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Formulation of the problem

Let M be a smooth manifold and f0, f1, . . . , fm ∈ Vec(M), T > 0 fixed.
We consider the control system on M

q̇ = f0(q) +
m∑
i=1

ui fi (q), q(0) = q0, q(T ) = qT , (1)

where the control u belongs to the set

U = {u : [0,T ] → Rm measurable, |u(t)| ≤ 1}.

Our cost function is

J(u) =

∫ T

0
|u(t)|dt, u ∈ U . (2)

Problem (OCP): Find the solutions of (1) minimizing (2).
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Motivation 2 (from Caillau et al. [2])

Aerospace engineering: minimization of fuel consumption
q̈ +∇V (q) =

u(t)

M(t)
,

Ṁ(t) = −β|u(t)|,
(1)

M(T ) → max ⇐⇒
∫ T

0
|u(t)|dt → min . (2)

If β = 0, the problem is in the form seen before.
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Motivation 3 (from Berret et al. [1])

Planning of arm movements: it was shown that arm’s movements
minimizes the absolute work

{
θ̇ = ω,

ω̇ = u − g⃗ cos θ,

J(u) =

∫ T

0
|ωu|dt, θ

g⃗

where ω is the angular velocity and u is the net torque.
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Consequences of PMP 1

We apply the PMP to the OCP described before. Let

hi (p, q) = ⟨p, fi (q)⟩, p ∈ T ∗
qM, q ∈ M, i = 0, 1, . . . ,m.

hI = (h1, . . . , hm),

H = h0 + ⟨u, hI ⟩ − |u|.

By PMP, if ũ ∈ U solves the OCP, there is a Lipschitz curve λ in T ∗M
solving

λ̇(t) = H⃗
(
ũ(t), λ(t)

)
= h⃗0 + ⟨ũ(t), h⃗I ⟩,

and the control ũ must satisfy

H
(
ũ(t), λ(t)

)
= max

|u|≤1
H
(
u, λ(t)

)
for a.e. t ∈ [0,T ].
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Consequences of PMP 2

If we use polar coordinate for u = rv , r ∈ [0, 1] and v ∈ Sm−1, we obtain

H(u, λ) ≤ h0(λ) + r(|hI (λ)| − 1),

where r = |u|, and hI = (h1, . . . , hm).

So, if |hI | ≠ 1,{
u(t) = hI/|hI |, if |hI | > 1,

u(t) = 0, if |hI | < 1.

In this case the trajectory (p, q) is said to be regular. Otherwise, if
|hI | ≡ 1 is singular.
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Let hc = 1
2⟨hI , hI ⟩. Differentiating two times in t the equation |hI | = 1,

one obtains

h0c(λt) = 0,

h00c(λt)− r(t)hcc0(λt) = 0 =⇒ u∗(t) =
h00c
hcc0

hI (λt),

where hijk = {hi , {hj , hk}}.
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Summary on singular extremals

So, we have obtained that singular extremals satisfy

λ̇ = h⃗0(λ) +
h00c
hcc0

h⃗c(λ)

on the submanifold

Σ ∩ S := {λ ∈ T ∗M | 2hc(λ) = 1} ∩ {λ ∈ T ∗M | h0c(λ) = 0}.

T ∗M

S ∩ Σ

λ(·)
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Extended end-point map

The extended end-point map is

ET : U → M × R, ET (u) = (q(T ; u), J(u)).

The Hessian of ET at u∗ is the quadratic form QT : KerDu∗ET → R:

QT (v) =

∫ T

0

|w(t)|2

r
+ σλ0

(
Ztv(t),

∫ t

0
Zsv(s)ds

)
dt

where

v = ρhI + w , with ⟨w , hI ⟩ = 0;

σ is the standard symplectic form on T ∗M;

Θt is the flow of H⃗(u∗(·), ·);
Ztv = (Θ−1

t )∗
〈
v(t), h⃗I

〉
.
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Second order necessary condition

Theorem

If the singular control u∗ is optimal, then

hc0c(λt) ≥ 0, for t ∈ [0,T ].

Idea of the proof.

After an integration by part in the direction hI , the second variation reads

QT (v) =

∫ T

0

(
w(t)
ϕ(t)

)T
(

Id
r σ

(
Zt ·,ZthI

)
σ
(
Zt ·,ZthI

)T
σ
(
ZthI ,

d
dt (ZthI )

))(w(t)
ϕ(t)

)
dt

+ l. o. t.

The determinant of the invertible part is hc0c/r
m−1.
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Locally strongly optimal trajectories

q0

q1

O

q∗(·)

qu(·)

qu(·) ⊂ O, qu(0) = q0, qu(T ) = q1 =⇒ ∥u∗∥L1 ≤ ∥u∥L1
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Sufficient conditions: the classical result

The main strategy to prove sufficient conditions is to use the fields of
extremals.

Let

q̇ = f (q, u),

∫ T

0
L(q, u)dt → min,

HM(λ) = max
u

⟨p, fu(q)⟩ − L(q, u), a ∈ C∞(M),

L0 = {(q, dqa) | q ∈ M} ⊂ T ∗M, Lt = exp(tH⃗M)(L0).

and π : T ∗M → M the canonical projection.

Theorem

Let λ̃t be a normal extremal trajectory. If π|Lt
is a local diffeomorphism

near λ̃t for every t, then q̃(t) = π(λt) is locally strongly optimal.
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Sufficient conditions: proof of the classical result

Lemma (Poincaré-Cartan)

Let s be the Liouville 1-form of T ∗M. Then, the 1-form

s − HMdt,

is exact on L = {(t, ℓ) ∈ T ∗M | t ∈ [0,T ], ℓ ∈ Lt}.

Let u be any admissible control and q the corresponding trajectory,
π(λt) = q(t), γ = (t, λt), γ̃ = (t, λ̃t),∫ T

0
L(q, u)dt =

∫ T

0
⟨λt , fu(q)⟩ − Hu(λt)dt ≥

∫ T

0
⟨λt , fu(q)⟩ − HM(λt)dt

=

∫
γ
s − HMdt =

∫
γ̃
s − HMdt =

∫ T

0
⟨λ̃t , fu(q̃)⟩ − HM(λ̃t)dt =

=

∫ T

0
L(q̃, ũ)dt.
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Sufficient conditions: super-hamiltonian

Let a ∈ C∞(M), HS(t, ·) ∈ C∞(T ∗M), Φt the flow of HS .

Theorem (Stefani, Zezza [3])

If HS(t, ·) satisfy
1 HS(t, ℓt) ≥ HM(ℓt), where ℓt = Φt(ℓ0), ℓ0 ∈ L0 ;

2 HS(t, λ̃t) = HM(λ̃t), for a.e. t ∈ [0,T ];

3 H⃗S(t, λ̃t) = H⃗M(λ̃t), for a.e. t ∈ [0,T ];

4 the function Ψ : L → R×M

Ψ(t, ℓ0) = (t, π(ℓt)),

is a smooth diffeomorphism.

Then, q∗ is locally strongly optimal.
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Sufficient condition: small time

Theorem

If
hc0c(λt) > 0, for t ∈ [0,T ], (SGLC)

then for every t ∈ [0,T ] there is some τ > 0 such that q∗|[t,t+τ ] is locally
strongly optimal.

Proof.

Since

d(0,ℓ0)Ψ =

(
1 ∗
0 Id

)
the projection Ψ is a local diffeomorphism near t = 0;

a is constructed solving

m∑
i=1

|⟨dqa, fi (q)⟩|2 = 1, dq0a = p0.
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Sufficient condition: construction of the super-hamiltonian

Pontryagin Hamiltonian was H = h0 + ⟨u, hI ⟩ − |u| and hc = 1
2 |hI |

2, so

that h⃗c =
−→
|hI | on Σ.

Let Σ = {ℓ ∈ T ∗M | |hI (ℓ)| = 1}, S = {ℓ ∈ T ∗M | h0c(ℓ) = 0}.

We solve the equation

{hS , hc} = 0 on T ∗M,

hS = h0 in S.

and define

HS = hS + r(t)(|hI | − 1)

Σ

S ∩ Σ

exp(th⃗c)

ℓ0 ℓ = ℓτ
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Sufficient condition: end of the proof

HS(t, ℓ) ≥ H(u∗(t), ℓ) = h0(ℓ) follows by

hS(ℓ)− h0(ℓ) = hS(ℓ0)−
(
h0(ℓ0) + τhc0(ℓ0) +

τ2

2
hcc0(ℓ0) + o(τ2)

)
=

τ2

2
hc0c(ℓ0) + o(τ2);

HS(t, λt) = H(u∗(t), λt), follows from of λ(t) ∈ S ∩ Σ and
hS(ℓ) = h0(ℓ) for ℓ ∈ S;
H⃗S(t, λt) = H⃗(u∗(t), λt), follows since dℓh0 = dℓhS for ℓ ∈ S ∩ Σ.
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H⃗S(t, λt) = H⃗(u∗(t), λt), follows since dℓh0 = dℓhS for ℓ ∈ S ∩ Σ.
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Conjugate times

Definition

The time t1 > 0 is called a conjugate time if there is v̄ ∈ KerDu∗Et1 such
that

Qt1(v̄ , v) = 0, ∀v ∈ KerDu∗Et1

Equivalently, t1 is a conjugate time if there is a non-constant solution to
the boundary value problem on Tλ0(T

∗M):

η̇(t) = −Zt l
−1
t σ

(
Zt · , η(t)

)
for a.e. t ∈ [0, t1],

η(0) ∈
(
T ∗
q0M + RZI (0)

)
∩
(
RZI (0)

)∠
, η(t1) ∈ T ∗

q0M,

where ZI (t) = ZthI and Ztv = Ztw − ϕ(t)ŻI (t), lt is the invertible part of
Hessu∗Et1 .
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Theorem

If (SGLC) holds and there are no conjugate times in [0,T ], then q∗ is
locally strongly optimal on [0,T ].

Idea of the Proof.

Again, we want to apply the argument of the fields of extremals.

In the classical regular case, you can use the absence of conjugate times to
show that the projection Ψ : L → R×M is a local diffeomorphism up to
time T .

In this singular case, we replace the flow of the maximazed Hamiltonian
with the flow of HS .
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Thank you for your attention!
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