
A Coiterative Synchronous Semantics
(Work in progress)

Marc Pouzet

Modeliscale IPL
October 15, 2020

This is a joint work with Guillaume Baudart, Jean-Louis Colaco, Louis
Mandel and Michael Mendler.

1

This work was initiated in June 2019 at Bamberg Univ. while preparing a
class on synchronous programming and working in parallel with Guillaume
Baudart and Louis Mandel on the semantics of ProbZelus [BMA+20].

A preliminary version was presented at SYNCHRON, Dec. 2019.

A first prototype is implemented in (purely functional) OCaml.

https://github.com/marcpouzet/zrun.

No publication yet. All comments/questions/criticism is welcome !

2

https://github.com/marcpouzet/zrun

Our purpose

• Define a reference and executable semantics for a synchronous language
which comprise modern programming constructs, e.g., the program :

https://github.com/marcpouzet/zrun/blob/master/tests/
watch_in_scade.scade.

• Before any compilation step or static verification (typing).

• That leads to a reference interpreter.

• Test a compiler ; execute unfinished programs or program that do not
pass static checks, for debugging purposes.

• To prototype and experiment with new language features.

• If possible, useful to prove properties on programs or compilation steps,
e.g., type correctness, program transformations.

3

https://github.com/marcpouzet/zrun/blob/master/tests/watch_in_scade.scade
https://github.com/marcpouzet/zrun/blob/master/tests/watch_in_scade.scade

• One motivation is not personal (asked by Scade users) : to be able to
execute Scade models on the fly, in the graphical interface, for
debug/design.

• One is an old quest : have an executable semantics for Lustre and its
relative (Lucid Synchrone, Scade, etc.) to clarify the difference between
Esterel causality and Lustre causality.
• Possibly treat all Zelus with a semantics that is parameterized by an

ODE/zero-crossing solver and keep it functional.

4

The two works we used

The (old) work with Paul Caspi, “a Coiterative Characterization of
Synchronous Stream Functions” [CP98].

The (wonderful) paper “Circuits as streams in Coq, verification of a
sequential multiplier” by Christine Paulin [PM95].

5

The language kernel

A first-order, Lustre-like kernel.

d ::= let f = e | let node f x = e | d d

e ::= c | x | (e, e) | f e | run f e | prec(e) | e fby e

| fst(e) | snd(e)
| let x = e in e | let rec x = e in e

| if e then e else e

| present e do e else e | reset e every e

• f e is the application of a combinatorial function.
• run f e is the application of a node.
• prec(e) is the delay initialised with the constant c .
• e1 -> e2 is a shortcut for if true fby false then e1 else e2

6

Semantics

7

Stream processes
A stream process producing values of type T is a pair made of a step
function of type S → T × S and an initial state S .

CoStream(T ,S) = CoF (S → T × S ,S)

Given a process CoF (f , s), Nth(CoF (f , s))(n) returns the n-th element of
the corresponding stream process :

Nth(CoF (f , s))(0) = let v , s = f s in v
Nth(CoF (F , s))(n) = let v , s = f s in Nth(CoF (f , s))(n − 1)

Two stream processes CoF (f , s) and CoF (f ′, s ′) are equivalent iff they
compute the same streams, that is,

∀n ∈ N.Nth(CoF (f , s))(n) = Nth(CoF (f ′, s ′))(n)

8

Synchronous Stream Processes

A stream function should be a value from :

CoStream(T ,S)→ CoStream(T ′,S ′)

Let us consider a simpler class of stream functions that are length functions
or synchronous.

A length preserving function, from inputs of type T to outputs of type T ′

is a pair, made of a step function and an initial state.

type SFun(T ,T ′, S) = CoP(S → T → T ′ × S ,S)

It only needs the current value of its input in order to compute the current
value of its output.

Remark that s : CoStream(T , S) can be represented by a value of type
SFun(Unit,T , S) with Unit the type containing a single value ().

9

Feedback loop/Fixpoint
Consider a synchronous stream function f : S → T → T × S . We want to
define the equation (or feedback loop) such that :

v , s ′ = f s v

Given f , we want fix (f)(s) = v , s ′ with fix (f) : S → T × S for the
smallest fix-point of f .

Given an initial state s : S , fix (f) must be a solution of :

X (s) = let v , s ′ = X (s) in f s v

This fix-point can be implemented with a recursion on values, for example
in Haskell :

fix (f) = λs.let rec v , s ′ = f s v in v , s ′

The value v is defined recursively. Yet, fix (f) may not be defined for all f .
10

Justification of its existence
To make function total, complete the set of values with a special value
T⊥ = T +⊥. We model this set by a data-type :

Value(T) = Bot+ V(T)

⊥ is a short-cut for “Causality Error” or “Deadlock”.

with associated lifting functions.

lift0 (v) = V(v)
lift1 (f)(Bot) = Bot
lift1 (f)(V(v)) = V(f (v))
lift2 (f)(Bot, y) = Bot
lift2 (f)(x , Bot) = Bot
lift2 (f)(V(v1), V(v2)) = V(f (v1)(v2))

That is, Bot is absorbing and all functions applied point-wise are total.
11

Flat Order

Define ≤T⊆ (Value(T)× Value(T)) such that :

Bot ≤T x
V(v) ≤T V(v)

Shortcut : we write simply ≤.

Pairs :
(v1, v2) ≤ (v ′1, v

′
2) iff (v1 ≤ v ′1) ∧ (v2 ≤ v ′2)

12

The bottom stream

The bottom stream is :

CoF ((λs.(⊥, s)),⊥) : CoStream(Value(T),Value(S))

Call ⊥CoStream or simply ⊥, this bottom stream element.

It corresponds to a stream process that stuck : giving an input state, it
returns the bottom value.

Define ≤CoStream such that (noted ≤) :

CoF (f , s) ≤ CoF (f ′, s ′) iff (s ≤ s ′) ∧ (∀s.(f s) ≤ (f ′ s))

13

Bounded Fixpoint

How can we define/program the fix-point ? It cannot be defined as a total
function without hypothesis on its argument.

A trick. Define the bounded iteration fix (f)(n) as :

fix (f)(0)(s) = ⊥, s
fix (f)(n)(s) = let v , s ′ = fix (f)(n − 1)(s) in f s v

Suppose that f x : CoStream(T , S). Compute ‖T‖ such that :

‖int‖ = 1
‖t1 × t2‖ = ‖t1‖+ ‖t2‖

Give only a credit of ‖T‖+ 1 iterations for a fix-point on a value of type T .

14

The semantics of an expression e is :

[[e]]ρ = CoF (f , s) where f = [[e]]State
ρ and s = [[e]]Init

ρ

We use two auxiliary functions.
• [[e]]Init

ρ is the initial state of the transition function associated to e ;

• [[e]]State
ρ is the step function.

ρ map values to identifiers.

15

[[prec(e)]]
Init
ρ = (c , [[e]]Init

ρ)

[[prec(e)]]
State
ρ = λ(m, s).m, [[e]]State

ρ (s)

[[f e]]Init
ρ = [[e]]Init

ρ

[[f e]]State
ρ = λs.let v , s = [[e]]State

ρ (s) in f (v), s

[[x]]Init
ρ = ()

[[x]]State
ρ = λs.(ρ(x), s)

[[c]]Init
ρ = ()

[[c]]State
ρ = λs.(c , s)

[[(e1, e2)]]
Init
ρ = ([[e1]]

Init
ρ , [[e2]]

Init
ρ)

[[(e1, e2)]]
State
ρ = λ(s1, s2).let v1, s1 = [[e1]]

State
ρ (s1) in

let v2, s2 = [[e2]]
State
ρ (s2) in

(v1, v2), (s1, s2)

16

[[run f e]]Init
ρ = fs , [[e]]

Init
ρ

[[run f e]]State
ρ = λ(m, s).let v , s = [[e]]State

ρ (s) in
let r ,m′ = ft mv in
r , (m′, s)

where ρ(f) = CoP(ft , fs)

[[let node f x = e]]Init
ρ = ρ+ [CoP(p, s)/f]

such that s = [[e]]Init
ρ

and p = λs, v .[[e]]State
ρ+[v/x](s)

17

Fixpoint

[[let rec x = e in e ′]]Init
ρ = [[e]]Init

ρ , [[e ′]]Init
ρ

[[let rec x = e in e ′]]State
ρ = λ(s, s ′).let v , s = fix (λs, v .[[e]]State

ρ+[v/x](s)) in
let v ′, s ′ = [[e ′]]State

ρ+[v/x](s
′) in

v ′, (s, s ′)

Using a recursion on value, it corresponds to :

[[let rec x = e in e ′]]State
ρ = λ(s, s ′).let rec v , ns = [[e]]State

ρ+[v/x](s) in
let v ′, s ′ = [[e ′]]State

ρ+[v/x](s
′) in

v ′, (ns, s ′)

Note that v is recursively defined

18

Control structure

[[if e then e1 else e2]]
Init
ρ = ([[e]]Init

ρ , [[e1]]
Init
ρ , [[e2]]

Init
ρ)

[[if e then e1 else e2]]
State
ρ = λ(s, s1, s2).let v , s = [[e]]State

ρ (s) in
let v1, s1 = [[e1]]

State
ρ (s1) in

let v2, s2 = [[e2]]
State
ρ (s2) in

(if v then v1 else v2,
(s, s1, s2))

[[present e do e1 else e2]]
Init
ρ = ([[e]]Init

ρ , [[e1]]
Init
ρ , [[e2]]

Init
ρ)

[[present e do e1 else e2]]
State
ρ = λ(s, s1, s2).

let v , s = [[e]]State
ρ (s) in

if v
then let v1, s1 = [[e1]]

State
ρ (s1) in

v1, (s, s1, s2)

else let v2, s2 = [[e2]]
State
ρ (s2) in

v2, (s, s1, s2)

The “if/then/else” always executes its arguments but not the “present” :
19

Modular Reset
Reset a computation when a boolean condition is true.

[[reset e1 every e2]]
Init
ρ = ([[e1]]

Init
ρ , [[e1]]

Init
ρ , [[e2]]

Init
ρ)

[[reset e1 every e2]]
State
ρ = λ(si , s1, s2).

let v2, s2 = [[e2]]
State
ρ (s2) in

let v1, s1 = [[e1]]
State
ρ (if v2 then si else s1) in

v1, (si , s1, s2)

This definition duplicates the initial state. An alternative is :

[[reset e1 every e2]]
Init
ρ = ([[e1]]

Init
ρ , [[e2]]

Init
ρ)

[[reset e1 every e2]]
State
ρ = λ(s1, s2).

let v2, s2 = [[e2]]
State
ρ (s2) in

let s1 = if v2 then [[e1]]Init
ρ else s1 in

let v1, s1 = [[e1]]
State
ρ (s1) in

v1, (s1, s2)

20

Fix-point for mutually recursive streams

Consider :

let node sincos(x) = (sin, cos) where
rec sin = int(0.0, cos)
and cos = int(1.0, -. sin)

The fix-point construction used in the kernel language is able to deal with
mutually recursive definitions, encoding them as :

sincos = (int(0.0, snd sincos), int(1.0, -. fst sincos)

21

Encoding mutually recursive streams

A set of mutually recursive streams :

e ::= let rec & & x = e...x = e in e

is interpreted as the definition of a single recursive definition such that :
let rec & & x1 = e1...xn = en in e means :

let rec x = (e1, (e2, (..., en)))[e
′
1/x1, ..., e

′
n/xn] in

with :
e ′1 = fst(x)
e ′2 = fst(snd(x))
...

e ′n = sndn−1(x)

22

Where are the bottom values ?

23

Examples

Some equations have the constant bottom stream as minimal fix-point.

let node f(x) = o where rec o = o

Indeed :

fix (λs, v .[[o]]State
ρ+[v/o](s)) = fix (λs, v .(v , s)) = λs, v .(⊥, s)

Or :

let node f(z) = (x, y) where rec x = y and y = x

Indeed :

fix (λs, v .[[(snd(v), fst(v))]]State
ρ+[v/x](s)) = fix (λs, v .(snd(v), fst(v)), s)

= λs.(⊥,⊥), s

24

Def-use chains
The two previous examples have an instantaneous feedback.

Some functions are “strict”, i.e., a function g such that fst(g s ⊥) = ⊥.

Some are not, e.g. :

let node mypre(x) = 1 + (0 fby (x+2)

Its semantics is CoP(f , 0) with :

f = λs, x .(1+ s, x + 2)

Hence fst(f s ⊥) = 1+ s, that is, ⊥ < fst(f s ⊥)

f is strictly increasing.

Build a dependence relation from the call graph. If this graph is cyclic,
reject the fix-point definition.

25

What is really a dependence ? How modular is-it ?
The notion of dependence is subtle. All function below are such that if x is
non bottom, outputs z and t are non bottom. Do we want to accept them
and how ?

let node good1(x) = (z, t) where
rec z = t and t = 0 fby z

let node good2(x) = (z, t) where
rec (z, t) = (t, 0 fby z)

let node good3(x) = (fst r, snd r) where
rec r = (snd r, 0 fby (fst r))

let node pair(r) = (snd r, 0 fby (fst r))

let node good4(x) = r where
rec r = pair(r)

let node f(y) = x where
rec x = if false then x else 0

26

The following is a classical example that is “constructively causal” but is
rejected by Lustre and Zelus compilers.

let node mux(c, x, y) = present c then x else y

let node constructive(c, x) = y
where rec

rec x1 = mux(c, x, y2)
and x2 = mux(c, y1, x)
and y1 = f(x1)
and y2 = g(x2)
and y = mux(c, y2, y1)

If we look at the def-use chains of variables, there is a cycle in the
dependence graph :
• x1 depends on c, x and y2 ;
• x2 depends on c, y1 and x ;
• y1 depends on x1 ; y2 depends on x2 ;
• y depends on c, y2 and y1.
By transitivity, y2 depends on y2 and y1 depends on y1.

27

Yet, if c and x are non bottom streams, the fix-point that defines
(x1,x2,y1,y2,y) is a non bottom stream.

It can be proved to be equivalent to :

let node constructive(c, x) = y where
rec y = mux(c, g(f(x)), f(g(x)))

Question : is the semantics enough to prove they are equivalent ? How ?

In term of an implementation into a circuit, the cyclic version has a single
occurrence of f and g whereas the second has two copies of each.

A cyclic combinatorial circuit can be exponentially smaller than its non
cyclic counterpart.

The causality analysis ensures that an expression does not produce bottom
and can be translated into an expression with no fix-point.

28

The following example also defines a node whose output is non bottom :

let node composition(c1, c2, y) = (x, z, t, r)
where rec

present c1 then
do x = y + 1 and z = t + 1 done

else
do x = 1 and z = 2 done

and
present c2 then

do t = x + 1 and r = z + 2 done
else

do t = 1 and r = 2 done

that can be interpreted as the following program in the language kernel :

let node composition(c1, c2, y) = (x, z, t, r)
where rec
(x, z) = present c1 then (y + 1, t + 1) else (1, 2)

and
(t, r) = present c2 then (x + 1, z + 2) else (1, 2)

29

Is it causal ?

Supposing the c1, c2, y are not bottom values, taking true for c1 and c2,
for example.

Starting with x0 = ⊥, z0 = ⊥, t0 = ⊥ and r0 = ⊥, the fixpoint is the limit
of the sequence :

xn = y + 1 ∧ zn = tn−1 + 1 ∧ tn = xn−1 + 1 ∧ rn = zn−1 + 2

and is obtained after 4 iterations.

This program is causal : if inputs are non bottom values, all outputs are
non bottom values and this is the case for all computations of it.

30

The impact on static code generation

Nonetheless, if we want to generate statically scheduled sequential code,
the control structure must be duplicated :
(1) test c1 to compute x ; (2) test c2 to compute t ; (3) test (again) c1 to
compute z ; (4) test (again) c2 to compute r

let node composition(c1, c2, y) = (x, z, t, r)
where rec

present c1 then do x = y + 1 done else do x = 1 done
and
present c2 then do t = x + 1 done else do t = 1 done

and
present c1 then do z = t + 1 done else do z = 2 done

and
present c2 then do r = z + 2 done else do r = 2 done

It is possible to overconstraint the causality analysis and control structures
to be atomic (outputs all depend on all inputs).

31

Removing Recursion

The semantics is executable, lazilly or by computing fix point iteratively.

Some recursive equations can be translated into non recursive definitions.

Consider the stream equation :

let rec nat = 0 fby (nat + 1) in nat

Can we get rid of recursion in this definition ? Surely yes. Its stream process
is :

nat = Co(λs.(s, s + 1), 0)

32

First : let us unfold the semantics

Consider the recursive equation :

rec x = (0 fby x) + 1

Let us try to compute the solution of this equation manually by unfolding
the definition of the semantics.

Let x = CoF (f , s) where f is a transition function of type f : S → X × S
and s : S the initial state.

Write x .step for f and x .init for x : init for s.

33

The equation that defines nat can be rewritten as
let rec nat = f (nat) in nat with let node f x = (0 fby x) + 1.

The semantics of f is :

f = CoP(fs , s0) = CoP(λs, x .(s + 1, x), 0)

Solving nat = f (nat) amount at finding a stream X such that :

X (s) = let v , s ′ = X (s) in fs s v

The bottom stream, to start with, is :

x0 = CoF (λs.(⊥, s),⊥)

34

Let us proceed iteratively by unfolding the definition of the semantics. We
have :

x1.step = λs.let v , s ′ = x0.step s in fs s v
= λs.fs s ⊥
= λs.s + 1,⊥

x1.init = 0

x2.step = λs.let v , s ′ = x1.step s in fs s v
= λs.let v = s + 1 in fs s v
= λs.let v = s + 1 in s + 1, v
= λs.s + 1, s + 1

x2.init = 0

x3.step = λs.let v , s ′ = x2.step s in fs s v
= λs.let v = s + 1 in fs s v
= λs.let v = s + 1 in s + 1, v
= λs.s + 1, s + 1

x3.init = 0

We have reached the fix-point CoF (λs.(s + 1, s + 1), 0) in three steps.
35

Syntactically Guarded Stream Equations

A simple, syntactic, condition under which the semantics of mutually
recursive stream equations does not need any fix point.

Consider a node f : CoStream(T , S)→ CoStream(T , S ′) whose semantics
is CoP(ft , st).

The semantics of an equation y = f (y) is : 1

[[let rec y = f (y) in y]]Init
ρ = st

[[let rec y = f (y) in y]]State
ρ = λs.let rec v , s ′ = ft s v in v , s ′

1. We reason upto bisimulation, that is, independently on the actual representation of
the internal state.

36

Two cases can happen :
• Either ft s is strictly increasing and the evaluation succeeds.
• or there is an instantaneous loop.

37

When ft s v does not need v to return the value part, the recursive
evaluation of the pair v , s ′ can be split into two non recursive definitions.

This case appears, for example, when every stream recursion appears on
the right of a unit delay pre.

A synchronous compiler takes advantage of this in order to produce non
recursive code like the co-iterative nat expression given above.

38

For example, consider the equation y = f (v fby x). Its semantics is :

[[let rec x = f (v fby x) in x]]Init
ρ = (v , st)

[[let rec x = f (v fby x) in x]]State
ρ (m, s) = let rec v , s ′ = ft s m in

v , (v , s ′)

The recursion is no more necessary, that is :

[[let rec x = f (v fby x) in x]]State
ρ (m, s) = let v , s ′ = ft s m in v , (v , s ′)

39

The Semantics for Normalised Equations

Consider a set of mutually recursive equations such that it can be put
under the following form :

let rec x1 = v1 fby nx1
and ...
xn = vn fby nxn
and p1 = e1
and ...
and pk = ek

in e

where
∀i , j .(i < j)⇒ Var(ei) ∩ Var(pj) = ∅

where Var(p) and Var(e) are the set of variable names appearing in p and
e.

40

Its transition function is :

λ(x1, ..., xn, s1, ..., sk , s).let p1, s1 = [[e1]]
State
ρ (s1) in

let ... in
let pk , sk = [[ek]]

State
ρ (sk) in

let r , s = [[e]]State
ρ (s) in

r , (nx1, ..., nxn, s1, ..., sk , s)

with initial state :
(v1, ..., vn, s1, ..., sk , s)

if [[ei]]Init
ρ = si and [[e]]Init

ρ = s.

When a set of mutually recursive streams can be put in the above form, its
transition function does not need a fix-point.

It can be statically scheduled into a function that can be evaluated eagerly.

This removing of the recursion is the basis of generation of statically
scheduled code done by a synchronous language compiler.

Question : Is the semantics adequate to prove correctness of this variant
semantics for fix-points ?

41

Next

The Complete Language
This semantics extends to a richer language : local definitions, activation
conditions, hierarchical automata.

Causality typing
A type system which summarizes the input/output dependences. The one
of Zelus expresses input/output relations [BBC+14].

(1) Ouputs are non bottom, provided inputs are non bottom.

(2) Generate statically scheduled code, a function that works with values of
type T , not Value(T).

42

Non length preserving functions [CP98]

CLValue(T) = E+ V(T)
CLStream(T ,S) = CoStream(CLValue(T), S)

Add ⊥ as “Clocking error”. When a program is well clocked, it does not
generate a value ⊥.

Higher-order stream functions
Deal with Zelus functions like the following one.

let node pid(int)(derivative)(p, i, d, u) = po +. io +. ddo
where rec po = p *. u
and io = run int (i *. u)
and ddo = run derivative (d *. u)

43

This is on-going work

A comprehensive semantics for Scade can be built this way.

An interpretor in OCaml has been written (this spring).

The semantics is also defined for the automata of Zelus. They are a bit
more expressive than that of Scade. In particular, states can be
parameterized.

Give the semantics for ODEs and zero-crossing by making the semantics
parameterized by an ODE solver and zero-crossing solver.

Is this work useful for proving compiler steps and be integrated to Velus 2 ?

2. https://velus.inria.fr
44

https://velus.inria.fr

References I
Albert Benveniste, Timothy Bourke, Benoit Caillaud, Bruno Pagano, and Marc Pouzet.
A Type-based Analysis of Causality Loops in Hybrid Systems Modelers.
In International Conference on Hybrid Systems : Computation and Control (HSCC), Berlin, Germany, April
15–17 2014. ACM.

Albert Benveniste, Timothy Bourke, Benoit Caillaud, and Marc Pouzet.
A Hybrid Synchronous Language with Hierarchical Automata : Static Typing and Translation to Synchronous
Code.
In ACM SIGPLAN/SIGBED Conference on Embedded Software (EMSOFT’11), Taipei, Taiwan, October
2011.

Timothy Bourke, Jean-Louis Colaço, Bruno Pagano, Cédric Pasteur, and Marc Pouzet.
A Synchronous-based Code Generator For Explicit Hybrid Systems Languages.
In International Conference on Compiler Construction (CC), LNCS, London, UK, April 11-18 2015.

Guillaume Baudart, Louis Mandel, Eric Atkinson, Benjamin Sherman, Marc Pouzet, and Michael Carbin.
Reactive Probabilistic Programming.
In International Conference on Programming Language Design and Implementation (PLDI), London, United
Kingdom, June 15-20 2020. ACM.

Paul Caspi and Marc Pouzet.
A Co-iterative Characterization of Synchronous Stream Functions.
In Coalgebraic Methods in Computer Science (CMCS’98), Electronic Notes in Theoretical Computer Science,
March 1998.
Extended version available as a VERIMAG tech. report no. 97–07 at www.di.ens.fr/∼pouzet/bib/bib.html.

Christine Paulin-Mohring.
Circuits as streams in Coq, verification of a sequential multiplier.
Technical report, Laboratoire de l’Informatique du Parallélisme, September 1995.
Available at http://www.ens-lyon.fr:80/LIP/lip/publis/.

45

