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Ensembles of affine-control systems

Ensembles of control systems: motivations

Let us consider the following model for chemotherapy:{
ẋ1 = ξ1x1

(
1− x1+x2

M

)
− µux1 (sensitive population)

ẋ2 = ξ2x2
(
1− x1+x2

M

)
(resistant population)

where

u ∈ [0, umax] is the control;

ξ1, ξ2,M, µ > 0 are unknown parameters.

Classical strategy in medicine

Maximal dose: u(t) ≡ umax until the tumor starts growing again.
Then, when possible, change drug (2nd line treatment) and use it at the
maximal dose.
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ẋ2 = ξ2x2
(
1− x1+x2

M

)
(resistant population)

where

u ∈ [0, umax] is the control;

ξ1, ξ2,M, µ > 0 are unknown parameters.

Classical strategy in medicine

Maximal dose: u(t) ≡ umax until the tumor starts growing again.
Then, when possible, change drug (2nd line treatment) and use it at the
maximal dose.

Alessandro Scagliotti (TUM, MCML) 21st November 2024 3 / 33



Ensembles of affine-control systems

Ensembles of control systems: motivations

Let us consider the following model for chemotherapy:{
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Ensembles of affine-control systems

Ensembles of control systems: motivations

Figure: Strategy u(t) ≡ umax. The sensitive population is rapidly extincted by the
treatment. After some time, a resistant tumor returns.

This strategy does not require the knowledge of ξ1, ξ2,M, µ.
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Ensembles of affine-control systems

Ensembles of control systems: motivations

Figure: Strategy u(t) ≡ ū < umax. The tumor never disappears, but it is
stabilized. The sensitive cells are delaying the growth of the resistant population.

This strategy depends on ξ1, ξ2,M, µ.
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Ensembles of affine-control systems

Ensembles of control systems: motivations

Control of a qubit (Schrödinger equation):

i
dψ

dt
=

(
E + α u(t)
u(t) −E − α

)
ψ,

where α represents the uncertainty affecting the resonance frequency.

In [Robin, Augier, et al., J.Diff.Eq., 2022] a strategy for uniform ensemble
controllability is proposed (steer ψ(0) = (0, 1)T to the target (1, 0)T ).
They can do the job when α ∈ [αmin, αmax] ⊂ (−0.5, 0.5).

Is it possible to find optimal strategies?
Optimal could be on average on the ensemble, or uniformly.
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Ensembles of affine-control systems

Constructed vs. optimal controls: shape

0 2 4 6 8 10 12 14 16 18 20

Time

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Control signals: theoretical and computed

Theoretical

Averaged optim.

Worst-case optim.

Figure: Comparison between the controls used for the proof of controllability, and
the computed optimal controls.
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Ensembles of affine-control systems

Constructed vs. optimal controls: performances
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Figure: x-axis: Value of the unknown parameter α (resonance frequency). y -axis:
Distance to the target state (1, 0)T .
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Ensembles of affine-control systems

Ensembles of affine-control systems

Ingredients

Compact set of parameters Θ ⊂ Rd ;

Dynamics in Rn on the time interval [0,T ]:

ẋθ = bθ(x) + Aθ(x)u, xθ(0) = xθ0 ;

a simultaneous control u ∈ U := Lp([0,T ],Rm), 1 < p <∞.

Aim: Modelling data uncertainty in the dynamics and/or the initial datum.

Technical assumptions

(x , θ) 7→ bθ(x) ∈ Rn, (x , θ) 7→ Aθ(x) ∈ Rn×m Lipschitz-continuous;

θ 7→ xθ0 is Lipschitz-continuous.

Alessandro Scagliotti (TUM, MCML) 21st November 2024 11 / 33



Ensembles of affine-control systems

Ensembles of affine-control systems

Ingredients

Compact set of parameters Θ ⊂ Rd ;

Dynamics in Rn on the time interval [0,T ]:
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Optimal control of ensembles: weighted problems

Optimal control of ensembles: weighted problems

θ-specific problem

For every θ ∈ Θ, we would like to solve

ℓθ(xθu (T )) + β

∫ T

0
f (u(s)) ds → min,

with β > 0, and where

ℓθ : Rn → R+ is the end-point cost (ℓ : Rn ×Θ → R+ continuous)

;

f : Rm → R convex, continuous, and f (u) ≥ c(1 + |u|p2).

Idea

We use a probability measure µ ∈ P(Θ) to describe our knowledge on θ:

Gµ(u) =

∫
Θ
ℓ(xθu (T ), θ) dµ(θ) + β

∫ T

0
f (u(s)) ds → min .
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Optimal control of ensembles: weighted problems

Existence of minimizers

Let us consider

Gµ(u) =

∫
Θ
ℓ(xθu (T ), θ) dµ(θ) + β

∫ T

0
f (u(s)) ds.

Proposition

There exists û ∈ U such that

Gµ(û) = inf
U

Gµ.

Moreover, for every û ∈ argminGµ, we have ∥û∥Lp ≤ C (β).
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Optimal control of ensembles: weighted problems

Reduction to finite ensembles

The problem of finding the minimizers of Gµ requires:

the exact knowledge of the probability measure µ;

handling simultaneously an infinite number of control systems.

Data-driven approach: In practice, we may have access to empirical
measurements θ1, . . . , θM ∈ Θ, independently sampled from µ.
We define

µM :=
1

M

M∑
j=1

δθj ,

and we assume that limM→∞⟨µM , ϕ⟩ = ⟨µ, ϕ⟩, ∀ϕ ∈ Cb(Θ),
i.e., µM ⇀∗ µ as M → ∞.

Similar setup as in supervised ML!
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Optimal control of ensembles: weighted problems

Reduction to finite ensembles: Γ-convergence

For every M ≥ 1, we consider GµM : U → R defined as

GµM (u) =
M∑
j=1

1

M
ℓ
(
x
θj
u (T ), θj

)
+ β

∫ T

0
f (u(s)) ds

=

∫
Θ
ℓ
(
xθu (T ), θ

)
dµM(θ) + β

∫ T

0
f (u(s)) ds.

Theorem

For every M ≥ 1, let us consider GµM : U → R.
Then, the sequence (GµM )M≥1 is Γ-convergent to the functional
Gµ : U → R with respect to the weak topology of U .

Remark

Here the fact that the systems are affine in the control is crucial!
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Optimal control of ensembles: weighted problems

Γ-convergence: consequences

Convergence of minima.

min
u∈U

GµM → min
u∈U

Gµ as M → ∞.

Convergence of minimizers. Let ûM ∈ argminU GµM .

Then (ûM) is pre-compact in the weak topology of Lp, and clusters are
minimizers of Gµ.

Convergence of integral costs. Let ûM ∈ argminU GµM , and assume

that ûM ⇀ û. Then,

lim
M→∞

∫
Θ
a(xθûM (T ), θ) dµM(θ) =

∫
Θ
a(xθû (T ), θ) dµ(θ),

lim
M→∞

∫ T

0
f (ûM(s)) ds =

∫ T

0
f (û(s)) ds.
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Optimal control of ensembles: weighted problems

Γ-convergence: consequences – improved

Convergence of minima.

min
u∈U

GµM → min
u∈U

Gµ as M → ∞.

Convergence of minimizers. Let ûM ∈ argminU GµM .

Then, if f is strictly convex, (ûM) is pre-compact in the strong topology
of Lp, and clusters are minimizers of Gµ.

Convergence of integral costs. Let ûM ∈ argminU GµM , and assume

that ûM ⇀ û. Then,

lim
M→∞

M∑
j=1

1

M
ℓ
(
x
θj
ûM

(T ), θj
)
=

∫
Θ
ℓ(xθû (T ), θ) dµ(θ),

lim
M→∞

∫ T

0
f (ûM(s)) ds =

∫ T

0
f (û(s)) ds.
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Optimal control of ensembles: weighted problems

Γ-convergence and PMP: preliminaries

Idea

Try to use Γ-convergence to establish PMP for infinite ensembles.
When considering µM , the problem reduces to a control system in (Rn)M .

Notations

For every u ∈ U , we define Xu : [0,T ]×Θ → Rn as

Xu(t, θ) := xθu (t),

and Λu : [0,T ]×Θ → (Rn)∗ (analogous to back-propagation!) as

Λu(t, θ) := λθu(t),
where

λ̇θu = −λθu ·
∂

∂x

(
bθ(xu)− Aθ(xu)u

)
, λθu(T ) = −∇xℓ(xu(T ), θ).
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Optimal control of ensembles: weighted problems

Γ-convergence and PMP: preliminaries

Idea
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Optimal control of ensembles: weighted problems

Γ-convergence and PMP: finite ensembles

If #supp(µM) = M, then we have a problem in (Rn)M .

Theorem

Let ûM ∈ argminGµM . Then, considering XûM : [0,T ]×Θ → Rn and
ΛûM : [0,T ]×Θ → (Rn)∗ as before, we have that

ûM(t) ∈ argmax
v∈Rm

{∫
Θ
ΛûM (t, θ) · Aθ

(
XûM (t, θ)

)
v dµM(θ)− βf (v)

}
for a.e. t ∈ [0,T ].

Remark

No need for computing XûM (t, θ),ΛûM (t, θ) for every θ ∈ Θ.
Sufficient for θ ∈ supp(µM).
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Optimal control of ensembles: weighted problems

Γ-convergence and PMP: idea

Consider ûM ∈ argminGµM , and assume that ûM →Lp û

∈ argminGµ.
We have 

µM ⇀∗ µ

XûM →C0 Xû

ΛûM →C0 Λû

ûM(t) → û(t) a.e. (up to subseq.)

as M → ∞.

We can pass to the limit here:

ûM(t) ∈ argmax
v∈Rm

{∫
Θ
ΛûM (t, θ) · Aθ

(
XûM (t, θ)

)
v dµM(θ)− βf (v)

}
We use that the subdifferential ∂f has closed graph.
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We get:

û(t) ∈ argmax
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{∫
Θ
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(
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Optimal control of ensembles: weighted problems

Γ-convergence and PMP: infinite ensembles

Using the Γ-convergence consequences, we can deduce:

Theorem (S., 2023)

Let û ∈ argminGµ. Then, considering Xû : [0,T ]×Θ → Rn and
Λû : [0,T ]×Θ → (Rn)∗ as before, we have that

û(t) ∈ argmax
v∈Rm

{∫
Θ
Λû(t, θ) · Aθ

(
Xû(t, θ)

)
v dµ(θ)− βf (v)

}
for a.e. t ∈ [0,T ].
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Optimal control of ensembles: minimax problems

Optimal control of ensembles: minimax problems

θ-specific problem

For every θ ∈ Θ, we would like to solve

ℓθ(xθu (T )) + β

∫ T

0
f (u(s)) ds → min,

with β > 0, and where

ℓθ : Rn → R+ is the end-point cost (ℓ : Rn ×Θ → R+ continuous);

f : Rm → R convex, continuous, and f (u) ≥ c(1 + |u|p2).

Idea

We want to do the best in the worst scenario:

FΘ(u) = sup
θ∈Θ

ℓ(xθu (T ), θ) + β

∫ T

0
f (u(s)) ds → min .
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Optimal control of ensembles: minimax problems

Existence of minimizers

Let us consider

FΘ(u) = sup
θ∈Θ

ℓ(xθu (T ), θ) + β

∫ T

0
f (u(s)) ds.

Proposition

There exists û ∈ U such that

FΘ(û) = inf
U

FΘ.

Moreover, for every û ∈ argminFΘ, we have ∥û∥Lp ≤ C (β).
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Optimal control of ensembles: minimax problems

Reduction to finite ensembles

The problem of finding the minimizers of FΘ requires:

handling simultaneously an infinite number of control systems.

In practice, we may be able to construct ΘM ⊂ Θ such that:

#ΘM <∞;

dH(Θ
M ,Θ) → 0 as M → ∞ (Hausdorff distance).

FΘM (u) = sup
θ∈ΘM

a(xθ(T ), θ) + β

∫ T

0
f (u(s)) ds.

Theorem

For every M ≥ 1, let us consider FΘM : U → R.
Then, the sequence (FΘM )M≥1 is Γ-convergent to the functional
FΘ : U → R with respect to the weak topology of U .
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Optimal control of ensembles: minimax problems

Γ-convergence: consequences – improved

Convergence of minima.

min
u∈U

FΘM → min
u∈U

FΘ as M → ∞.

Convergence of minimizers. Let ûM ∈ argminU FΘM .
Then, if f is strictly convex, (ûM) is pre-compact in the strong topology
of Lp, and clusters are minimizers of FΘ.

Convergence of integral costs. Let ûM ∈ argminU FΘ, and assume
that ûM ⇀ û. Then,

lim
M→∞

sup
θ∈ΘM

ℓ(xθûM (T ), θ) = sup
θ∈Θ

ℓ(xθû (T ), θ),

lim
M→∞

∫ T

0
f (ûM(s)) ds =

∫ T

0
f (û(s)) ds.
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Optimal control of ensembles: minimax problems

PMP for minimax: notations recap

Notations

For every u ∈ U , we define Xu : [0,T ]×Θ → Rn as

Xu(t, θ) := xθu (t),

and Λu : [0,T ]×Θ → (Rn)∗ (analogue to back-propagation!) as

Λu(t, θ) := λθu(t),
where

λ̇θu = −λθu ·
∂

∂x

(
bθ(xu)− Aθ(xu)u

)
, λθu(T ) = −∇xℓ(xu(T ), θ).
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Optimal control of ensembles: minimax problems

PMP for minimax problems (finite ensembles)

If #ΘM <∞, then we have a minimax problem in (Rn)#ΘM
.

Theorem (in Vinter, Minimax Optimal Control, 2005)

Let ûM ∈ argminFΘM . Then, considering XûM : [0,T ]×Θ → Rn and
ΛûM : [0,T ]×Θ → (Rn)∗ as before, there exists a probability measure

νM ∈ P(ΘM) such that

ûM(t) ∈ argmax
v∈Rm

{∫
Θ
ΛûM (t, θ) · Aθ

(
XûM (t, θ)

)
v dνM(θ)− βf (v)

}
for a.e. t ∈ [0,T ], and θ̄ ∈ supp(νM) =⇒ θ̄ ∈ argmaxΘM a(xθ

ûM
(T ), θ).

In other words, ûM is as well an extremal for

GνM (u) =

∫
Θ
ℓ(xθu (T ), θ) dνM(θ) + β

∫ T

0
f (u(s)) ds.
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ΛûM (t, θ) · Aθ

(
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Optimal control of ensembles: minimax problems

Γ-convergence and PMP (again)

Consider ûM ∈ argminFΘM , and assume that ûM →Lp û ∈ argminFΘ.

We have 
νM ⇀∗ ν (up to subseq.)

XûM →C0 Xû

ΛûM →C0 Λû

ûM(t) → û(t) a.e. (up to subseq.)

as M → ∞.

We can pass to the limit here:

ûM(t) ∈ argmax
v∈Rm

{∫
Θ
ΛûM (t, θ) · Aθ

(
XûM (t, θ)

)
v dνM(θ)− βf (v)

}
We use that the subdifferential ∂f has closed graph.
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ΛûM (t, θ) · Aθ

(
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νM ⇀∗ ν (up to subseq.)

XûM →C0 Xû

ΛûM →C0 Λû

ûM(t) → û(t) a.e. (up to subseq.)

as M → ∞.

We get:

û(t) ∈ argmax
v∈Rm

{∫
Θ
Λû(t, θ) · Aθ

(
Xû(t, θ)

)
v dν(θ)− βf (v)

}
We use that the subdifferential ∂f has closed graph.
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Optimal control of ensembles: minimax problems

PMP for minimax problems

Theorem (S., 2024)

Let û ∈ argminFΘ. Then, considering Xû : [0,T ]×Θ → Rn and
Λû : [0,T ]×Θ → (Rn)∗ as before, there exists a probability measure
ν ∈ P(Θ) such that

û(t) ∈ argmax
v∈Rm

{∫
Θ
Λû(t, θ) · Aθ

(
Xû(t, θ)

)
v dν(θ)− βf (v)

}
for a.e. t ∈ [0,T ], and θ̄ ∈ supp(ν) =⇒ θ̄ ∈ argmax θ∈Θ a(xθû (T ), θ).

In other words, û is as well an extremal for

Gν(u) =

∫
Θ
ℓ(xθu (T ), θ) dν(θ) + β

∫ T

0
f (u(s)) ds.
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Numerical computation

Ensemble Optimal Control: numerical methods

General strategy

Reduce to finite ensembles using Γ-convergence, and solve it as a
finite-dimensional problem.

Taking advantage of the reduction to finite ensembles, we can use
numerical methods for Optimal Control problems:

Projected Gradient Flow;

Iterative methods based on Pontryagin Maximum Principle ([Sakawa
& Shindo, 1980], [Chernousko & Lyubushin, 1982]).

Remark

The minimax problem is harder: the measures νM are not explicitly given,
they should be adaptively guessed during the approximation of the optimal
control.
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Thanks for the attention!
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