Numerical Solutions of Geometric Partial Differential Equations

Adam Oberman McGill University

Sample Equations and Schemes

Fully Nonlinear Pucci Equation

FIGURE 4. Surface plot of the Pucci solution, for $\alpha = 3$, n = 256. Plot of the midline of the solutions, increasing with $\alpha = 2, 2.5, 3, 5$, n = 256.

Infinity Laplacian

Fractional Obstacle Problem

 $u \ge \varphi,$ in \mathbb{R}^n , (with) Yanghong Huang $(-\Delta)^{\alpha/2}u \ge 0,$ in \mathbb{R}^n , $(-\Delta)^{\alpha/2}u(x) = 0,$ on $\{x \in \mathbb{R}^n \mid u(x) > \varphi(x)\}.$

Filtered Schemes for Hamilton Jacobi with Tiago Salvador

$$egin{cases} |
abla u(x)| = f(x), & ext{for } x ext{ outside } \Gamma, \ u(x) = g(x), & ext{ for } x ext{ on } \Gamma. \end{cases}$$

$$F^{h}[u] = \begin{cases} F^{h}_{A}[u], & \text{if } \left|F^{h}_{A}[u] - F^{h}_{M}[u]\right| \leq \sqrt{h} \\ F^{h}_{M}[u], & \text{otherwise.} \end{cases}$$

$$F^h[u] = F^h_M[u] + \mathcal{O}(h^{1/2}).$$

Obtain High Accuracy in Id (even if solutions not smooth)

Obtain 2nd order accuracy in 2d

General Convex Envelopes Directionally Convex Envelopes

Rank I Convex Envelope: Laminate (scalar) quasi-convex envelope: make level sets of function convex

With Yanglong Ruan

Microstructure in Laminates

Figure 1: Microstructure in a Cu-Al-Ni single crystal; the imaged area is approximately $2 \text{ mm} \times 3 \text{ mm}$ (courtesy of C. Chu and R.D. James, University of Minnesota)

Four Gradient Example

Four Gradient Example

Four D (2X2) Example

FIGURE 10. Laminate projected onto x - w and y - w plane. The starting point does not fall on any coordinate plane.

Numerical Solution of the Infinity Laplace Equation via solution of the absolutely minimizing Lipschitz extension problem in a discrete setting

The discrete Lipschitz extension problem.

Definition. Given distinct x_0, \ldots, x_n in \mathbb{R}^m , and values $u_i = u(x_i)$, for $i = 1, \ldots n$, the discrete Lipschitz constant at x_0 , is

$$L(u_0) = \max_{i=1}^n L^i(u_0) = \max_{i=1}^n \frac{|u_0 - u_i|}{|x_0 - x_i|}$$

Problem. Minimize the discrete Lipschitz constant of u at x_0 , (computed with respect to the points x_1, \ldots, x_n) over the value $u_0 = u(x_0)$

Now solve the problem at every point on a grid.

Infinity Laplacian

$$\Delta_{\infty} u = \frac{1}{|Du|^2} \sum_{i,j=1}^{m} u_{x_i x_j} u_{x_i} u_{x_j} = 0$$

$$f(x,y) = |x|^{4/3} - |y|^{4/3},$$

$$(x, y) = |x|^{4/3} - |y|^{4/3},$$

Metric induced by different stencils

FIGURE 1. Grids for the 5, 9, and 17 point schemes, and level sets of the cones for the corresponding schemes.

Convergence of the scheme

Theorem. Let u be a C^2 function in a neighborhood of x_0 . Suppose we are given neighbors x_1, \ldots, x_n , arranged symmetrically on a grid. Let u_* be the solution of the discrete minimal Lipschitz extension problem computed with respect to the points x_1, \ldots, x_n , and let i, j be the indices which maximize the relaxed discrete gradient. Then

$$-\Delta_{\infty} u(x_0) = \frac{1}{d_i d_j} (u(x_0) - u_*) + O(d\theta + dx)$$

Theorem (Convergence). The solution of the difference scheme defined above converges (uniformly on compact sets) as $dx, d\theta \to 0$ to the solution of (IL).

Proof. Convergence to the solution of (IL) follows from consistency and degenerate ellipticity (monotonicity) of the scheme by [Barles-Souganidis]. \Box

Mean Curvature

Interpretations

- Catte-Dibos-Koepfler (1985) morphological scheme for mean curvature
- Kohn-Serfaty (2005) deterministic control based approach to motion by mean curvature.
- Ryo Takei (2007) M.S. thesis: <u>www.sfu.ca/~rrtakei</u>

Failure of naive difference scheme

- Simply replace all the terms in the equation by a finite difference. Explicit in time.
- Use exact steady solution (with straight level sets) on periodic domain.
- Numerical solution contracts over time to a constant.
- Monotone scheme converges for this example.

vergence structure

ax of level set function.

nas local max, get nonzero straight level sets.

• Expect similar behavior for FEM method.

PDE: $u_t = |Du|div\left(\frac{Du}{|Du|}\right) = \frac{d^2u}{dt^2}, \quad t = \frac{(u_y, -u_x)}{\sqrt{u_x^2 + u_y^2}}$

 $-u_x$

PDE:
$$u_t = |Du|div\left(\frac{Du}{|Du|}\right) = \frac{d^2u}{dt^2}, \quad t = \frac{(u_y)}{\sqrt{u_x^2}}$$

Use this interpretation to discretize spatial operator by finite differences

$$\frac{d^2u}{dt^2} = \frac{u(x + dxt) - 2u(x) + u(x - dxt)}{dx^2} + O(dx^2)$$

PDE:
$$u_t = |Du|div\left(\frac{Du}{|Du|}\right) = \frac{d^2u}{dt^2}, \quad t = \frac{(u_y, -u_y)}{\sqrt{u_x^2 + u_y^2}}$$

Use this interpretation to discretize spatial operator by finite differences

$$\frac{d^2u}{dt^2} = \frac{u(x + dxt) - 2u(x) + u(x - dxt)}{dx^2} + O(dx^2)$$

Q: How to find a monotone discretization of this operator?

Scheme: part 2 of 2 $u_* = \text{ median } \{u_1, u_2, \dots, u_{12}\}$ uc $\frac{u_2 + u_7}{2}$ 47 $\frac{u(x + dx t) + u(x - dx t)}{+ O(dw)}$ llg . $\frac{d^2u}{dt^2} = \frac{2u_* - 2u(x)}{dx^2} + O(dx^2 + dw)$ Ula

Scheme is consistent, with additional error due to directional resolution, decreased by widening stencil.

Fattening

image: Evans-Spruck

Fattening

10

image: Evans-Spruck

