Optimal control of ODEs with dynamics uncertainty

Alessandro Scagliotti

TUM, Munich
MCML – Munich Center for Machine Learning

INRIA - McTAO Group Seminar

- 2 Optimal control of ensembles: weighted problems
- 3 Optimal control of ensembles: minimax problems
- Mumerical computation

Let us consider the following model for chemotherapy:

$$\begin{cases} \dot{x}_1 = \xi_1 x_1 \left(1 - \frac{x_1 + x_2}{M}\right) - \mu \mathbf{u} x_1 & \text{(sensitive population)} \\ \dot{x}_2 = \xi_2 x_2 \left(1 - \frac{x_1 + x_2}{M}\right) & \text{(resistant population)} \end{cases}$$

where

• $u \in [0, u_{\text{max}}]$ is the control;

Let us consider the following model for chemotherapy:

$$\begin{cases} \dot{x}_1 = \xi_1 x_1 \left(1 - \frac{x_1 + x_2}{M}\right) - \mu \mathbf{u} x_1 & \text{(sensitive population)} \\ \dot{x}_2 = \xi_2 x_2 \left(1 - \frac{x_1 + x_2}{M}\right) & \text{(resistant population)} \end{cases}$$

where

- $u \in [0, u_{\text{max}}]$ is the control;
- $\xi_1, \xi_2, M, \mu > 0$ are **unknown** parameters.

Let us consider the following model for chemotherapy:

$$\begin{cases} \dot{x}_1 = \xi_1 x_1 \left(1 - \frac{x_1 + x_2}{M}\right) - \mu \mathbf{u} x_1 & \text{(sensitive population)} \\ \dot{x}_2 = \xi_2 x_2 \left(1 - \frac{x_1 + x_2}{M}\right) & \text{(resistant population)} \end{cases}$$

where

- $u \in [0, u_{\text{max}}]$ is the control;
- $\xi_1, \xi_2, M, \mu > 0$ are **unknown** parameters.

Classical strategy in medicine

Maximal dose: $u(t) \equiv u_{max}$ until the tumor starts growing again.

Let us consider the following model for chemotherapy:

$$\begin{cases} \dot{x}_1 = \xi_1 x_1 \left(1 - \frac{x_1 + x_2}{M}\right) - \mu \mathbf{u} x_1 & \text{(sensitive population)} \\ \dot{x}_2 = \xi_2 x_2 \left(1 - \frac{x_1 + x_2}{M}\right) & \text{(resistant population)} \end{cases}$$

where

- $u \in [0, u_{\text{max}}]$ is the control;
- $\xi_1, \xi_2, M, \mu > 0$ are **unknown** parameters.

Classical strategy in medicine

Maximal dose: $u(t) \equiv u_{\text{max}}$ until the tumor starts growing again.

Then, when possible, change drug (2nd line treatment) and use it at the maximal dose.

Figure: Strategy $u(t) \equiv u_{\text{max}}$. The sensitive population is rapidly extincted by the treatment. After some time, a resistant tumor returns.

Figure: Strategy $u(t) \equiv u_{\text{max}}$. The sensitive population is rapidly extincted by the treatment. After some time, a resistant tumor returns.

This strategy does not require the knowledge of ξ_1, ξ_2, M, μ .

Figure: Strategy $u(t) \equiv \bar{u} < u_{\text{max}}$. The tumor never disappears, but it is stabilized. The sensitive cells are delaying the growth of the resistant population.

Figure: Strategy $u(t) \equiv \bar{u} < u_{\text{max}}$. The tumor never disappears, but it is stabilized. The sensitive cells are delaying the growth of the resistant population.

This strategy **depends on** ξ_1, ξ_2, M, μ .

Control of a qubit (Schrödinger equation):

$$i\frac{d\psi}{dt} = \begin{pmatrix} E + \alpha & u(t) \\ u(t) & -E - \alpha \end{pmatrix} \psi,$$

where α represents the uncertainty affecting the *resonance frequency*.

Control of a qubit (Schrödinger equation):

$$i\frac{d\psi}{dt} = \begin{pmatrix} E + \alpha & u(t) \\ u(t) & -E - \alpha \end{pmatrix} \psi,$$

where α represents the uncertainty affecting the *resonance frequency*.

In [Robin, Augier, et al., J.Diff.Eq., 2022] a strategy for *uniform ensemble* controllability is proposed (steer $\psi(0) = (0,1)^T$ to the target $(1,0)^T$). They can do the job when $\alpha \in [\alpha_{\min}, \alpha_{\max}] \subset (-0.5, 0.5)$.

Control of a qubit (Schrödinger equation):

$$i\frac{d\psi}{dt} = \begin{pmatrix} E + \alpha & u(t) \\ u(t) & -E - \alpha \end{pmatrix} \psi,$$

where α represents the uncertainty affecting the *resonance frequency*.

In [Robin, Augier, et al., J.Diff.Eq., 2022] a strategy for *uniform ensemble* controllability is proposed (steer $\psi(0) = (0,1)^T$ to the target $(1,0)^T$). They can do the job when $\alpha \in [\alpha_{\min}, \alpha_{\max}] \subset (-0.5, 0.5)$.

Is it possible to find optimal strategies?

Optimal could be on average on the ensemble, or uniformly.

Constructed vs. optimal controls: shape

Figure: Comparison between the controls used for the proof of controllability, and the computed optimal controls.

Constructed vs. optimal controls: performances

Figure: x-axis: Value of the unknown parameter α (resonance frequency). y-axis: Distance to the target state $(1,0)^T$.

Constructed vs. optimal controls: shape

Figure: Comparison between the controls used for the proof of controllability, and the computed optimal controls.

Constructed vs. optimal controls: performances

Figure: x-axis: Value of the unknown parameter α (resonance frequency). y-axis: Distance to the target state $(1,0)^T$.

Ingredients

- Compact set of parameters $\Theta \subset \mathbb{R}^d$;
- Dynamics in \mathbb{R}^n on the time interval [0, T]:

$$\dot{x}^{\theta} = b^{\theta}(x) + A^{\theta}(x)u, \quad x^{\theta}(0) = x_0^{\theta};$$

• a simultaneous control $u \in \mathcal{U} := L^p([0,T],\mathbb{R}^m), 1$

Ingredients

- Compact set of parameters $\Theta \subset \mathbb{R}^d$;
- Dynamics in \mathbb{R}^n on the time interval [0, T]:

$$\dot{x}^{\theta} = b^{\theta}(x) + A^{\theta}(x)u, \quad x^{\theta}(0) = x_0^{\theta};$$

• a simultaneous control $u \in \mathcal{U} := L^p([0,T],\mathbb{R}^m), 1$

Aim: Modelling data uncertainty in the dynamics and/or the initial datum.

Ingredients

- Compact set of parameters $\Theta \subset \mathbb{R}^d$;
- Dynamics in \mathbb{R}^n on the time interval [0, T]:

$$\dot{x}^{\theta} = b^{\theta}(x) + A^{\theta}(x)u, \quad x^{\theta}(0) = x_0^{\theta};$$

• a simultaneous control $u \in \mathcal{U} := L^p([0, T], \mathbb{R}^m)$, 1 .

Aim: Modelling data uncertainty in the dynamics and/or the initial datum.

Technical assumptions

- $(x, \theta) \mapsto b^{\theta}(x) \in \mathbb{R}^n$, $(x, \theta) \mapsto A^{\theta}(x) \in \mathbb{R}^{n \times m}$ Lipschitz-continuous;
- $\theta \mapsto x_0^{\theta}$ is Lipschitz-continuous.

Optimal control of ensembles: weighted problems

θ -specific problem

For every $\theta \in \Theta$, we would like to solve

$$\ell^{\theta}(x_{u}^{\theta}(T)) + \beta \int_{0}^{T} f(u(s)) ds \to \min,$$

with $\beta > 0$, and where

• $\ell^{\theta}: \mathbb{R}^n \to \mathbb{R}_+$ is the end-point cost $(\ell: \mathbb{R}^n \times \Theta \to \mathbb{R}_+$ continuous)

Optimal control of ensembles: weighted problems

θ -specific problem

For every $\theta \in \Theta$, we would like to solve

$$\ell^{\theta}(x_u^{\theta}(T)) + \beta \int_0^T f(u(s)) ds \to \min,$$

with $\beta > 0$, and where

- $\ell^{\theta}: \mathbb{R}^n \to \mathbb{R}_+$ is the end-point cost $(\ell: \mathbb{R}^n \times \Theta \to \mathbb{R}_+$ continuous);
- $f: \mathbb{R}^m \to \mathbb{R}$ convex, continuous, and $f(u) \geq c(1+|u|_2^p)$.

Optimal control of ensembles: weighted problems

θ -specific problem

For every $\theta \in \Theta$, we would like to solve

$$\ell^{\theta}(x_u^{\theta}(T)) + \beta \int_0^T f(u(s)) ds \to \min,$$

with $\beta > 0$, and where

- $\ell^{\theta}: \mathbb{R}^n \to \mathbb{R}_+$ is the end-point cost $(\ell: \mathbb{R}^n \times \Theta \to \mathbb{R}_+$ continuous);
- $f: \mathbb{R}^m \to \mathbb{R}$ convex, continuous, and $f(u) \geq c(1 + |u|_2^p)$.

Idea

We use a probability measure $\mu \in \mathcal{P}(\Theta)$ to describe our knowledge on θ :

$$\mathcal{G}_{\mu}(u) = \int_{\Theta} \ell(x_u^{ heta}(T), heta) \, d\mu(heta) + eta \int_0^T f(u(s)) \, ds o \min.$$

Existence of minimizers

Let us consider

$$\mathcal{G}_{\mu}(u) = \int_{\Theta} \ell(x_u^{\theta}(T), \theta) d\mu(\theta) + \beta \int_0^T f(u(s)) ds.$$

Proposition

There exists $\hat{u} \in \mathcal{U}$ such that

$$\mathcal{G}_{\mu}(\hat{u}) = \inf_{\mathcal{U}} \mathcal{G}_{\mu}.$$

Moreover, for every $\hat{u} \in \arg \min \mathcal{G}_{\mu}$, we have $\|\hat{u}\|_{L^p} \leq C(\beta)$.

The problem of finding the minimizers of \mathcal{G}_{μ} requires:

• the exact knowledge of the probability measure μ ;

The problem of finding the minimizers of \mathcal{G}_{μ} requires:

- ullet the exact knowledge of the probability measure μ ;
- handling simultaneously an infinite number of control systems.

The problem of finding the minimizers of \mathcal{G}_{μ} requires:

- ullet the exact knowledge of the probability measure μ ;
- handling simultaneously an infinite number of control systems.

Data-driven approach: In practice, we may have access to empirical measurements $\theta^1, \dots, \theta^M \in \Theta$, independently sampled from μ . We define

$$\mu^M := rac{1}{M} \sum_{j=1}^M \delta_{ heta^j}$$

The problem of finding the minimizers of \mathcal{G}_{μ} requires:

- ullet the exact knowledge of the probability measure μ ;
- handling simultaneously an infinite number of control systems.

Data-driven approach: In practice, we may have access to empirical measurements $\theta^1, \dots, \theta^M \in \Theta$, independently sampled from μ . We define

$$\mu^M := \frac{1}{M} \sum_{j=1}^M \delta_{\theta^j},$$

and we assume that $\lim_{M\to\infty}\langle \mu^M, \phi \rangle = \langle \mu, \phi \rangle$, $\forall \phi \in C_b(\Theta)$, i.e., $\mu^M \rightharpoonup^* \mu$ as $M\to\infty$.

The problem of finding the minimizers of \mathcal{G}_{μ} requires:

- the exact knowledge of the probability measure μ ;
- handling simultaneously an infinite number of control systems.

Data-driven approach: In practice, we may have access to empirical measurements $\theta^1, \dots, \theta^M \in \Theta$, independently sampled from μ . We define

$$\mu^M := \frac{1}{M} \sum_{j=1}^M \delta_{\theta^j},$$

and we assume that $\lim_{M\to\infty}\langle \mu^M, \phi \rangle = \langle \mu, \phi \rangle$, $\forall \phi \in C_b(\Theta)$, i.e., $\mu^M \rightharpoonup^* \mu$ as $M\to\infty$.

Similar setup as in supervised ML!

Reduction to finite ensembles: \(\Gamma\)-convergence

For every $M \geq 1$, we consider $\mathcal{G}_{\mu^M}: \mathcal{U} \to \mathbb{R}$ defined as

$$egin{aligned} \mathcal{G}_{\mu^M}(u) &= \sum_{j=1}^M rac{1}{M} \ellig(x_u^{ heta_j}(T), heta_jig) + eta \int_0^T f(u(s)) \, ds \ &= \int_{\Theta} \ellig(x_u^{ heta}(T), hetaig) \, d\mu^M(heta) + eta \int_0^T f(u(s)) \, ds. \end{aligned}$$

Reduction to finite ensembles: Γ -convergence

For every $M \geq 1$, we consider $\mathcal{G}_{\mu^M}: \mathcal{U} \to \mathbb{R}$ defined as

$$\mathcal{G}_{\mu^{M}}(u) = \sum_{j=1}^{M} \frac{1}{M} \ell(x_{u}^{\theta_{j}}(T), \theta_{j}) + \beta \int_{0}^{T} f(u(s)) ds$$
$$= \int_{\Theta} \ell(x_{u}^{\theta}(T), \theta) d\mu^{M}(\theta) + \beta \int_{0}^{T} f(u(s)) ds.$$

Theorem

For every $M \geq 1$, let us consider $\mathcal{G}_{\mu^M} : \mathcal{U} \to \mathbb{R}$.

Then, the sequence $(\mathcal{G}_{\mu^M})_{M\geq 1}$ is Γ -convergent to the functional $\mathcal{G}_{\mu}:\mathcal{U}\to\mathbb{R}$ with respect to the weak topology of \mathcal{U} .

Reduction to finite ensembles: \(\Gamma\)-convergence

For every $M \geq 1$, we consider $\mathcal{G}_{\mu^M}: \mathcal{U} \to \mathbb{R}$ defined as

$$\mathcal{G}_{\mu^{M}}(u) = \sum_{j=1}^{M} \frac{1}{M} \ell(x_{u}^{\theta_{j}}(T), \theta_{j}) + \beta \int_{0}^{T} f(u(s)) ds$$
$$= \int_{\Theta} \ell(x_{u}^{\theta}(T), \theta) d\mu^{M}(\theta) + \beta \int_{0}^{T} f(u(s)) ds.$$

Theorem

For every $M \geq 1$, let us consider $\mathcal{G}_{\mu^M}: \mathcal{U} \to \mathbb{R}$.

Then, the sequence $(\mathcal{G}_{\mu^M})_{M\geq 1}$ is Γ -convergent to the functional $\mathcal{G}_{\mu}:\mathcal{U}\to\mathbb{R}$ with respect to the weak topology of \mathcal{U} .

Remark

Here the fact that the systems are affine in the control is crucial!

Γ-convergence: consequences

Convergence of minima.

$$\min_{u \in \mathcal{U}} \mathcal{G}_{\mu^M} \to \min_{u \in \mathcal{U}} \mathcal{G}_{\mu} \quad \text{as } M \to \infty.$$

Γ-convergence: consequences

Convergence of minima.

$$\min_{u \in \mathcal{U}} \mathcal{G}_{\mu^M} o \min_{u \in \mathcal{U}} \mathcal{G}_{\mu} \quad \text{as } M o \infty.$$

Convergence of minimizers. Let $\hat{u}^M \in \arg\min_{\mathcal{U}} \mathcal{G}_{\mu^M}$.

Then (\hat{u}^M) is pre-compact in the **weak topology** of L^p , and clusters are minimizers of \mathcal{G}_{μ} .

Γ-convergence: consequences

Convergence of minima.

$$\min_{u \in \mathcal{U}} \mathcal{G}_{\mu^M} o \min_{u \in \mathcal{U}} \mathcal{G}_{\mu} \quad \text{as } M o \infty.$$

Convergence of minimizers. Let $\hat{u}^M \in \arg\min_{\mathcal{U}} \mathcal{G}_{\mu^M}$.

Then (\hat{u}^M) is pre-compact in the **weak topology** of L^p , and clusters are minimizers of \mathcal{G}_u .

Convergence of integral costs. Let $\hat{u}^M \in \arg\min_{\mathcal{U}} \mathcal{G}_{\mu^M}$, and assume that $\hat{u}^M \rightharpoonup \hat{u}$. Then,

$$\lim_{M \to \infty} \int_{\Theta} a(x_{\hat{u}^M}^{\theta}(T), \theta) \, d\mu^M(\theta) = \int_{\Theta} a(x_{\hat{u}}^{\theta}(T), \theta) \, d\mu(\theta),$$
$$\lim_{M \to \infty} \int_{0}^{T} f(\hat{u}^M(s)) \, ds = \int_{0}^{T} f(\hat{u}(s)) \, ds.$$

Convergence of minima.

$$\min_{u \in \mathcal{U}} \mathcal{G}_{\mu^M} o \min_{u \in \mathcal{U}} \mathcal{G}_{\mu} \quad \text{as } M o \infty.$$

Convergence of minimizers. Let $\hat{u}^M \in \arg\min_{\mathcal{U}} \mathcal{G}_{\mu^M}$.

Then, if f is **strictly convex**, (\hat{u}^M) is pre-compact in the **strong topology** of L^p , and clusters are minimizers of \mathcal{G}_{μ} .

Convergence of integral costs. Let $\hat{u}^M \in \arg\min_{\mathcal{U}} \mathcal{G}_{\mu^M}$, and assume that $\hat{u}^M \rightharpoonup \hat{u}$. Then,

$$\lim_{M\to\infty}\sum_{j=1}^M\frac{1}{M}\ell(x_{\hat{u}^M}^{\theta_j}(T),\theta_j)=\int_{\Theta}\ell(x_{\hat{u}}^{\theta}(T),\theta)\,d\mu(\theta),$$

$$\lim_{M\to\infty}\int_0^T f(\hat{u}^M(s))\,ds = \int_0^T f(\hat{u}(s))\,ds.$$

Idea

Try to use Γ -convergence to establish PMP for infinite ensembles. When considering μ^M , the problem reduces to a control system in $(\mathbb{R}^n)^M$.

Idea

Try to use Γ -convergence to establish PMP for infinite ensembles. When considering μ^M , the problem reduces to a control system in $(\mathbb{R}^n)^M$.

Notations

For every $u \in \mathcal{U}$, we define $X_u : [0, T] \times \Theta \to \mathbb{R}^n$ as

$$X_u(t,\theta) := x_u^{\theta}(t),$$

Idea

Try to use Γ -convergence to establish PMP for infinite ensembles. When considering μ^M , the problem reduces to a control system in $(\mathbb{R}^n)^M$.

Notations

For every $u \in \mathcal{U}$, we define $X_u : [0, T] \times \Theta \to \mathbb{R}^n$ as

$$X_u(t,\theta) := x_u^{\theta}(t),$$

and $\Lambda_u : [0, T] \times \Theta \to (\mathbb{R}^n)^*$ (analogous to back-propagation!)

Idea

Try to use Γ -convergence to establish PMP for infinite ensembles. When considering μ^M , the problem reduces to a control system in $(\mathbb{R}^n)^M$.

Notations

For every $u \in \mathcal{U}$, we define $X_u : [0, T] \times \Theta \to \mathbb{R}^n$ as

$$X_u(t,\theta) := x_u^{\theta}(t),$$

and $\Lambda_u : [0, T] \times \Theta \to (\mathbb{R}^n)^*$ (analogous to back-propagation!) as

$$\Lambda_u(t,\theta) := \lambda_u^{\theta}(t),$$

where

$$\dot{\lambda}_{u}^{\theta} = -\lambda_{u}^{\theta} \cdot \frac{\partial}{\partial x} \left(b^{\theta}(x_{u}) - A^{\theta}(x_{u}) u \right), \quad \lambda_{u}^{\theta}(T) = -\nabla_{x} \ell(x_{u}(T), \theta).$$

Γ-convergence and PMP: finite ensembles

If $\#\operatorname{supp}(\mu^M) = M$, then we have a problem in $(\mathbb{R}^n)^M$.

Γ-convergence and PMP: finite ensembles

If $\# \operatorname{supp}(\mu^M) = M$, then we have a problem in $(\mathbb{R}^n)^M$.

Theorem

Let $\hat{u}^M \in \arg\min \mathcal{G}_{\mu^M}$. Then, considering $X_{\hat{u}^M} : [0,T] \times \Theta \to \mathbb{R}^n$ and $\Lambda_{\hat{u}^M} : [0,T] \times \Theta \to (\mathbb{R}^n)^*$ as before, we have that

$$\hat{u}^M(t) \in \argmax_{v \in \mathbb{R}^m} \left\{ \int_{\Theta} \Lambda_{\hat{u}^M}(t,\theta) \cdot A^{\theta} \big(X_{\hat{u}^M}(t,\theta) \big) v \, d\mu^M(\theta) - \beta f(v) \right\}$$

for a.e. $t \in [0, T]$.

Γ-convergence and PMP: finite ensembles

If $\# \operatorname{supp}(\mu^M) = M$, then we have a problem in $(\mathbb{R}^n)^M$.

Theorem

Let $\hat{u}^M \in \arg\min \mathcal{G}_{\mu^M}$. Then, considering $X_{\hat{u}^M} : [0,T] \times \Theta \to \mathbb{R}^n$ and $\Lambda_{\hat{u}^M} : [0,T] \times \Theta \to (\mathbb{R}^n)^*$ as before, we have that

$$\hat{u}^M(t) \in \argmax_{v \in \mathbb{R}^m} \left\{ \int_{\Theta} \Lambda_{\hat{u}^M}(t,\theta) \cdot A^{\theta} \big(X_{\hat{u}^M}(t,\theta) \big) v \, d\mu^M(\theta) - \beta f(v) \right\}$$

for a.e. $t \in [0, T]$.

Remark

No need for computing $X_{\hat{u}^M}(t,\theta), \Lambda_{\hat{u}^M}(t,\theta)$ for every $\theta \in \Theta$. Sufficient for $\theta \in \text{supp}(\mu^M)$.

Consider $\hat{u}^M \in \arg\min \mathcal{G}_{\mu^M}$, and assume that $\hat{u}^M \to_{L^p} \hat{u}$

Consider $\hat{u}^M \in \arg\min \mathcal{G}_{\mu^M}$, and assume that $\hat{u}^M \to_{L^p} \hat{u} \in \arg\min \mathcal{G}_{\mu}$. We have

$$\begin{cases} \mu^M \rightharpoonup^* \mu \\ X_{\hat{u}^M} \to_{C^0} X_{\hat{u}} \\ \Lambda_{\hat{u}^M} \to_{C^0} \Lambda_{\hat{u}} \\ \hat{u}^M(t) \to \hat{u}(t) \quad \text{a.e. (up to subseq.)} \end{cases} \text{ as } M \to \infty.$$

Consider $\hat{u}^M \in \arg\min \mathcal{G}_{\mu^M}$, and assume that $\hat{u}^M \to_{L^p} \hat{u} \in \arg\min \mathcal{G}_{\mu}$. We have

$$\begin{cases} \mu^M \rightharpoonup^* \mu \\ X_{\hat{u}^M} \to_{C^0} X_{\hat{u}} \\ \Lambda_{\hat{u}^M} \to_{C^0} \Lambda_{\hat{u}} \\ \hat{u}^M(t) \to \hat{u}(t) \quad \text{a.e. (up to subseq.)} \end{cases} \text{ as } M \to \infty.$$

We can pass to the limit here:

$$\hat{u}^M(t) \in \arg\max_{v \in \mathbb{R}^m} \left\{ \int_{\Theta} \Lambda_{\hat{u}^M}(t,\theta) \cdot A^{\theta} \big(X_{\hat{u}^M}(t,\theta) \big) v \, d\mu^M(\theta) - \beta f(v) \right\}$$

We use that the subdifferential ∂f has closed graph.

Consider $\hat{u}^M \in \arg\min \mathcal{G}_{\mu^M}$, and assume that $\hat{u}^M \to_{L^p} \hat{u} \in \arg\min \mathcal{G}_{\mu}$. We have

$$\begin{cases} \mu^M \rightharpoonup^* \mu \\ X_{\hat{u}^M} \to_{C^0} X_{\hat{u}} \\ \Lambda_{\hat{u}^M} \to_{C^0} \Lambda_{\hat{u}} \\ \hat{u}^M(t) \to \hat{u}(t) \quad \text{a.e. (up to subseq.)} \end{cases} \text{ as } M \to \infty.$$

We get:

$$\hat{u}(t) \in rg \max_{v \in \mathbb{R}^m} \left\{ \int_{\Theta} \Lambda_{\hat{u}}(t, heta) \cdot A^{ heta}ig(X_{\hat{u}}(t, heta) ig) v \, d\mu(heta) - eta f(v)
ight\}$$

We use that the subdifferential ∂f has closed graph.

Γ-convergence and PMP: infinite ensembles

Using the Γ -convergence consequences, we can deduce:

Theorem (S., 2023)

Let $\hat{u} \in \arg \min \mathcal{G}_{\mu}$. Then, considering $X_{\hat{u}} : [0, T] \times \Theta \to \mathbb{R}^n$ and $\Lambda_{\hat{u}} : [0, T] \times \Theta \to (\mathbb{R}^n)^*$ as before, we have that

$$\hat{u}(t) \in \operatorname*{arg\,max}_{v \in \mathbb{R}^m} \left\{ \int_{\Theta} \Lambda_{\hat{u}}(t, \theta) \cdot A^{\theta} \big(X_{\hat{u}}(t, \theta) \big) v \ d\mu(\theta) - \beta f(v) \right\}$$

for a.e. $t \in [0, T]$.

Optimal control of ensembles: minimax problems

θ -specific problem

For every $\theta \in \Theta$, we would like to solve

$$\ell^{\theta}(x_u^{\theta}(T)) + \beta \int_0^T f(u(s)) ds \to \min,$$

with $\beta > 0$, and where

- $\ell^{\theta}: \mathbb{R}^n \to \mathbb{R}_+$ is the end-point cost $(\ell: \mathbb{R}^n \times \Theta \to \mathbb{R}_+$ continuous);
- $f: \mathbb{R}^m \to \mathbb{R}$ convex, continuous, and $f(u) \geq c(1 + |u|_2^p)$.

Optimal control of ensembles: minimax problems

θ -specific problem

For every $\theta \in \Theta$, we would like to solve

$$\ell^{\theta}(x_u^{\theta}(T)) + \beta \int_0^T f(u(s)) ds \to \min,$$

with $\beta > 0$, and where

- $\ell^{\theta}: \mathbb{R}^n \to \mathbb{R}_+$ is the end-point cost $(\ell: \mathbb{R}^n \times \Theta \to \mathbb{R}_+$ continuous);
- $f: \mathbb{R}^m \to \mathbb{R}$ convex, continuous, and $f(u) \geq c(1 + |u|_2^p)$.

Idea

We want to do the best in the worst scenario:

$$\mathcal{F}_{\Theta}(u) = \sup_{\theta \in \Theta} \ell(x_u^{\theta}(T), \theta) + \beta \int_0^T f(u(s)) ds \to \min.$$

Existence of minimizers

Let us consider

$$\mathcal{F}_{\Theta}(u) = \sup_{\theta \in \Theta} \ell(x_u^{\theta}(T), \theta) + \beta \int_0^T f(u(s)) ds.$$

Proposition

There exists $\hat{u} \in \mathcal{U}$ such that

$$\mathcal{F}_{\Theta}(\hat{u}) = \inf_{\mathcal{U}} \mathcal{F}_{\Theta}.$$

Moreover, for every $\hat{u} \in \arg\min \mathcal{F}_{\Theta}$, we have $\|\hat{u}\|_{L^p} \leq C(\beta)$.

The problem of finding the minimizers of \mathcal{F}_{Θ} requires:

• handling simultaneously an infinite number of control systems.

The problem of finding the minimizers of \mathcal{F}_{Θ} requires:

• handling simultaneously an infinite number of control systems.

In practice, we may be able to construct $\Theta^M \subset \Theta$ such that:

- $\#\Theta^M < \infty$;
- $d_H(\Theta^M, \Theta) \to 0$ as $M \to \infty$ (Hausdorff distance).

The problem of finding the minimizers of \mathcal{F}_{Θ} requires:

handling simultaneously an infinite number of control systems.

In practice, we may be able to construct $\Theta^M \subset \Theta$ such that:

- $\#\Theta^M < \infty$;
- $d_H(\Theta^M, \Theta) \to 0$ as $M \to \infty$ (Hausdorff distance).

$$\mathcal{F}_{\Theta^M}(u) = \sup_{\theta \in \Theta^M} a(x^{\theta}(T), \theta) + \beta \int_0^T f(u(s)) ds.$$

The problem of finding the minimizers of \mathcal{F}_{Θ} requires:

• handling simultaneously an infinite number of control systems.

In practice, we may be able to construct $\Theta^M \subset \Theta$ such that:

- $\#\Theta^M < \infty$;
- $d_H(\Theta^M, \Theta) \to 0$ as $M \to \infty$ (Hausdorff distance).

$$\mathcal{F}_{\Theta^M}(u) = \sup_{\theta \in \Theta^M} a(x^{\theta}(T), \theta) + \beta \int_0^T f(u(s)) ds.$$

Theorem

For every $M \geq 1$, let us consider $\mathcal{F}_{\Theta^M} : \mathcal{U} \to \mathbb{R}$.

Then, the sequence $(\mathcal{F}_{\Theta^M})_{M\geq 1}$ is Γ -convergent to the functional $\mathcal{F}_{\Theta}: \mathcal{U} \to \mathbb{R}$ with respect to the weak topology of \mathcal{U} .

Convergence of minima.

$$\min_{u \in \mathcal{U}} \mathcal{F}_{\Theta^M} o \min_{u \in \mathcal{U}} \mathcal{F}_{\Theta} \quad \text{as } M o \infty.$$

Convergence of minima.

$$\min_{u \in \mathcal{U}} \mathcal{F}_{\Theta^M} \to \min_{u \in \mathcal{U}} \mathcal{F}_{\Theta} \quad \text{as } M \to \infty.$$

Convergence of minimizers. Let $\hat{u}^M \in \arg\min_{\mathcal{U}} \mathcal{F}_{\Theta^M}$. Then, if f is strictly convex, (\hat{u}^M) is pre-compact in the strong topology of L^p , and clusters are minimizers of \mathcal{F}_{Θ} .

Convergence of minima.

$$\min_{u \in \mathcal{U}} \mathcal{F}_{\Theta^M} \to \min_{u \in \mathcal{U}} \mathcal{F}_{\Theta} \quad \text{as } M \to \infty.$$

Convergence of minimizers. Let $\hat{u}^M \in \arg\min_{\mathcal{U}} \mathcal{F}_{\Theta^M}$. Then, if f is strictly convex, (\hat{u}^M) is pre-compact in the strong topology of L^p , and clusters are minimizers of \mathcal{F}_{Θ} .

Convergence of integral costs. Let $\hat{u}^M \in \arg\min_{\mathcal{U}} \mathcal{F}_{\Theta}$, and assume that $\hat{u}^M \rightharpoonup \hat{u}$. Then,

$$\lim_{M \to \infty} \sup_{\theta \in \Theta^M} \ell(x^{\theta}_{\hat{u}^M}(T), \theta) = \sup_{\theta \in \Theta} \ell(x^{\theta}_{\hat{u}}(T), \theta),$$

$$\lim_{M\to\infty}\int_0^T f(\hat{u}^M(s))\,ds = \int_0^T f(\hat{u}(s))\,ds.$$

PMP for minimax: notations recap

Notations

For every $u \in \mathcal{U}$, we define $X_u : [0, T] \times \Theta \to \mathbb{R}^n$ as

$$X_u(t,\theta):=x_u^{\theta}(t),$$

PMP for minimax: notations recap

Notations

For every $u \in \mathcal{U}$, we define $X_u : [0, T] \times \Theta \to \mathbb{R}^n$ as

$$X_u(t,\theta) := x_u^{\theta}(t),$$

and $\Lambda_u: [0,T] \times \Theta \to (\mathbb{R}^n)^*$ (analogue to back-propagation!) as

$$\Lambda_{u}(t,\theta):=\lambda_{u}^{\theta}(t),$$

where

$$\dot{\lambda}_u^{\theta} = -\lambda_u^{\theta} \cdot \frac{\partial}{\partial x} \left(b^{\theta}(x_u) - A^{\theta}(x_u) u \right), \quad \lambda_u^{\theta}(T) = -\nabla_x \ell(x_u(T), \theta).$$

If $\#\Theta^M < \infty$, then we have a minimax problem in $(\mathbb{R}^n)^{\#\Theta^M}$.

If $\#\Theta^M < \infty$, then we have a minimax problem in $(\mathbb{R}^n)^{\#\Theta^M}$.

Theorem (in Vinter, Minimax Optimal Control, 2005)

Let $\hat{u}^M \in \arg\min \mathcal{F}_{\Theta^M}$. Then, considering $X_{\hat{u}^M} : [0, T] \times \Theta \to \mathbb{R}^n$ and $\Lambda_{\hat{u}^M} : [0, T] \times \Theta \to (\mathbb{R}^n)^*$ as before, there exists a probability measure $\nu^M \in \mathcal{P}(\Theta^M)$

If $\#\Theta^M < \infty$, then we have a minimax problem in $(\mathbb{R}^n)^{\#\Theta^M}$.

Theorem (in Vinter, Minimax Optimal Control, 2005)

Let $\hat{u}^M \in \arg\min \mathcal{F}_{\Theta^M}$. Then, considering $X_{\hat{u}^M} : [0, T] \times \Theta \to \mathbb{R}^n$ and $\Lambda_{\hat{u}^M} : [0, T] \times \Theta \to (\mathbb{R}^n)^*$ as before, there exists a probability measure $\nu^M \in \mathcal{P}(\Theta^M)$ such that

$$\hat{u}^M(t) \in \arg\max_{v \in \mathbb{R}^m} \left\{ \int_{\Theta} \Lambda_{\hat{u}^M}(t,\theta) \cdot A^{\theta} \big(X_{\hat{u}^M}(t,\theta) \big) v \, d\nu^M(\theta) - \beta f(v) \right\}$$

for a.e. $t \in [0, T]$

If $\#\Theta^M < \infty$, then we have a minimax problem in $(\mathbb{R}^n)^{\#\Theta^M}$.

Theorem (in Vinter, Minimax Optimal Control, 2005)

Let $\hat{u}^M \in \arg\min \mathcal{F}_{\Theta^M}$. Then, considering $X_{\hat{u}^M} : [0,T] \times \Theta \to \mathbb{R}^n$ and $\Lambda_{\hat{u}^M} : [0,T] \times \Theta \to (\mathbb{R}^n)^*$ as before, there exists a probability measure $\nu^M \in \mathcal{P}(\Theta^M)$ such that

$$\hat{u}^M(t) \in \argmax_{v \in \mathbb{R}^m} \left\{ \int_{\Theta} \Lambda_{\hat{u}^M}(t,\theta) \cdot A^{\theta} \big(X_{\hat{u}^M}(t,\theta) \big) v \, d\nu^M(\theta) - \beta f(v) \right\}$$

 $\textit{for a.e. } t \in [0,T] \textit{, and } \bar{\theta} \in \operatorname{supp}(\nu^M) \implies \bar{\theta} \in \operatorname{arg\,max}_{\Theta^M} \textit{a}(x^\theta_{\hat{u}^M}(T),\theta).$

If $\#\Theta^M < \infty$, then we have a minimax problem in $(\mathbb{R}^n)^{\#\Theta^M}$.

Theorem (in Vinter, Minimax Optimal Control, 2005)

Let $\hat{u}^M \in \arg\min \mathcal{F}_{\Theta^M}$. Then, considering $X_{\hat{u}^M} : [0,T] \times \Theta \to \mathbb{R}^n$ and $\Lambda_{\hat{u}^M} : [0,T] \times \Theta \to (\mathbb{R}^n)^*$ as before, there exists a probability measure $\nu^M \in \mathcal{P}(\Theta^M)$ such that

$$\hat{u}^M(t) \in \arg\max_{v \in \mathbb{R}^m} \left\{ \int_{\Theta} \Lambda_{\hat{u}^M}(t,\theta) \cdot A^{\theta} \big(X_{\hat{u}^M}(t,\theta) \big) v \, d\nu^M(\theta) - \beta f(v) \right\}$$

for a.e.
$$t \in [0, T]$$
, and $\bar{\theta} \in \operatorname{supp}(\nu^M) \implies \bar{\theta} \in \operatorname{arg\,max}_{\Theta^M} a(x^{\theta}_{\hat{u}^M}(T), \theta)$.

In other words, \hat{u}^M is as well an extremal for

$$\mathcal{G}_{
u^M}(u) = \int_{\Theta} \ell(\mathsf{x}_u^{ heta}(T), heta) \, d
u^M(heta) + eta \int_0^T f(u(s)) \, ds.$$

Consider $\hat{u}^M \in \arg\min \mathcal{F}_{\Theta^M}$, and assume that $\hat{u}^M \to_{L^p} \hat{u} \in \arg\min \mathcal{F}_{\Theta}$.

Consider $\hat{u}^M \in \arg\min \mathcal{F}_{\Theta^M}$, and assume that $\hat{u}^M \to_{L^p} \hat{u} \in \arg\min \mathcal{F}_{\Theta}$. We have

$$\begin{cases} \nu^M \rightharpoonup^* \nu & \text{(up to subseq.)} \\ X_{\hat{u}^M} \to_{C^0} X_{\hat{u}} & \text{as } M \to \infty. \\ \Lambda_{\hat{u}^M} \to_{C^0} \Lambda_{\hat{u}} & \text{a.e. (up to subseq.)} \end{cases}$$

Consider $\hat{u}^M \in \arg\min \mathcal{F}_{\Theta^M}$, and assume that $\hat{u}^M \to_{L^p} \hat{u} \in \arg\min \mathcal{F}_{\Theta}$. We have

$$\begin{cases} \nu^M \rightharpoonup^* \nu & \text{(up to subseq.)} \\ X_{\hat{u}^M} \to_{C^0} X_{\hat{u}} & \text{as } M \to \infty. \\ \Lambda_{\hat{u}^M} \to_{C^0} \Lambda_{\hat{u}} & \\ \hat{u}^M(t) \to \hat{u}(t) & \text{a.e. (up to subseq.)} \end{cases}$$

We can pass to the limit here:

$$\hat{u}^M(t) \in \argmax_{v \in \mathbb{R}^m} \left\{ \int_{\Theta} \Lambda_{\hat{u}^M}(t,\theta) \cdot A^{\theta} \big(X_{\hat{u}^M}(t,\theta) \big) v \, d\nu^M(\theta) - \beta f(v) \right\}$$

We use that the subdifferential ∂f has closed graph.

Consider $\hat{u}^M \in \arg\min \mathcal{F}_{\Theta^M}$, and assume that $\hat{u}^M \to_{L^p} \hat{u} \in \arg\min \mathcal{F}_{\Theta}$. We have

$$\begin{cases} \nu^M \rightharpoonup^* \nu & \text{(up to subseq.)} \\ X_{\hat{u}^M} \to_{C^0} X_{\hat{u}} & \text{as } M \to \infty. \\ \Lambda_{\hat{u}^M} \to_{C^0} \Lambda_{\hat{u}} & \\ \hat{u}^M(t) \to \hat{u}(t) & \text{a.e. (up to subseq.)} \end{cases}$$

We get:

$$\hat{u}(t) \in \argmax_{v \in \mathbb{R}^m} \left\{ \int_{\Theta} \Lambda_{\hat{u}}(t,\theta) \cdot A^{\theta} \big(X_{\hat{u}}(t,\theta) \big) v \ d\nu(\theta) - \beta f(v) \right\}$$

We use that the subdifferential ∂f has closed graph.

PMP for minimax problems

Theorem (S., 2024)

Let $\hat{u} \in \arg\min \mathcal{F}_{\Theta}$. Then, considering $X_{\hat{u}} : [0, T] \times \Theta \to \mathbb{R}^n$ and $\Lambda_{\hat{u}} : [0, T] \times \Theta \to (\mathbb{R}^n)^*$ as before, there exists a probability measure $\nu \in \mathcal{P}(\Theta)$ such that

$$\hat{u}(t) \in rg\max_{v \in \mathbb{R}^m} \left\{ \int_{\Theta} \Lambda_{\hat{u}}(t, heta) \cdot A^{ heta}ig(X_{\hat{u}}(t, heta)ig) v \ d
u(heta) - eta f(v)
ight\}$$

for a.e. $t \in [0, T]$, and $\bar{\theta} \in \operatorname{supp}(\nu) \implies \bar{\theta} \in \operatorname{arg\,max}_{\theta \in \Theta} a(x_{\hat{\theta}}^{\theta}(T), \theta)$.

PMP for minimax problems

Theorem (S., 2024)

Let $\hat{u} \in \arg\min \mathcal{F}_{\Theta}$. Then, considering $X_{\hat{u}} : [0, T] \times \Theta \to \mathbb{R}^n$ and $\Lambda_{\hat{u}} : [0, T] \times \Theta \to (\mathbb{R}^n)^*$ as before, there exists a probability measure $\nu \in \mathcal{P}(\Theta)$ such that

$$\hat{u}(t) \in \operatorname*{arg\,max}_{v \in \mathbb{R}^m} \left\{ \int_{\Theta} \Lambda_{\hat{u}}(t, \theta) \cdot A^{\theta} ig(X_{\hat{u}}(t, \theta) ig) v \, d
u(\theta) - eta f(v)
ight\}$$

for a.e. $t \in [0, T]$, and $\bar{\theta} \in \operatorname{supp}(\nu) \implies \bar{\theta} \in \operatorname{arg\,max}_{\theta \in \Theta} a(x^{\theta}_{\hat{u}}(T), \theta)$.

In other words, \hat{u} is as well an extremal for

$$\mathcal{G}_{
u}(u) = \int_{\Theta} \ell(x_u^{ heta}(T), heta) \, d
u(heta) + eta \int_0^T f(u(s)) \, ds.$$

General strategy

Reduce to finite ensembles using Γ -convergence, and solve it as a finite-dimensional problem.

General strategy

Reduce to finite ensembles using Γ -convergence, and solve it as a finite-dimensional problem.

Taking advantage of the reduction to finite ensembles, we can use numerical methods for Optimal Control problems

General strategy

Reduce to finite ensembles using Γ -convergence, and solve it as a finite-dimensional problem.

Taking advantage of the reduction to finite ensembles, we can use numerical methods for Optimal Control problems:

Projected Gradient Flow

General strategy

Reduce to finite ensembles using Γ -convergence, and solve it as a finite-dimensional problem.

Taking advantage of the reduction to finite ensembles, we can use numerical methods for Optimal Control problems:

- Projected Gradient Flow;
- Iterative methods based on Pontryagin Maximum Principle ([Sakawa & Shindo, 1980], [Chernousko & Lyubushin, 1982]).

General strategy

Reduce to finite ensembles using Γ -convergence, and solve it as a finite-dimensional problem.

Taking advantage of the reduction to finite ensembles, we can use numerical methods for Optimal Control problems:

- Projected Gradient Flow;
- Iterative methods based on Pontryagin Maximum Principle ([Sakawa & Shindo, 1980], [Chernousko & Lyubushin, 1982]).

Remark

The minimax problem is harder: the measures ν^M are not explicitly given, they should be *adaptively guessed* during the approximation of the optimal control.

Thanks for the attention!

References:

- A. S. Optimal control of ensembles of dynamical systems.
 ESAIM: COCV, 2023.
- A. S. Minimax problems for ensembles of control-affine systems. SIAM J Control Optim, accepted in November 2024.
- C. Cipriani, A. S., T. Wöhrer. A minimax optimal control approach for robust neural ODEs. *European Control Conference ECC24*, 2024.