—2 " dr2 | O(dCL'Q)




Scheme: part 1 of 2

D d? 2,
dt \/ug —+ ug

| Dl
Use this interpretation to discretize spatial
operator by finite differences

dz_u ulr Hdr bty L) TR )
dt2 dx?

- O(dz?)

Q: How to find a monotone discretization of this
operator?



Scheme: part 2 of 2




Scheme: part 2 of 2

ux = Medialiben , to s

u T Uy
2




Scheme: part 2 of 2

ux = Medialiben , to s
U e
2

_ ulz tdet)Fale s dal)
i >

F O(dw)




Scheme: part 2 of 2

ux = Medialiben , to s
u 1 Uy
e
_ et iladel T ol

d2u - 8 2Usx — 2“(37)

—3= 8 - O(dz? + dw)




Scheme: part 2 of 2

us = Mediant o, v U
U 1~
i 2
= Wt datisn il adal) |«
5
d?u, 2usx — 2u(x) 2>
= o - O(dz? + dw)

Scheme is consistent, with additional error due to
directional resolution, decreased by widening stencil.



Fattening
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Fattening
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Fig. 3. Surface plot: initial data, and solution at time .03




Fattening
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Fig. 2. Contour plots of the —.02, and .02 contours at times 0, .015, .03, .045

Fig. 3. Surface plot: initial data, and solution at time .03




