A Symbolic Control Approach to the Programming of Cyber-Physical Systems

Antoine Girard

CNRS, Laboratoire des Signaux et Systèmes Gif-sur-Yvette, France

ModeliScale project meeting October, 15, 2020

A. Girard (CNRS, L2S)

1/34

Cyber-physical systems (CPS) consist of computational elements monitoring and controlling physical entities.

Design of CPS is challenging, time consuming and costly:

- Cyber/physical/human interactions
- Complex and multiple control objectives
- Critical safety requirements

Novel programming paradigm where the CPS (and not only its "cyber" component) is viewed as the execution platform:

- A CPS program describes the intended behavior of the CPS
 - Abstracts some characteristics of the cyber-physical execution platform
- A *CPS compiler* generates from a CPS program, control laws enforcing the specified behavior
 - Based on a model of the cyber-physical execution platform
 - Strong guarantees on the synthesized controller provided by the use of formal methods
- Rapid and dependable development/evolution of advanced functions of a CPS

Example - adaptive cruise control

I Formal controller synthesis from hybrid automata

- A model matching problem
- Symbolic control approach
- Additional safety and reachability requirements
- Prom hybrid automata to CPS programs
 - A proposal for a CPS programming language
 - Controller synthesis approaches to CPS compilation
- Onclusions and perspectives

Transition systems

Definition

A *transition system* S is a tuple (X, U, Y, Δ, H) , where

- X is a set of states
- U is a set of inputs
- Y is a set of outputs
- $\Delta: X \times U \rightrightarrows X$ is a set-valued transition map
- $H: X \longrightarrow Y$ is an output map
- The set of *enabled inputs* at state $x \in X$ is

$$\mathsf{enab}_\Delta(x) = \{ u \in U | \Delta(x, u) \neq \emptyset \}$$

• The set of *non-blocking states* is

$$\mathsf{nbs}_\Delta = \{x \in X | \mathsf{enab}_\Delta(x) \neq \emptyset\}$$

Trajectories

Definition

A *trajectory* of S is a sequence $(x_k, u_k)_{k=0}^K$, where $K \in \mathbb{N} \cup \{+\infty\}$ and

- $x_k \in X$, $u_k \in U$, for $0 \le k \le K$
- $x_{k+1} \in \Delta(x_k, u_k)$, for $0 \le k < K$

A trajectory is called:

- maximal, if either $K = +\infty$ or $\Delta(x_K, u_K) = \emptyset$
- *complete*, if $K = +\infty$

System S_1 :

$$x_{k+1} \in F(x_k, u_k)$$

 $x_k \in X$, $u_k \in U$ where:

- $X \subseteq \mathbb{R}^{n_x}$ is the set of states
- U ⊆ ℝ^{n_u} is the set of control inputs

Modeled by transition system

 $S_1 = (X, U, X, F, id_X)$

Discrete time, continuous state.

System S_1 :

 $x_{k+1} \in F(x_k, u_k)$

 $x_k \in X$, $u_k \in U$ where:

- $X \subseteq \mathbb{R}^{n_x}$ is the set of states
- U ⊆ ℝ^{n_u} is the set of control inputs

Modeled by transition system

 $S_1 = (X, U, X, F, id_X)$

Discrete time, continuous state.

Specification *S*₂:

 $(x_{k+1},p_{k+1})\in G(x_k,p_k,v_k)$

 $x_k \in X$, $p_k \in P$, $v_k \in V$ where:

- *P* is a finite set of modes
- V is a finite set of external inputs

Modeled by transition system

 $S_2 = (X \times P, V, X, G, proj_X)$

ヘロト 人間 とくほ とくほとう

Discrete time, hybrid state.

Controller

Controller (θ, π) is a pair of set-valued maps:

 $\theta: X \times P \times V \rightrightarrows U$ $\pi: X \times P \times X \times V \rightrightarrows P$

Closed-loop system:

$$\begin{cases} x_{k+1} \in F(x_k, \theta(x_k, p_k, v_k)) \\ p_{k+1} \in \pi(x_k, p_k, x_{k+1}, v_k) \end{cases}$$

Compatibility condition: for all $x \in X$, $p \in P$, $v \in V$,

$$\theta(x, p, v) \subseteq \operatorname{enab}_F(x) \text{ and}$$

 $\forall x' \in F(x, \theta(x, p, v)), \ \pi(x, p, x', v) \neq \emptyset$

Modeled by transition system

$$S_{cl} = (X \times P, V, X, \Delta_{cl}, proj_X)$$

э

イロト イヨト イヨト ・

Problem (Model matching)

Synthesize:

- controller $(heta,\pi)$ compatible with S_1
- controllable set $Z_c \subseteq X imes P$, $Z_c \neq \emptyset$

s.t. for every $(x_0, p_0) \in Z_c$, every maximal trajectory $(x_k, p_k, v_k)_{k=0}^K$ of S_{cl} is also a maximal trajectory of S_2 .

Implication:

• every trajectory $(x_k, p_k, v_k)_{k=0}^K$ of S_{cl} is also a trajectory of S_2

Behavioral relationship between transition systems:

Definition (Tabuada 2008)

Let $S_a = (X_a, U_a, Y_a, \Delta_a, H_a)$, $S_b = (X_b, U_b, Y_b, \Delta_b, H_b)$ with $Y_a = Y_b$. $R \subseteq X_a \times X_b$ is an alternating simulation relation from S_a to S_b if: **1** for every $(x_a, x_b) \in R$, $H_a(x_a) = H_b(x_b)$ **2** for every $(x_a, x_b) \in R$ $\forall u_a \in \text{enab}_{\Delta_a}(x_a)$, $\exists u_b \in \text{enab}_{\Delta_b}(x_b)$, $\forall x'_b \in \Delta_b(x_b, u_b)$, $\exists x'_a \in \Delta_a(x_a, u_a)$, $(x'_a, x'_b) \in R$.

 S_b alternatingly simulates S_a ($S_a \leq_{AS} S_b$), if there exists an alternating simulation relation $R \neq \emptyset$ from S_a to S_b .

< ロ > < 同 > < 三 > < 三 > 、

Theorem

The model matching problem has a solution if and only if $S_2 \preceq_{AS} S_1$.

Controllers given alternating simulation relation $R \subseteq (X \times P) \times X$:

$$Z_c = proj_{(X \times P)}(R)$$

$$\theta(x, p, v) = \left\{ \begin{array}{ll} u \in enab_F(x) \\ x' \in F(x, u), \exists p' \in P : \\ (x', p') \in G(x, p, v) \cap Z_c \end{array} \right\}$$

$$\pi(x, p, x', v) = \left\{ p' \in P \mid (x', p') \in G(x, p, v) \cap Z_c \right\}$$

The model matching problem reduces to computing an alternating simulation relation from S_2 to S_1 .

An approach based on symbolic control

Symbolic control is a computational approach to controller synthesis:

- based on symbolic (i.e. finite state) abstractions of systems and specifications
- mathematical correctness of synthesized controllers
- applies to nonlinear systems with input/state constraints and bounded uncertainties
- heavy offline/light online computations

.

æ

イロト 不得下 イヨト イヨト

Main steps:

- compute a symbolic abstraction \hat{S}_1 of system S_1 : $\hat{S}_1 \preceq_{AS} S_1$
- **2** compute a symbolic abstraction \hat{S}_2 of specification S_2 : $S_2 \preceq_{AS} \hat{S}_2$

③ compute alternating simulation relation from \hat{S}_2 to \hat{S}_1

If $\hat{S}_2 \preceq_{AS} \hat{S}_1$, transitivity of alternating simulation gives $S_2 \preceq_{AS} S_1$

For abstraction, we use:

- a finite partition of X: $(X_q)_{q \in Q}$ where Q is a finite set of symbols
- a finite subset of control inputs $\hat{U} \subseteq U$

Abstraction of the system

Transition system $\hat{S}_1 = (X, \hat{U}, X, \hat{F}, id_X)$ with:

$$x'\in \hat{F}(x,\hat{u})\iff x\in X_q,\;x'\in X_{q'},\;q'\in \Delta_1(q,\hat{u})$$

$$F(X_q, \hat{u}), \ \hat{F}(X_q, \hat{u})$$

< 円∛

.

Abstraction of the specification

Transition system $\hat{S}_2 = (X \times P, V, X, \hat{G}, proj_X)$ with: $(x', p') \in \hat{G}(x, p, v) \quad \Leftrightarrow x \in X_q, \ x' \in X_{q'}, \ (q', p') \in \Delta_2(q, p, v)$ Rewrite $G(x, p, v) = \bigcup_{p' \in P} G_{p,p'}^v(x) \times \{p'\}$

Proposition

For the proposed constructions:

- $\hat{S}_1 \preceq_{AS} S_1$
- if, on their domain, G^v_{p,p'} are Lipschitz and have images with non-empty interior, then we can build a partition (X_q)_{q∈Q} such that S₂ ≤_{AS} Ŝ₂

Alternating simulation relation

Given $\hat{Z} \subseteq Q \times P$, let the *predecessor* set be given by

$$\mathsf{Pre}(\hat{Z}) = \left\{ (q, p) \in Q \times P \middle| \begin{array}{c} \forall v \in \mathsf{enab}_{\Delta_2}(q, p), \exists u \in \mathsf{enab}_{\Delta_1}(q) : \\ \forall q' \in \Delta_1(q, u), \exists p' \in P : \\ (q', p') \in \Delta_2(q, p, v) \cap \hat{Z} \end{array} \right\}$$

Fixed point algorithm:

$$\hat{Z}^0 = Q imes P, \ \hat{Z}^{k+1} = \operatorname{Pre}(\hat{Z}^k)$$

Theorem

The sequence $(\hat{Z}^k)_{k\in\mathbb{N}}$ reaches its fixed point $\hat{Z}^{\infty} = \bigcap_{k\in\mathbb{N}} \hat{Z}_k$ in finite number of iterations. The relation R given by

$$R = \left\{ ((x,p),x') \in (X \times P) \times X \mid x = x' \in X_q, \ (q,p) \in \hat{Z}^{\infty} \right\}$$

is an alternating simulation relation from \hat{S}_2 to \hat{S}_1 and also from S_2 to S_1 .

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Limitations of the model matching problem formulation:

- No mechanism to avoid blocking states of the specification
 ⇒ blocking states are winning states
- No possibility to specify termination conditions
 - \implies tasks run forever unless a blocking state is reached

We introduce a set of *terminal states* $Z_f \subseteq X \times P$:

- The task terminates when Z_f is reached
- Two termination semantics:
 - blocking states that are outside Z_f should be avoided
 Safety requirement
 - (2) states in Z_f should be reached \implies Reachability requirement

Problem (Model matching problem with safety requirement)

Synthesize:

- controller (θ, π) compatible with S_1
- controllable set $Z_c \subseteq X \times P$, $Z_c \neq \emptyset$

s.t. for any $(x_0, p_0) \in Z_c$, any maximal trajectory $(x_k, p_k, v_k)_{k=0}^K$ of S_{cl} :

- $(x_k, p_k, v_k)_{k=0}^K$ is a trajectory of S_2 , $K \in \mathbb{N}$ and $(x_K, p_K) \in Z_f$; or
- ② $(x_k, p_k, v_k)_{k=0}^{K}$ is a maximal trajectory of S_2 , and either is complete, or enab_G $(x_K, p_K) \neq \emptyset$

Implication:

every maximal trajectory (x_k, p_k, v_k)^K_{k=0} of S_{cl}, where for all 0 ≤ k ≤ K, such that (x_k, p_k) ∉ Z_f, v_k ∈ enab_G(x_k, p_k) is a trajectory of S₂ and either is complete or (x_K, p_K) ∈ Z_f.

く 何 ト く ヨ ト く ヨ ト

Problem (Model matching problem with reachability requirement)

Synthesize:

- controller (θ, π) compatible with S_1
- controllable set $Z_c \subseteq X \times P$, $Z_c \neq \emptyset$

s.t. for any $(x_0, p_0) \in Z_c$, any maximal trajectory $(x_k, p_k, v_k)_{k=0}^K$ of S_{cl} :

- **9** $(x_k, p_k, v_k)_{k=0}^K$ is a trajectory of S_2 , $K \in \mathbb{N}$ and $(x_K, p_K) \in Z_f$; or
- ② $(x_k, p_k, v_k)_{k=0}^K$ is a maximal trajectory of S_2 , $K \in \mathbb{N}$ and enab_G $(x_K, p_K) \neq \emptyset$

Implication:

• every maximal trajectory $(x_k, p_k, v_k)_{k=0}^K$ of S_{cl} , where for all $0 \le k \le K$, such that $(x_k, p_k) \notin Z_f$, $v_k \in \text{enab}_G(x_k, p_k)$ is a trajectory of S_2 and satisfies $K \in \mathbb{N}$ and $(x_K, p_K) \in Z_f$.

• • = • • = •

Controller synthesis

We use similar approaches based on symbolic abstractions \hat{S}_1 and \hat{S}_2 . Consider the states of symbolic terminal states

$$\hat{Z}_f = \{(q,p) \in Q \times P | X_q \times \{p\} \subseteq Z_f\}.$$

Fixed point algorithms:

$$\begin{split} \hat{Z}_s^0 &= \hat{Z}_f \cup \mathsf{nbs}_{\Delta_2}, \qquad \qquad \hat{Z}_s^{k+1} &= \hat{Z}_f \cup \left(\mathsf{nbs}_{\Delta_2} \cap \mathsf{Pre}(\hat{Z}_s^k)\right) \\ \hat{Z}_r^0 &= \hat{Z}_f, \qquad \qquad \hat{Z}_r^{k+1} &= \hat{Z}_f \cup \left(\mathsf{nbs}_{\Delta_2} \cap \mathsf{Pre}(\hat{Z}_r^k)\right) \end{split}$$

Theorem

The sequences $(\hat{Z}_s^k)_{k\in\mathbb{N}}$, $(\hat{Z}_r^k)_{k\in\mathbb{N}}$ reach their fixed points $\hat{Z}_s^{\infty} = \bigcap_{k\in\mathbb{N}} \hat{Z}_k$, $\hat{Z}_r^{\infty} = \bigcup_{k\in\mathbb{N}} \hat{Z}_k$ in finite number of iterations. Controllers solving the model matching problem with safety or reachability requirement can be constructed from these sets.

< □ > < □ > < □ > < □ > < □ > < □ >

 $\begin{array}{rcl} & \textbf{System} \\ \left\{ \begin{array}{ll} d^+ &=& d+\tau(v_1-v_2) \\ v_1^+ &=& f_1(v_1,u), u \in [u_{\min},u_{\max}] \\ v_2^+ &=& f_2(v_2,w), w \in [w_{\min},w_{\max}] \end{array} \right. \\ & \text{Nonlinear dynamics} \\ & \text{Input/state constraints} \\ & \text{Bounded uncertainties} \end{array} \end{array}$

イロト イ団ト イヨト イヨト

Example 1 - adaptive cruise control

A. Girard (CNRS, L2S)

Symbolic control for CPS programming

25 / 34

$$\label{eq:constraint} \begin{split} \text{Terminal set} &: Z_f = \{\text{lead}\} \times \{d \geq 0, y = 1\} \\ \text{Termination semantics}: \text{reachability} \end{split}$$

(日)

Example 2 - take-over maneuver

A. Girard (CNRS, L2S)

Symbolic control for CPS programming

æ

I Formal controller synthesis from hybrid automata

- A model matching problem
- Symbolic control approach
- Additional safety and reachability requirements
- Prom hybrid automata to CPS programs
 - A proposal for a CPS programming language
 - Controller synthesis approaches to CPS compilation
- Onclusions and perspectives

Consider a CPS modeled by transition system $S = (X, U, X, F, id_X)$.

- A *program* for S consists of
 - A collection of *tasks* $\mathcal{T}_1, \ldots, \mathcal{T}_N$ each defined by
 - a transition system $S_i = (X \times P_i, V, X, G_i, proj_X)$
 - a set of terminal states $Z_{f,i} \subseteq X \times P_i$
 - a termination semantics "safety" or "reachability"
 - A *scheduler* $\Sigma : Z_f \rightrightarrows P$ where

$$Z_f = Z_{f,1} \cup \cdots \cup Z_{f,N}$$
 and $P = P_1 \cup \cdots \cup P_N$

• A set of *terminal states* $Z_{f,0} \subseteq Z_f$

Executions of a CPS program:

- Execution of the current task specified by model matching problem with appropriate termination semantics
- Upon termination of the task:
 - If a terminal state of the program (x, p) ∈ Z_{f,0} is reached then the program terminates
 - Otherwise, use the scheduler to select $p' \in \Sigma(x, p)$ and execute new task starting in state (x, p')

Programs and executions can also be defined inductively.

- Synthesize a controller for each task, let $Z_{c,i}$ the associated controllable set
- The controllers are *schedulable* if

$$orall (x,p)\in Z_f\setminus Z_{f,0},\; \exists p'\in \Sigma(x,p):\; (x,p')\in Z_c$$

where $Z_c = Z_{c,1} \cup \cdots \cup Z_{c,N}$.

 If controllers are not schedulable, it is possible to use fixed point algorithms to refine terminal conditions of tasks and re-synthesize controllers, until schedulability (maximal or anytime synthesis).

Example

Task 1: adaptive cruise control

- $Z_{f,1} = \{d + 60 \ge 0, v_1 v_2 \ge 5\}$
- Safety semantics

Task 2: take-over maneuver

- $Z_{f,2} = \{d \ge 0, y = 1\}$
- Reachability semantics

æ

I Formal controller synthesis from hybrid automata

- A model matching problem
- Symbolic control approach
- Additional safety and reachability requirements
- Prom hybrid automata to CPS programs
 - A proposal for a CPS programming language
 - Controller synthesis approaches to CPS compilation
- Onclusions and perspectives

- A proposal for a language to program CPS
 - Intuitive description of elementary tasks using hybrid automata¹
 - Specification of complex behaviors by scheduling elementary tasks²
- Feasibility of CPS program compilation
 - Automatic model based controller synthesis using formal methods
 - Proof of concept using symbolic control techniques³
- Future work
 - Infeasible specifications: synthesis of least violating controllers (with distance certificate)
 - Performance optimization by combining symbolic approaches with model predictive control or deep neural networks

²Sinyakov & Girard, Formal synthesis from control programs, CDC 2020

³Co4Pro toolbox: https://github.com/girardan/Co4Pro

 $^{^1 {\}rm Sinyakov}$ & Girard, Formal controller synthesis from specifications given by discrete-time hybrid automata, hal-02361404v1