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Abstract
Mutation processes in proliferating cancer cells lead to populations with highly
diversified genomes. A natural simple tool to describe the resulting stochastic
phenomena are branching processes (bp) with countable collections of types. I
will review several such models I worked on over a number of years. These
includes processes such as (i) gene amplification (increase in copy count) in
response to chemotherapy (Kimmel and Stivers, 1994), (ii) uneven replication and
segregation of chromosomes (Kimmel, 1997), (iii) bp’s with randomly changing
lifetime distributions (Ernst et al. 2019), and (iv) Tug-of-War model of
competition of advantageous and deleterious mutations embedded in proliferating
cells (Wang and Kimmel 2023). Although these are biologically and
mathematically different models, they share some “exotic” properties, which
result from nontrivial interaction between branching and type transitions. Among
other, they result in limit growth laws that can be exponential modified by
negative fractional power, and unexpected relations between criticality and finite
time moment explosions consistent with increasingly heavy-tail distributions of
cell counts. Other interesting properties are present. This review illustrates
variety of behaviors of such models.
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Nonexponential moments,
heavy distribution tails,
and criticality conditions
in models of secondary tumors
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Outline

Extremely high genetic diversity in a single tumor points to prevalence of
non-Darwinian cell evolution [Ling et al. PNAS 2015; 112 : E6496-E6505 ]

The prevailing view that the evolution of cells in a tumor is driven by Darwinian
selection has never been rigorously tested.

Because selection greatly affects the level of intra-tumor genetic diversity with
profound consequences for treatment outcomes, it is important to assess whether
intra-tumor evolution follows the Darwinian or the non-Darwinian mode of
evolution.

To provide statistical power, many regions in a single tumor need to be sampled.

This account is mostly based on [Ernst et al. Advances in Applied Probability,
2018].
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Observations

Figure: From a hepatocellular carcinoma (HCC) tumor, multiregional samples
from the tumor were evaluated, using either whole-exome sequencing (WES)
(n=23 samples) or genotyping (n=286).
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Tumor field model

Figure: Wide distribution of secondary tumor growth rates ai
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Hypotheses of the model

A primary tumor is generated from a single cell at time t = 0 and grows at rate
g(x), where x denotes the number of cells in the tumor.

g(x) = bx

The growing tumor emits transformed single cells at rate β(x).

β(x) = mxα

Each transformed cell develops into a new tumor, which grows at a generally
different rate g(x) and emits new transformed cells just as the primary does.

g(x) = ax

Growth rate of secondary tumors is a random variable with exponential
distribution

a ∼ exp(λ)
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PDE model with randomized growth rates

Solving the PDE (v. Foerster type) and randomizing the growth rate we obtain
the total count of secondary foci

Figure: Schematic of transport PDE with non-local boundary conditions
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Analytical solution explodes in finite time

Expectation of the analytical solutions (red) explodes in finite time since it
contains incomplete Gamma terms.
Randonly sampled trajectories (blue) do not explode but grow faster than
exponential
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A piece of data on rapid metastasis lab model growth from
Baratchart et al

right) but is only quasi-stochastic Model captures some features of the
Baratchart et al. experiment.
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Toy Model

Secondary tumors grow exponentially at rate a, which itself is a random variable

X (t|a) = exp(at), t ≥ 0, a ∼ exp(λ)

It now has Pareto tail

P[X (t) > x ] = min{1, x−λ/t}, t ≥ 0

E[X (t)] =
∫∞
0

P[X (t) > x ]dx = 1 +
∫∞
1

x−λ/tdx

E[X (t)] = λ(λ− t)−1 explodes when t ↑ λ

Higher moments explode faster.
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Simulations of the Toy Model
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Conclusions from the Toy Model

Conclusions:

Averages do not explode but grow faster than exponential.

Expected value may not be useful as the central tendency of growth after
certain time.

Median is a good model in this case, but have you heard of anybody using
medians to model?

Quantiles of increasing order increase exponentially at increasing rates

We need a truly stochastic model.
We start with something really simple
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Coldman-Goldie model

[Goldie and Coldman, 1979; Coldman and Goldie, 1985]
Based on [Kimmel and Axelrod 2015] book

Branching process approach to a theory of resistance, which has become
influential in the cancer research community.

The assumptions of the theory are as follows

1 Cancer cell population is initiated by a single cell which is sensitive to
the cytotoxic (chemotherapeutic) agent. The population proliferates
without losses.

2 Interdivision time of cells is a random variable with a given
distribution.

3 At each division, with given probability, a single progeny cell mutates
and becomes resistant to the cytotoxic agent.

4 Mutations are irreversible.
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Coldman-Goldie model

We wish to compute the probability that when the tumor is discovered, it
does not contain any resistant cells.

Only in such a situation is the use of a cytotoxic agent effective.

If even a small subpopulation of resistant cells exists, the cancer cell
population will eventually re-emerge despite the therapy.
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Coldman-Goldie model

We translate the hypotheses of clonal resistance into the language of
branching processes.

1 In the process, there exist two types of particles, labeled 0 (sensitive)
and 1 (resistant).

2 The process is initiated by a single type 0 particle.

3 The life spans of particles are independent random variables,
distributed exponentially with parameter λ.

4 Each particle, at death, divides into exactly two progeny particles:

0-particle produces either two 0-particles, wp 1− α, or one 0− and one
1-particle, wp α.
1-particle produces two 1-particles.

Thus, we have a two − type time continuous Markov branching process.
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Coldman-Goldie model

F0(s0, s1; t) is the joint probability generating function of the numbers
of cells of both types, present at time t in the process initiated at
time 0 by a type 0 cell.

F1(s1; t) is the pgf of the numbers of cells of type 1, present at time t
in the process initiated at time 0 by a type 1 cell.

Theorem

The solution of the differential equation

dF (t)

dt
= f (t)F (t) + hF (t)2, (1)

where f ∈ C [0,∞), with initial condition F (0), is a uniquely defined
function F ∈ C 1[0,∞)

F (t) =
F (0)e

∫ t
0 f (u)du

1− hF (0)
∫ t
0 e

∫ u
0 f (v)dvdu

. (2)
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Coldman-Goldie model

In our application, f0(s) = (1− α)s20 + αs0s1, f1(s) = s21 , and
λ0 = λ1 = λ. In consequence,

dF0
dt

= −λF0 + λ[(1− α)F 2
0 + αF0F1], (3)

dF1
dt

= −λF1 + λF 2
1 . (4)

F1(s; t) =
s1

s1 + (1− s1)eλt
. (5)

Substituting (5) into Eqn. (3) and employing Theorem 1, we obtain

F0(s; t) =
s0e

−λt [e−λts1 + (1− s1)]
−α

1 + s0{[e−λts1 + (1− s1)]1−α − 1}s−1
1

. (6)
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Coldman-Goldie model

Differentiating F0(s; t) with respect to s0 and s1 we obtain the expressions
for the expected counts of the sensitive and resistant cells

M0(t) =
∂F (1, 1; t)

∂s0
= eλ(1−α)t , t ≥ 0,

M1(t) =
∂F (1, 1; t)

∂s1
= eλt − eλ(1−α)t , t ≥ 0.

The conclusion is that in absence of intervention the resistant cells
eventually outgrow the sensitive ones.
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Coldman-Goldie model

The probability of no resistant cells at time t is also easy to obtain

P(t) = lim
s0↑1

lim
s1↓0

F0(s; t) =
1

(1− α) + αeλt
=

1

(1− α) + α[M0(t) +M1(t)]
.

(7)

Depending on the mutation rate α, we obtain a window of opportunity for
a sledgehammer therapy.
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Back to our problem

We need to modify the model so it can handle the diversity of cancer cell
populations.
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Coldman-Goldie model with a twist

Cells are organized in proliferating clones characterized by division rates

At each division, with probability , one cell mutates and assumes random
division rate

This means that mutant clones arising may be frequently quite sluggish
(depending on ) but sometimes very fast (passengers or drivers)

Resulting model is a continuum-type time-continuous Markov branching
process

Infinite systems of ODEs can be written for the pgfs of the distribution of
total cell count in all clones started by a mutant with division rate
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Infinite Riccati Equation system

X (a, t) = #{ cells in the process started by cell of type a}

F (s; a, t) = E[sX (a,t)], s ∈ [0, 1]

Marek Kimmel with Philip Ernst, Monika Kurpas and Quan ZhouHeavy-tail distributions in cell proliferation models Dec 5, 2024 23 / 32



Infinite Riccati Equation system

We can write the infinite Riccati Equation system

∂F (s; a, t)

∂t
= −aF (s; a, t)+a[(1−µ)F (s; a, t2)+µF (s; a, t)Φ(s;λ, t)], t ≥ 0, a > 0

F (s; a, 0) = s linked by

Φ(s;λ, t) =

∫ ∞

0

F (s; a′, t)λ exp(−λa′)dλ

We can use the Theorem for equation that has the form of

dF (t)

dt
= f (t)F (t) + hF (t)2, (8)

with f (t) = aµΦ(s;λ, t)

F (t) =
F (0)e

∫ t
0
f (u)du

1− hF (0)
∫ t

0
e
∫ u
0
f (v)dvdu

. (9)

to see that pgf satisfies a nonlinear integral equation ...
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Variability of simulated stochastic trajectories
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Power exponents

Tails of the distributions of cell counts seem to obey a power law, with estimated
exponent close to -1 at the time when E[X (a, t)] explodes
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Fit at the expectation explosion time point
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Some Estimates (more in the Ernst et al.)

Let Xk(a, t) be the number of cells generated by k − 1 mutations
X1(a, t) denotes the number of primary cells (division rate a)
X2(a, t) denotes the number of cells that directly mutated from primary
cells
X3(a, t)
X4(a, t)
...........
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Solutions for X1(a, t) cells
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Direct equations for expectations
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Cell death and criticality

Suppose that each of the progeny cells may die with probability d .

Then expectation φ(λ, t) explodes at t = λ/c , where

c = (2− µ)(1− d)− 1

Time at explosion is becoming infinite if

c = 0 ⇔ d = d∗ = 1−µ
2−µ < 0.5

At c = 0, expectation φ(t) = φ(0) exp
(

µt
λ(2−µ)

)
.

For d ∈ [0, d∗] solutions do not explode. Nothing special at d = 0.5?
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End of Presentation

Thank you!
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