
Enhancing nonlinear optimization through GPU computing

Alexis Montoison1, Sungho Shin2, François Pacaud3,
Mihai Anitescu2,4, and Exanauts Team⋆

1Polytechnique Montréal and GERAD, Canada
2Mathematics and Computer Science Division, Argonne National Laboratory

3Centre Automatique et Systèmes, Mines Paris - PSL
4Department of Statistics, University of Chicago

⋆exanauts.github.io

alexis.montoison@polymtl.ca

exanauts.github.io
alexis.montoison@polymtl.ca

Outline

1. Motivation

2. CUDA.jl and CUDSS.jl

3. Nonlinear Optimization Software

4. Nonlinear Programming on GPUs
4.1. Condensed-Space Interior-Point Method

5. Future Outlook

2 / 21

Outline

1. Motivation

2. CUDA.jl and CUDSS.jl

3. Nonlinear Optimization Software

4. Nonlinear Programming on GPUs
4.1. Condensed-Space Interior-Point Method

5. Future Outlook

3 / 21

Accelerated Computing in 2024
▶ Accelerated computing has driven the success of AI (e.g., GPT models have 1012 pars).

▶ Accelerated computing empowers scientific computing (e.g., fluid, climate, bioinformatics).
▶ We’re entering exascale computing era (1018 floating point operations per second).

Aurora Supercomputer @ Argonne

Mostly powered by GPUs

= 1 million ×

iPhone 14 Pro

Can we harness these capabilities in the realm of classical nonlinear optimization
(e.g., energy infrastures, optimal control, operations research)?

4 / 21

Accelerated Computing in 2024
▶ Accelerated computing has driven the success of AI (e.g., GPT models have 1012 pars).
▶ Accelerated computing empowers scientific computing (e.g., fluid, climate, bioinformatics).

▶ We’re entering exascale computing era (1018 floating point operations per second).

Aurora Supercomputer @ Argonne

Mostly powered by GPUs

= 1 million ×

iPhone 14 Pro

Can we harness these capabilities in the realm of classical nonlinear optimization
(e.g., energy infrastures, optimal control, operations research)?

4 / 21

Accelerated Computing in 2024
▶ Accelerated computing has driven the success of AI (e.g., GPT models have 1012 pars).
▶ Accelerated computing empowers scientific computing (e.g., fluid, climate, bioinformatics).
▶ We’re entering exascale computing era (1018 floating point operations per second).

Aurora Supercomputer @ Argonne

Mostly powered by GPUs

= 1 million ×

iPhone 14 Pro

Can we harness these capabilities in the realm of classical nonlinear optimization
(e.g., energy infrastures, optimal control, operations research)?

4 / 21

Accelerated Computing in 2024
▶ Accelerated computing has driven the success of AI (e.g., GPT models have 1012 pars).
▶ Accelerated computing empowers scientific computing (e.g., fluid, climate, bioinformatics).
▶ We’re entering exascale computing era (1018 floating point operations per second).

Aurora Supercomputer @ Argonne

Mostly powered by GPUs

= 1 million ×

iPhone 14 Pro

Can we harness these capabilities in the realm of classical nonlinear optimization
(e.g., energy infrastures, optimal control, operations research)?

4 / 21

How Do GPUs Work? (or, how are they different from CPUs?)

▶ Single Instruction, Multiple Data (SIMD) parallelism,

on (dedicated) device memory.

• (Single) instruction

s1

s2

s3

s4

s5

s7

...

PU1

PU2

PU3

PU4

PU5

PU7

...

y1

y2

y3

y4

y5

y7

...

Input Data Processing Units
A100 has 6912 cores

Output Data

PCIe
Interface

Host (CPU) Device (GPU)

Data Data

Host Memory Device Memory
(slow)

(fast) (fast)

▶ All data should reside exclusively on device memory, and all operation should be
executed by GPU only.

▶ Designing GPU algorithms sometimes require a complete redesign of the algorithm.

Adapting CPU code into GPU code is not merely a matter of software engineering.

5 / 21

How Do GPUs Work? (or, how are they different from CPUs?)

▶ Single Instruction, Multiple Data (SIMD) parallelism, on (dedicated) device memory.
• (Single) instruction

s1

s2

s3

s4

s5

s7

...

PU1

PU2

PU3

PU4

PU5

PU7

...

y1

y2

y3

y4

y5

y7

...

Input Data Processing Units
A100 has 6912 cores

Output Data

PCIe
Interface

Host (CPU) Device (GPU)

Data Data

Host Memory Device Memory
(slow)

(fast) (fast)

▶ All data should reside exclusively on device memory, and all operation should be
executed by GPU only.

▶ Designing GPU algorithms sometimes require a complete redesign of the algorithm.

Adapting CPU code into GPU code is not merely a matter of software engineering.

5 / 21

How Do GPUs Work? (or, how are they different from CPUs?)

▶ Single Instruction, Multiple Data (SIMD) parallelism, on (dedicated) device memory.
• (Single) instruction

s1

s2

s3

s4

s5

s7

...

PU1

PU2

PU3

PU4

PU5

PU7

...

y1

y2

y3

y4

y5

y7

...

Input Data Processing Units
A100 has 6912 cores

Output Data

PCIe
Interface

Host (CPU) Device (GPU)

Data Data

Host Memory Device Memory
(slow)

(fast) (fast)

▶ All data should reside exclusively on device memory, and all operation should be
executed by GPU only.

▶ Designing GPU algorithms sometimes require a complete redesign of the algorithm.

Adapting CPU code into GPU code is not merely a matter of software engineering.

5 / 21

How Do GPUs Work? (or, how are they different from CPUs?)

▶ Single Instruction, Multiple Data (SIMD) parallelism, on (dedicated) device memory.
• (Single) instruction

s1

s2

s3

s4

s5

s7

...

PU1

PU2

PU3

PU4

PU5

PU7

...

y1

y2

y3

y4

y5

y7

...

Input Data Processing Units
A100 has 6912 cores

Output Data

PCIe
Interface

Host (CPU) Device (GPU)

Data Data

Host Memory Device Memory
(slow)

(fast) (fast)

▶ All data should reside exclusively on device memory, and all operation should be
executed by GPU only.

▶ Designing GPU algorithms sometimes require a complete redesign of the algorithm.

Adapting CPU code into GPU code is not merely a matter of software engineering.

5 / 21

How Do GPUs Work? (or, how are they different from CPUs?)

▶ Single Instruction, Multiple Data (SIMD) parallelism, on (dedicated) device memory.
• (Single) instruction

s1

s2

s3

s4

s5

s7

...

PU1

PU2

PU3

PU4

PU5

PU7

...

y1

y2

y3

y4

y5

y7

...

Input Data Processing Units
A100 has 6912 cores

Output Data

PCIe
Interface

Host (CPU) Device (GPU)

Data Data

Host Memory Device Memory
(slow)

(fast) (fast)

▶ All data should reside exclusively on device memory, and all operation should be
executed by GPU only.

▶ Designing GPU algorithms sometimes require a complete redesign of the algorithm.

Adapting CPU code into GPU code is not merely a matter of software engineering.

5 / 21

Exascale Computing Project
▶ Mission: Tackle real-world computational problems with exascale computing.

Frontier @Oak Ridge (AMD GPUs) Aurora @Argonne (Intel GPUs)

▶ Goal: Build a comprehensive software infrastructure for nonlinear optimization on GPUs.
▶ Challenge #1: No software infrastructure for classical nonlinear optimization on GPUs.
▶ Challenge #2: Heterogeneous development environment (NVIDIA, AMD, and Intel).
▶ Furthermore, we want to achieve

▶ Performance: at least an order of magnitude speedup.
▶ Portability: compatibility with NVIDIA, AMD, and Intel.
▶ Application: energy infrastructure problems (AC optimal power flow, in particular).

6 / 21

Exascale Computing Project
▶ Mission: Tackle real-world computational problems with exascale computing.

Frontier @Oak Ridge (AMD GPUs) Aurora @Argonne (Intel GPUs)

▶ Goal: Build a comprehensive software infrastructure for nonlinear optimization on GPUs.

▶ Challenge #1: No software infrastructure for classical nonlinear optimization on GPUs.
▶ Challenge #2: Heterogeneous development environment (NVIDIA, AMD, and Intel).
▶ Furthermore, we want to achieve

▶ Performance: at least an order of magnitude speedup.
▶ Portability: compatibility with NVIDIA, AMD, and Intel.
▶ Application: energy infrastructure problems (AC optimal power flow, in particular).

6 / 21

Exascale Computing Project
▶ Mission: Tackle real-world computational problems with exascale computing.

Frontier @Oak Ridge (AMD GPUs) Aurora @Argonne (Intel GPUs)

▶ Goal: Build a comprehensive software infrastructure for nonlinear optimization on GPUs.
▶ Challenge #1: No software infrastructure for classical nonlinear optimization on GPUs.

▶ Challenge #2: Heterogeneous development environment (NVIDIA, AMD, and Intel).
▶ Furthermore, we want to achieve

▶ Performance: at least an order of magnitude speedup.
▶ Portability: compatibility with NVIDIA, AMD, and Intel.
▶ Application: energy infrastructure problems (AC optimal power flow, in particular).

6 / 21

Exascale Computing Project
▶ Mission: Tackle real-world computational problems with exascale computing.

Frontier @Oak Ridge (AMD GPUs) Aurora @Argonne (Intel GPUs)

▶ Goal: Build a comprehensive software infrastructure for nonlinear optimization on GPUs.
▶ Challenge #1: No software infrastructure for classical nonlinear optimization on GPUs.
▶ Challenge #2: Heterogeneous development environment (NVIDIA, AMD, and Intel).

▶ Furthermore, we want to achieve

▶ Performance: at least an order of magnitude speedup.
▶ Portability: compatibility with NVIDIA, AMD, and Intel.
▶ Application: energy infrastructure problems (AC optimal power flow, in particular).

6 / 21

Exascale Computing Project
▶ Mission: Tackle real-world computational problems with exascale computing.

Frontier @Oak Ridge (AMD GPUs) Aurora @Argonne (Intel GPUs)

▶ Goal: Build a comprehensive software infrastructure for nonlinear optimization on GPUs.
▶ Challenge #1: No software infrastructure for classical nonlinear optimization on GPUs.
▶ Challenge #2: Heterogeneous development environment (NVIDIA, AMD, and Intel).
▶ Furthermore, we want to achieve

▶ Performance: at least an order of magnitude speedup.

▶ Portability: compatibility with NVIDIA, AMD, and Intel.
▶ Application: energy infrastructure problems (AC optimal power flow, in particular).

6 / 21

Exascale Computing Project
▶ Mission: Tackle real-world computational problems with exascale computing.

Frontier @Oak Ridge (AMD GPUs) Aurora @Argonne (Intel GPUs)

▶ Goal: Build a comprehensive software infrastructure for nonlinear optimization on GPUs.
▶ Challenge #1: No software infrastructure for classical nonlinear optimization on GPUs.
▶ Challenge #2: Heterogeneous development environment (NVIDIA, AMD, and Intel).
▶ Furthermore, we want to achieve

▶ Performance: at least an order of magnitude speedup.
▶ Portability: compatibility with NVIDIA, AMD, and Intel.

▶ Application: energy infrastructure problems (AC optimal power flow, in particular).

6 / 21

Exascale Computing Project
▶ Mission: Tackle real-world computational problems with exascale computing.

Frontier @Oak Ridge (AMD GPUs) Aurora @Argonne (Intel GPUs)

▶ Goal: Build a comprehensive software infrastructure for nonlinear optimization on GPUs.
▶ Challenge #1: No software infrastructure for classical nonlinear optimization on GPUs.
▶ Challenge #2: Heterogeneous development environment (NVIDIA, AMD, and Intel).
▶ Furthermore, we want to achieve

▶ Performance: at least an order of magnitude speedup.
▶ Portability: compatibility with NVIDIA, AMD, and Intel.
▶ Application: energy infrastructure problems (AC optimal power flow, in particular).

6 / 21

Language of Choice: Julia

▶ Runs as fast as C/C++/Fortran,

and “Time-To-First-Call” has been significantly improved.

▶ Fast development (like Python, R, Matlab): Julia resolves the “two-language problem”.

KernelAbstractions.jl: Heterogeneous programming in Julia https://github.com/JuliaGPU/KernelAbstractions.jl

7 / 21

https://github.com/JuliaGPU/KernelAbstractions.jl

Language of Choice: Julia

▶ Runs as fast as C/C++/Fortran,

and “Time-To-First-Call” has been significantly improved.

▶ Fast development (like Python, R, Matlab): Julia resolves the “two-language problem”.

KernelAbstractions.jl: Heterogeneous programming in Julia https://github.com/JuliaGPU/KernelAbstractions.jl

7 / 21

https://github.com/JuliaGPU/KernelAbstractions.jl

Language of Choice: Julia

▶ Runs as fast as C/C++/Fortran, and “Time-To-First-Call” has been significantly improved.

▶ Fast development (like Python, R, Matlab): Julia resolves the “two-language problem”.

KernelAbstractions.jl: Heterogeneous programming in Julia https://github.com/JuliaGPU/KernelAbstractions.jl

7 / 21

https://github.com/JuliaGPU/KernelAbstractions.jl

Language of Choice: Julia

▶ Runs as fast as C/C++/Fortran, and “Time-To-First-Call” has been significantly improved.

▶ Fast development (like Python, R, Matlab): Julia resolves the “two-language problem”.

KernelAbstractions.jl: Heterogeneous programming in Julia https://github.com/JuliaGPU/KernelAbstractions.jl

7 / 21

https://github.com/JuliaGPU/KernelAbstractions.jl

Language of Choice: Julia
▶ Multiple dispatch: High-level abstraction while specializing for specific data types.

function solve!(s::Solver{...})
NLP algorithm
...
mul!(A, B, C)
...

end

function mul!(
A::CuMatrix{T},
B::CuMatrix{T},
C::CuMatrix{T}

)
...

end

function mul!(
A::ROCMatrix{T},
B::ROCMatrix{T},
C::ROCMatrix{T}

)
...

end

function mul!(
A::oneMatrix{T},
B::oneMatrix{T},
C::oneMatrix{T}

)
...

end

Dynamically dispatched based on the type of A, B, and C

MySolver.jl CUDA.jl AMDGPU.jl oneAPI.jl

▶ Portable kernel programming: Compatibility across various architectures.

@kernel function _mul!(
A,B,C

)
portable GPU kernel
...

end

Frontier @Oak Ridge (AMD GPUs) Aurora @Argonne (Intel GPUs) Summit @Oak Ridge (NVIDIA GPUs)

Portable GPU kernels can be executed on different accelerator backends

KernelAbstractions.jl: Heterogeneous programming in Julia https://github.com/JuliaGPU/KernelAbstractions.jl

7 / 21

https://github.com/JuliaGPU/KernelAbstractions.jl

Language of Choice: Julia
▶ Multiple dispatch: High-level abstraction while specializing for specific data types.

function solve!(s::Solver{...})
NLP algorithm
...
mul!(A, B, C)
...

end

function mul!(
A::CuMatrix{T},
B::CuMatrix{T},
C::CuMatrix{T}

)
...

end

function mul!(
A::ROCMatrix{T},
B::ROCMatrix{T},
C::ROCMatrix{T}

)
...

end

function mul!(
A::oneMatrix{T},
B::oneMatrix{T},
C::oneMatrix{T}

)
...

end

Dynamically dispatched based on the type of A, B, and C

MySolver.jl CUDA.jl AMDGPU.jl oneAPI.jl

▶ Portable kernel programming: Compatibility across various architectures.

@kernel function _mul!(
A,B,C

)
portable GPU kernel
...

end

Frontier @Oak Ridge (AMD GPUs) Aurora @Argonne (Intel GPUs) Summit @Oak Ridge (NVIDIA GPUs)

Portable GPU kernels can be executed on different accelerator backends

KernelAbstractions.jl: Heterogeneous programming in Julia https://github.com/JuliaGPU/KernelAbstractions.jl

7 / 21

https://github.com/JuliaGPU/KernelAbstractions.jl

Language of Choice: Julia
▶ Multiple dispatch: High-level abstraction while specializing for specific data types.

function solve!(s::Solver{...})
NLP algorithm
...
mul!(A, B, C)
...

end

function mul!(
A::CuMatrix{T},
B::CuMatrix{T},
C::CuMatrix{T}

)
...

end

function mul!(
A::ROCMatrix{T},
B::ROCMatrix{T},
C::ROCMatrix{T}

)
...

end

function mul!(
A::oneMatrix{T},
B::oneMatrix{T},
C::oneMatrix{T}

)
...

end

Dynamically dispatched based on the type of A, B, and C

MySolver.jl CUDA.jl AMDGPU.jl oneAPI.jl

▶ Portable kernel programming: Compatibility across various architectures.

@kernel function _mul!(
A,B,C

)
portable GPU kernel
...

end

Frontier @Oak Ridge (AMD GPUs) Aurora @Argonne (Intel GPUs) Summit @Oak Ridge (NVIDIA GPUs)

Portable GPU kernels can be executed on different accelerator backends

KernelAbstractions.jl: Heterogeneous programming in Julia https://github.com/JuliaGPU/KernelAbstractions.jl

7 / 21

https://github.com/JuliaGPU/KernelAbstractions.jl

Language of Choice: Julia
▶ Multiple dispatch: High-level abstraction while specializing for specific data types.

function solve!(s::Solver{...})
NLP algorithm
...
mul!(A, B, C)
...

end

function mul!(
A::CuMatrix{T},
B::CuMatrix{T},
C::CuMatrix{T}

)
...

end

function mul!(
A::ROCMatrix{T},
B::ROCMatrix{T},
C::ROCMatrix{T}

)
...

end

function mul!(
A::oneMatrix{T},
B::oneMatrix{T},
C::oneMatrix{T}

)
...

end

Dynamically dispatched based on the type of A, B, and C

MySolver.jl CUDA.jl AMDGPU.jl oneAPI.jl

▶ Portable kernel programming: Compatibility across various architectures.

@kernel function _mul!(
A,B,C

)
portable GPU kernel
...

end

Frontier @Oak Ridge (AMD GPUs) Aurora @Argonne (Intel GPUs) Summit @Oak Ridge (NVIDIA GPUs)

Portable GPU kernels can be executed on different accelerator backends

KernelAbstractions.jl: Heterogeneous programming in Julia https://github.com/JuliaGPU/KernelAbstractions.jl 7 / 21

https://github.com/JuliaGPU/KernelAbstractions.jl

Summary

GPU/HPC

SIMD Architecture

PCIe
Interface

Host (CPU) Device (GPU)
Data Data

Host Memory Device Memory
(slow)

(fast) (fast)

Performance, Fast Development,
& Portability

▶ Motivation: Harness accelerated computing for nonlinear programming.

▶ Adapting CPU code into GPU code is not merely an issue of software engineering.
▶ Goal: Build a comprehensive software infrastructure for nonlinear programming on GPUs

on Julia Language, for its fast performance, fast development speed, and portability.

8 / 21

Summary

GPU/HPC SIMD Architecture

PCIe
Interface

Host (CPU) Device (GPU)
Data Data

Host Memory Device Memory
(slow)

(fast) (fast)

Performance, Fast Development,
& Portability

▶ Motivation: Harness accelerated computing for nonlinear programming.
▶ Adapting CPU code into GPU code is not merely an issue of software engineering.

▶ Goal: Build a comprehensive software infrastructure for nonlinear programming on GPUs
on Julia Language, for its fast performance, fast development speed, and portability.

8 / 21

Summary

GPU/HPC SIMD Architecture

PCIe
Interface

Host (CPU) Device (GPU)
Data Data

Host Memory Device Memory
(slow)

(fast) (fast)

Performance, Fast Development,
& Portability

▶ Motivation: Harness accelerated computing for nonlinear programming.
▶ Adapting CPU code into GPU code is not merely an issue of software engineering.
▶ Goal: Build a comprehensive software infrastructure for nonlinear programming on GPUs

on Julia Language, for its fast performance, fast development speed, and portability.

8 / 21

Outline

1. Motivation

2. CUDA.jl and CUDSS.jl

3. Nonlinear Optimization Software

4. Nonlinear Programming on GPUs
4.1. Condensed-Space Interior-Point Method

5. Future Outlook

9 / 21

CUDA.jl

▶ CUDA.jl is a Julia library that enables developers to harness the parallel computing
capabilities offered by NVIDIA GPUs.

▶ CUDA.jl provides a native Julia interface for programming GPU kernels with Julia wrappers.

▶ CUDA.jl functions can be called directly from Julia code, making development and
maintenance of code easier.

▶ CUDA.jl generates efficient and optimized CUDA code, fully leveraging the computing power
of NVIDIA GPUs.

10 / 21

CUDSS.jl

NVIDIA cuDSS provides three factorizations (LDU, LDLT , LLT) for solving sparse linear systems.

cuDSS follows a well-established three phases approach commonly used in sparse direct solvers:
▶ reordering and symbolic factorization;
▶ numerical factorization;
▶ solve linear system using the computed factors.

This modular approach allows cuDSS to efficiently handle sparse linear systems by reusing the
analysis and factorization stages, facilitating the solution of the KKT system in interior point
methods.

11 / 21

Outline

1. Motivation

2. CUDA.jl and CUDSS.jl

3. Nonlinear Optimization Software

4. Nonlinear Programming on GPUs
4.1. Condensed-Space Interior-Point Method

5. Future Outlook

12 / 21

Nonlinear Optimization Software: State-of-the-Art on CPU

min
x≥0

f (x)

s.t. c(x) = 0

Problem Formulation

[
W +Σ+ δw I A⊤

A −δc I

][
∆x
∆λ

]
=

[
px

pλ

]
︸ ︷︷ ︸

”KKT System” (ill-conditioned)

Newton’s Step Computation

x (k+1) = x (k) + α∆x

λ(k+1) = λ(k) + α∆λ

Line Search

▶ In classical problems (e.g., optimal power flow),
▶ the objective and constraints are smooth
▶ large number of variables and constraints
▶ the problem is highly sparse.

▶ Interior-point methods
▶ Inequalities x ≥ 0 replaced by smooth log-barrier functions f (x)− µ

∑
i log(x [i]).

▶ Newton’s Step is computed by solving a “KKT system” (large, sparse, symmetric in-
definite, ill-conditioned system).

▶ Line search (along with several additional heuristics) ensures global convergence.

13 / 21

Nonlinear Optimization Software: State-of-the-Art on CPU

min
x≥0

f (x)

s.t. c(x) = 0

Problem Formulation

[
W +Σ+ δw I A⊤

A −δc I

][
∆x
∆λ

]
=

[
px

pλ

]
︸ ︷︷ ︸

”KKT System” (ill-conditioned)

Newton’s Step Computation

x (k+1) = x (k) + α∆x

λ(k+1) = λ(k) + α∆λ

Line Search

▶ In classical problems (e.g., optimal power flow),
▶ the objective and constraints are smooth
▶ large number of variables and constraints
▶ the problem is highly sparse.

▶ Interior-point methods
▶ Inequalities x ≥ 0 replaced by smooth log-barrier functions f (x)− µ

∑
i log(x [i]).

▶ Newton’s Step is computed by solving a “KKT system” (large, sparse, symmetric in-
definite, ill-conditioned system).

▶ Line search (along with several additional heuristics) ensures global convergence.

13 / 21

Nonlinear Optimization Software: State-of-the-Art on CPU

min
x≥0

f (x)

s.t. c(x) = 0

Problem Formulation [
W +Σ+ δw I A⊤

A −δc I

][
∆x
∆λ

]
=

[
px

pλ

]
︸ ︷︷ ︸

”KKT System” (ill-conditioned)

Newton’s Step Computation

x (k+1) = x (k) + α∆x

λ(k+1) = λ(k) + α∆λ

Line Search

▶ In classical problems (e.g., optimal power flow),
▶ the objective and constraints are smooth
▶ large number of variables and constraints
▶ the problem is highly sparse.

▶ Interior-point methods
▶ Inequalities x ≥ 0 replaced by smooth log-barrier functions f (x)− µ

∑
i log(x [i]).

▶ Newton’s Step is computed by solving a “KKT system” (large, sparse, symmetric in-
definite, ill-conditioned system).

▶ Line search (along with several additional heuristics) ensures global convergence.

13 / 21

Nonlinear Optimization Software: State-of-the-Art on CPU

min
x≥0

f (x)

s.t. c(x) = 0

Problem Formulation [
W +Σ+ δw I A⊤

A −δc I

][
∆x
∆λ

]
=

[
px

pλ

]
︸ ︷︷ ︸

”KKT System” (ill-conditioned)

Newton’s Step Computation

x (k+1) = x (k) + α∆x

λ(k+1) = λ(k) + α∆λ

Line Search

▶ In classical problems (e.g., optimal power flow),
▶ the objective and constraints are smooth
▶ large number of variables and constraints
▶ the problem is highly sparse.

▶ Interior-point methods
▶ Inequalities x ≥ 0 replaced by smooth log-barrier functions f (x)− µ

∑
i log(x [i]).

▶ Newton’s Step is computed by solving a “KKT system” (large, sparse, symmetric in-
definite, ill-conditioned system).

▶ Line search (along with several additional heuristics) ensures global convergence.

13 / 21

Nonlinear Optimization Software: State-of-the-Art on CPU

min
x≥0

f (x)

s.t. c(x) = 0

Problem Formulation [
W +Σ+ δw I A⊤

A −δc I

][
∆x
∆λ

]
=

[
px

pλ

]
︸ ︷︷ ︸

”KKT System” (ill-conditioned)

Newton’s Step Computation

x (k+1) = x (k) + α∆x

λ(k+1) = λ(k) + α∆λ

Line Search

▶ Algebraic modeling systems provides front-end to specify models and (often) provides
derivative computation capabilities.

▶ Nonlinear optimization solvers apply iterations of optimization algorithms.
▶ Sparse linear solvers solves KKT systems using sparse matrix factorization.

Algebraic Modeling Systems

AMPL, CasADi, JuMP, Gravity, ...

13 / 21

Nonlinear Optimization Software: State-of-the-Art on CPU

min
x≥0

f (x)

s.t. c(x) = 0

Problem Formulation [
W +Σ+ δw I A⊤

A −δc I

][
∆x
∆λ

]
=

[
px

pλ

]
︸ ︷︷ ︸

”KKT System” (ill-conditioned)

Newton’s Step Computation

x (k+1) = x (k) + α∆x

λ(k+1) = λ(k) + α∆λ

Line Search

▶ Algebraic modeling systems provides front-end to specify models and (often) provides
derivative computation capabilities.

▶ Nonlinear optimization solvers apply iterations of optimization algorithms.

▶ Sparse linear solvers solves KKT systems using sparse matrix factorization.

Algebraic Modeling Systems

AMPL, CasADi, JuMP, Gravity, ...

Nonlinear Optimization Solvers

Ipopt, Knitro, Pynumero, ...

13 / 21

Nonlinear Optimization Software: State-of-the-Art on CPU

min
x≥0

f (x)

s.t. c(x) = 0

Problem Formulation [
W +Σ+ δw I A⊤

A −δc I

][
∆x
∆λ

]
=

[
px

pλ

]
︸ ︷︷ ︸

”KKT System” (ill-conditioned)

Newton’s Step Computation

x (k+1) = x (k) + α∆x

λ(k+1) = λ(k) + α∆λ

Line Search

▶ Algebraic modeling systems provides front-end to specify models and (often) provides
derivative computation capabilities.

▶ Nonlinear optimization solvers apply iterations of optimization algorithms.
▶ Sparse linear solvers solves KKT systems using sparse matrix factorization.

Algebraic Modeling Systems

AMPL, CasADi, JuMP, Gravity, ...

Sparse Linear Solvers

HSL (ma27, ma57, ...), Pardiso, ...

Nonlinear Optimization Solvers

Ipopt, Knitro, Pynumero, ...

13 / 21

Nonlinear Optimization Software: State-of-the-Art on CPU

min
x≥0

f (x)

s.t. c(x) = 0

Problem Formulation [
W +Σ+ δw I A⊤

A −δc I

][
∆x
∆λ

]
=

[
px

pλ

]
︸ ︷︷ ︸

”KKT System” (ill-conditioned)

Newton’s Step Computation

x (k+1) = x (k) + α∆x

λ(k+1) = λ(k) + α∆λ

Line Search

Algebraic Modeling Systems

AMPL, CasADi, JuMP, Gravity, ...

Sparse Linear Solvers

HSL (ma27, ma57, ...), Pardiso, ...

Nonlinear Optimization Solvers

Ipopt, Knitro, Pynumero, ...

▶ These software tools have enabled the success of nonlinear optimization on CPUs.

▶ Many software tools have been developed in 80s-90s (heavily optimized for CPUs).
▶ Now we need GPU-equivalent of these tools.

13 / 21

Nonlinear Optimization Software: State-of-the-Art on CPU

min
x≥0

f (x)

s.t. c(x) = 0

Problem Formulation [
W +Σ+ δw I A⊤

A −δc I

][
∆x
∆λ

]
=

[
px

pλ

]
︸ ︷︷ ︸

”KKT System” (ill-conditioned)

Newton’s Step Computation

x (k+1) = x (k) + α∆x

λ(k+1) = λ(k) + α∆λ

Line Search

Algebraic Modeling Systems

AMPL, CasADi, JuMP, Gravity, ...

Sparse Linear Solvers

HSL (ma27, ma57, ...), Pardiso, ...

Nonlinear Optimization Solvers

Ipopt, Knitro, Pynumero, ...

▶ These software tools have enabled the success of nonlinear optimization on CPUs.
▶ Many software tools have been developed in 80s-90s (heavily optimized for CPUs).

▶ Now we need GPU-equivalent of these tools.

13 / 21

Nonlinear Optimization Software: State-of-the-Art on CPU

min
x≥0

f (x)

s.t. c(x) = 0

Problem Formulation [
W +Σ+ δw I A⊤

A −δc I

][
∆x
∆λ

]
=

[
px

pλ

]
︸ ︷︷ ︸

”KKT System” (ill-conditioned)

Newton’s Step Computation

x (k+1) = x (k) + α∆x

λ(k+1) = λ(k) + α∆λ

Line Search

Algebraic Modeling Systems

AMPL, CasADi, JuMP, Gravity, ...

Sparse Linear Solvers

HSL (ma27, ma57, ...), Pardiso, ...

Nonlinear Optimization Solvers

Ipopt, Knitro, Pynumero, ...

▶ These software tools have enabled the success of nonlinear optimization on CPUs.
▶ Many software tools have been developed in 80s-90s (heavily optimized for CPUs).
▶ Now we need GPU-equivalent of these tools.

13 / 21

Outline

1. Motivation

2. CUDA.jl and CUDSS.jl

3. Nonlinear Optimization Software

4. Nonlinear Programming on GPUs
4.1. Condensed-Space Interior-Point Method

5. Future Outlook

14 / 21

Why it is Challenging: Sparse Linear Solvers

▶ Solving KKT systems on CPUs has traditionally relied on direct LBL⊤ factorization.

= × ×B
(1x1 or 2x2

block-diagonal)

▶ LBL⊤ factorization requires numerical pivoting, which is challenging to parallelize.
▶ Then, how about iterative solvers (e.g., GMRES)?

Due to ill-conditioning of the KKT system,
iterative methods are generally not effective, unless specialized preconditioners are used.

Curtis, Huber, Schenk, Waechter. A note on the implementation of an interior-point algorithm for nonlinear optimization with inexact step computations. MathProg. (2012)
Cao, Seth, Laird. An augmented Lagrangian interior-point approach for large-scale NLP problems on graphics processing units. CACE. (2016)

15 / 21

Why it is Challenging: Sparse Linear Solvers

▶ Solving KKT systems on CPUs has traditionally relied on direct LBL⊤ factorization.

= × ×B
(1x1 or 2x2

block-diagonal)

▶ LBL⊤ factorization requires numerical pivoting, which is challenging to parallelize.

▶ Then, how about iterative solvers (e.g., GMRES)?

Due to ill-conditioning of the KKT system,
iterative methods are generally not effective, unless specialized preconditioners are used.

Curtis, Huber, Schenk, Waechter. A note on the implementation of an interior-point algorithm for nonlinear optimization with inexact step computations. MathProg. (2012)
Cao, Seth, Laird. An augmented Lagrangian interior-point approach for large-scale NLP problems on graphics processing units. CACE. (2016)

15 / 21

Why it is Challenging: Sparse Linear Solvers

▶ Solving KKT systems on CPUs has traditionally relied on direct LBL⊤ factorization.

= × ×B
(1x1 or 2x2

block-diagonal)

▶ LBL⊤ factorization requires numerical pivoting, which is challenging to parallelize.
▶ Then, how about iterative solvers (e.g., GMRES)?

Due to ill-conditioning of the KKT system,
iterative methods are generally not effective, unless specialized preconditioners are used.

Curtis, Huber, Schenk, Waechter. A note on the implementation of an interior-point algorithm for nonlinear optimization with inexact step computations. MathProg. (2012)
Cao, Seth, Laird. An augmented Lagrangian interior-point approach for large-scale NLP problems on graphics processing units. CACE. (2016) 15 / 21

Why it is Challenging: Sparse Linear Solvers

▶ Solving KKT systems on CPUs has traditionally relied on direct LBL⊤ factorization.

= × ×B
(1x1 or 2x2

block-diagonal)

▶ LBL⊤ factorization requires numerical pivoting, which is challenging to parallelize.
▶ Then, how about iterative solvers (e.g., GMRES)? Due to ill-conditioning of the KKT system,

iterative methods are generally not effective, unless specialized preconditioners are used.

Curtis, Huber, Schenk, Waechter. A note on the implementation of an interior-point algorithm for nonlinear optimization with inexact step computations. MathProg. (2012)
Cao, Seth, Laird. An augmented Lagrangian interior-point approach for large-scale NLP problems on graphics processing units. CACE. (2016) 15 / 21

Solution #1: Condensed-Space Interior Point Method
▶ To avoid numerical pivoting, we transform the KKT systems into positive definite systems.

▶ Cholesky factorization can be computed with static pivoting, and available in CUDA.
▶ Can be achieved by (i) converting the equalities into inequalities:

g(x) = 0 =⇒ g(x)− s = 0, s♭ ≤ s ≤ s♯,

(ii) eliminating the slack variables (so-called condensation):

W (ℓ) + δ

(ℓ)
w I A(ℓ)⊤ −I I

δ
(ℓ)
w I −I −I I

A(ℓ) −I −δ(ℓ)c I
Z (ℓ)♭

x X (ℓ) − X ♭

−Z (ℓ)♯
x X ♯ − X (ℓ)

Z (ℓ)♭
s S(ℓ) − S♭

−Z (ℓ)♯
s S♯ − S(ℓ)

∆x
∆s
∆y
∆z♭x
∆z♯x
∆z♭s
∆z♯s

 =

p(ℓ)
x

p(ℓ)
s

p(ℓ)
y

p(ℓ)

z♭x
p(ℓ)

z♯x
p(ℓ)

z♭s
p(ℓ)

z♯s

=⇒ (W + δw I +Σx + A⊤DA)∆x = qx + A⊤(Cqs + Dqy)Invertible

▶ The relaxation and condensation may cause ill-conditioning in the KKT system.

S. Shin, F. Pacaud, and M. Anitescu. Accelerating optimal power flow with GPUs: SIMD abstraction of nonlinear programs

and condensed-space interior-point methods, Accepted to PSCC 2024.
16 / 21

Solution #1: Condensed-Space Interior Point Method
▶ To avoid numerical pivoting, we transform the KKT systems into positive definite systems.
▶ Cholesky factorization can be computed with static pivoting, and available in CUDA.

▶ Can be achieved by (i) converting the equalities into inequalities:

g(x) = 0 =⇒ g(x)− s = 0, s♭ ≤ s ≤ s♯,

(ii) eliminating the slack variables (so-called condensation):

W (ℓ) + δ

(ℓ)
w I A(ℓ)⊤ −I I

δ
(ℓ)
w I −I −I I

A(ℓ) −I −δ(ℓ)c I
Z (ℓ)♭

x X (ℓ) − X ♭

−Z (ℓ)♯
x X ♯ − X (ℓ)

Z (ℓ)♭
s S(ℓ) − S♭

−Z (ℓ)♯
s S♯ − S(ℓ)

∆x
∆s
∆y
∆z♭x
∆z♯x
∆z♭s
∆z♯s

 =

p(ℓ)
x

p(ℓ)
s

p(ℓ)
y

p(ℓ)

z♭x
p(ℓ)

z♯x
p(ℓ)

z♭s
p(ℓ)

z♯s

=⇒ (W + δw I +Σx + A⊤DA)∆x = qx + A⊤(Cqs + Dqy)Invertible

▶ The relaxation and condensation may cause ill-conditioning in the KKT system.

S. Shin, F. Pacaud, and M. Anitescu. Accelerating optimal power flow with GPUs: SIMD abstraction of nonlinear programs

and condensed-space interior-point methods, Accepted to PSCC 2024.
16 / 21

Solution #1: Condensed-Space Interior Point Method
▶ To avoid numerical pivoting, we transform the KKT systems into positive definite systems.
▶ Cholesky factorization can be computed with static pivoting, and available in CUDA.
▶ Can be achieved by (i) converting the equalities into inequalities:

g(x) = 0 =⇒ g(x)− s = 0, s♭ ≤ s ≤ s♯,

(ii) eliminating the slack variables (so-called condensation):

W (ℓ) + δ

(ℓ)
w I A(ℓ)⊤ −I I

δ
(ℓ)
w I −I −I I

A(ℓ) −I −δ(ℓ)c I
Z (ℓ)♭

x X (ℓ) − X ♭

−Z (ℓ)♯
x X ♯ − X (ℓ)

Z (ℓ)♭
s S(ℓ) − S♭

−Z (ℓ)♯
s S♯ − S(ℓ)

∆x
∆s
∆y
∆z♭x
∆z♯x
∆z♭s
∆z♯s

 =

p(ℓ)
x

p(ℓ)
s

p(ℓ)
y

p(ℓ)

z♭x
p(ℓ)

z♯x
p(ℓ)

z♭s
p(ℓ)

z♯s

=⇒ (W + δw I +Σx + A⊤DA)∆x = qx + A⊤(Cqs + Dqy)Invertible

▶ The relaxation and condensation may cause ill-conditioning in the KKT system.

S. Shin, F. Pacaud, and M. Anitescu. Accelerating optimal power flow with GPUs: SIMD abstraction of nonlinear programs

and condensed-space interior-point methods, Accepted to PSCC 2024.
16 / 21

Solution #1: Condensed-Space Interior Point Method
▶ To avoid numerical pivoting, we transform the KKT systems into positive definite systems.
▶ Cholesky factorization can be computed with static pivoting, and available in CUDA.
▶ Can be achieved by (i) converting the equalities into inequalities:

g(x) = 0 =⇒ g(x)− s = 0, s♭ ≤ s ≤ s♯,

(ii) eliminating the slack variables (so-called condensation):

W (ℓ) + δ

(ℓ)
w I A(ℓ)⊤ −I I

δ
(ℓ)
w I −I −I I

A(ℓ) −I −δ(ℓ)c I
Z (ℓ)♭

x X (ℓ) − X ♭

−Z (ℓ)♯
x X ♯ − X (ℓ)

Z (ℓ)♭
s S(ℓ) − S♭

−Z (ℓ)♯
s S♯ − S(ℓ)

∆x
∆s
∆y
∆z♭x
∆z♯x
∆z♭s
∆z♯s

 =

p(ℓ)
x

p(ℓ)
s

p(ℓ)
y

p(ℓ)

z♭x
p(ℓ)

z♯x
p(ℓ)

z♭s
p(ℓ)

z♯s

=⇒ (W + δw I +Σx + A⊤DA)∆x = qx + A⊤(Cqs + Dqy)Invertible

▶ The relaxation and condensation may cause ill-conditioning in the KKT system.

S. Shin, F. Pacaud, and M. Anitescu. Accelerating optimal power flow with GPUs: SIMD abstraction of nonlinear programs

and condensed-space interior-point methods, Accepted to PSCC 2024.
16 / 21

Solution #1: Condensed-Space Interior Point Method
▶ To avoid numerical pivoting, we transform the KKT systems into positive definite systems.
▶ Cholesky factorization can be computed with static pivoting, and available in CUDA.
▶ Can be achieved by (i) converting the equalities into inequalities:

g(x) = 0 =⇒ g(x)− s = 0, s♭ ≤ s ≤ s♯,

(ii) eliminating the slack variables (so-called condensation):

W (ℓ) + δ

(ℓ)
w I A(ℓ)⊤ −I I

δ
(ℓ)
w I −I −I I

A(ℓ) −I −δ(ℓ)c I
Z (ℓ)♭

x X (ℓ) − X ♭

−Z (ℓ)♯
x X ♯ − X (ℓ)

Z (ℓ)♭
s S(ℓ) − S♭

−Z (ℓ)♯
s S♯ − S(ℓ)

∆x
∆s
∆y
∆z♭x
∆z♯x
∆z♭s
∆z♯s

 =

p(ℓ)
x

p(ℓ)
s

p(ℓ)
y

p(ℓ)

z♭x
p(ℓ)

z♯x
p(ℓ)

z♭s
p(ℓ)

z♯s

=⇒ (W + δw I +Σx + A⊤DA)∆x = qx + A⊤(Cqs + Dqy)

Invertible

▶ The relaxation and condensation may cause ill-conditioning in the KKT system.

S. Shin, F. Pacaud, and M. Anitescu. Accelerating optimal power flow with GPUs: SIMD abstraction of nonlinear programs

and condensed-space interior-point methods, Accepted to PSCC 2024.
16 / 21

Solution #1: Condensed-Space Interior Point Method
▶ To avoid numerical pivoting, we transform the KKT systems into positive definite systems.
▶ Cholesky factorization can be computed with static pivoting, and available in CUDA.
▶ Can be achieved by (i) converting the equalities into inequalities:

g(x) = 0 =⇒ g(x)− s = 0, s♭ ≤ s ≤ s♯,

(ii) eliminating the slack variables (so-called condensation):

W (ℓ) + δ

(ℓ)
w I A(ℓ)⊤ −I I

δ
(ℓ)
w I −I −I I

A(ℓ) −I −δ(ℓ)c I
Z (ℓ)♭

x X (ℓ) − X ♭

−Z (ℓ)♯
x X ♯ − X (ℓ)

Z (ℓ)♭
s S(ℓ) − S♭

−Z (ℓ)♯
s S♯ − S(ℓ)

∆x
∆s
∆y
∆z♭x
∆z♯x
∆z♭s
∆z♯s

 =

p(ℓ)
x

p(ℓ)
s

p(ℓ)
y

p(ℓ)

z♭x
p(ℓ)

z♯x
p(ℓ)

z♭s
p(ℓ)

z♯s

=⇒ (W + δw I +Σx + A⊤DA)∆x = qx + A⊤(Cqs + Dqy)Invertible

▶ The relaxation and condensation may cause ill-conditioning in the KKT system.

S. Shin, F. Pacaud, and M. Anitescu. Accelerating optimal power flow with GPUs: SIMD abstraction of nonlinear programs

and condensed-space interior-point methods, Accepted to PSCC 2024.
16 / 21

Solution #1: Condensed-Space Interior Point Method
▶ To avoid numerical pivoting, we transform the KKT systems into positive definite systems.
▶ Cholesky factorization can be computed with static pivoting, and available in CUDA.
▶ Can be achieved by (i) converting the equalities into inequalities:

g(x) = 0 =⇒ g(x)− s = 0, s♭ ≤ s ≤ s♯,

(ii) eliminating the slack variables (so-called condensation):

W (ℓ) + δ

(ℓ)
w I A(ℓ)⊤ −I I

δ
(ℓ)
w I −I −I I

A(ℓ) −I −δ(ℓ)c I
Z (ℓ)♭

x X (ℓ) − X ♭

−Z (ℓ)♯
x X ♯ − X (ℓ)

Z (ℓ)♭
s S(ℓ) − S♭

−Z (ℓ)♯
s S♯ − S(ℓ)

∆x
∆s
∆y
∆z♭x
∆z♯x
∆z♭s
∆z♯s

 =

p(ℓ)
x

p(ℓ)
s

p(ℓ)
y

p(ℓ)

z♭x
p(ℓ)

z♯x
p(ℓ)

z♭s
p(ℓ)

z♯s

=⇒ (W + δw I +Σx + A⊤DA)∆x = qx + A⊤(Cqs + Dqy)Invertible

▶ The relaxation and condensation may cause ill-conditioning in the KKT system.
S. Shin, F. Pacaud, and M. Anitescu. Accelerating optimal power flow with GPUs: SIMD abstraction of nonlinear programs

and condensed-space interior-point methods, Accepted to PSCC 2024.
16 / 21

Highlight: AC Optimal Power Flow (single GPU)

▶ Standard polar form AC optimal power flow (AC OPF) problems.

▶ For large-scale cases, GPU becomes significantly faster than CPU (up to ×20 speedup).

17 / 21

Highlight: AC Optimal Power Flow (single GPU)

▶ Standard polar form AC optimal power flow (AC OPF) problems.
▶ For large-scale cases, GPU becomes significantly faster than CPU (up to ×20 speedup).

17 / 21

Outline

1. Motivation

2. CUDA.jl and CUDSS.jl

3. Nonlinear Optimization Software

4. Nonlinear Programming on GPUs
4.1. Condensed-Space Interior-Point Method

5. Future Outlook

18 / 21

Future Outlook: Towards 10−8 Precision

▶ We have avoided indefinite systems by replacing them with positive definite systems.

▶ Challenges arise from ill-conditioning of condensed KKT systems.H +Σx J⊤

Σs −I
J −I

 condensation−−−−−−−−→ H +Σx + J⊤Σ−1
s J

Causes ill-conditioning

▶ Alternative methods, such as penalty method, augmented Lagrangian, and hybrid KKT, rely
on similar manipulations.

▶ Work-arounds?
▶ Using CPUs as we approach the solution.
▶ Quadruple precision—challenging due to low-level kernel supports.
▶ Hopefully, some breakthrough in sparse linear algebra (e.g., scalable parallel pivoting).

19 / 21

Future Outlook: Towards 10−8 Precision

▶ We have avoided indefinite systems by replacing them with positive definite systems.
▶ Challenges arise from ill-conditioning of condensed KKT systems.H +Σx J⊤

Σs −I
J −I

 condensation−−−−−−−−→ H +Σx + J⊤Σ−1
s J

Causes ill-conditioning

▶ Alternative methods, such as penalty method, augmented Lagrangian, and hybrid KKT, rely
on similar manipulations.

▶ Work-arounds?
▶ Using CPUs as we approach the solution.
▶ Quadruple precision—challenging due to low-level kernel supports.
▶ Hopefully, some breakthrough in sparse linear algebra (e.g., scalable parallel pivoting).

19 / 21

Future Outlook: Towards 10−8 Precision

▶ We have avoided indefinite systems by replacing them with positive definite systems.
▶ Challenges arise from ill-conditioning of condensed KKT systems.H +Σx J⊤

Σs −I
J −I

 condensation−−−−−−−−→ H +Σx + J⊤Σ−1
s J

Causes ill-conditioning

▶ Alternative methods, such as penalty method, augmented Lagrangian, and hybrid KKT, rely
on similar manipulations.

▶ Work-arounds?
▶ Using CPUs as we approach the solution.
▶ Quadruple precision—challenging due to low-level kernel supports.
▶ Hopefully, some breakthrough in sparse linear algebra (e.g., scalable parallel pivoting).

19 / 21

Future Outlook: Towards 10−8 Precision

▶ We have avoided indefinite systems by replacing them with positive definite systems.
▶ Challenges arise from ill-conditioning of condensed KKT systems.H +Σx J⊤

Σs −I
J −I

 condensation−−−−−−−−→ H +Σx + J⊤Σ−1
s J

Causes ill-conditioning

▶ Alternative methods, such as penalty method, augmented Lagrangian, and hybrid KKT, rely
on similar manipulations.

▶ Work-arounds?
▶ Using CPUs as we approach the solution.
▶ Quadruple precision—challenging due to low-level kernel supports.
▶ Hopefully, some breakthrough in sparse linear algebra (e.g., scalable parallel pivoting).

19 / 21

Future Outlook: Towards 10−8 Precision

▶ We have avoided indefinite systems by replacing them with positive definite systems.
▶ Challenges arise from ill-conditioning of condensed KKT systems.H +Σx J⊤

Σs −I
J −I

 condensation−−−−−−−−→ H +Σx + J⊤Σ−1
s J

Causes ill-conditioning

▶ Alternative methods, such as penalty method, augmented Lagrangian, and hybrid KKT, rely
on similar manipulations.

▶ Work-arounds?
▶ Using CPUs as we approach the solution.
▶ Quadruple precision—challenging due to low-level kernel supports.
▶ Hopefully, some breakthrough in sparse linear algebra (e.g., scalable parallel pivoting).

19 / 21

Future Outlook: Towards Portability

Table: GPU Compatibility of Nonlinear Optimization Frameworks

CPU (single) CPU (multi) NVIDIA GPU AMD GPU Intel GPU Apple Metal

Algebraic Modeling Platforms
AMPL ✓ ✗ ✗ ✗ ✗ ✗

JuMP ✓ ✗ ✗ ✗ ✗ ✗

ExaModels ✓ ✓ ✓ ✓ ✓ ✗

NLP Solvers
Ipopt ✓ ✗ ✗ ✗ ✗ ✗

MadNLP ✓ ✗ ✓ ✗ ✗ ✗

▶ ExaModels has full compatibility with multi-threaded CPUs, NVIDIA, AMD, and Intel GPUs.

▶ MadNLP is currently only compatible with NVIDIA,

but making it portable is not difficult.

▶ Main obstacle: AMD and Intel GPUs are limited in sparse (Cholesky or LU) linear solvers.
▶ Work-arounds?

▶ Preconditioned iterative solver with reduction.
▶ Domain-specific linear solvers (e.g., Riccati solver for optimal control).

Krylov.jl: A Julia Basket of Hand-Picked Krylov Methods https://github.com/JuliaSmoothOptimizers/Krylov.jl
Cole et. al., Exploiting GPU/SIMD Architectures for Solving Linear-Quadratic MPC Problems, ACC (2023).

20 / 21

https://github.com/JuliaSmoothOptimizers/Krylov.jl

Future Outlook: Towards Portability

Table: GPU Compatibility of Nonlinear Optimization Frameworks

CPU (single) CPU (multi) NVIDIA GPU AMD GPU Intel GPU Apple Metal

Algebraic Modeling Platforms
AMPL ✓ ✗ ✗ ✗ ✗ ✗

JuMP ✓ ✗ ✗ ✗ ✗ ✗

ExaModels ✓ ✓ ✓ ✓ ✓ ✗

NLP Solvers
Ipopt ✓ ✗ ✗ ✗ ✗ ✗

MadNLP ✓ ✗ ✓ ✗ ✗ ✗

▶ ExaModels has full compatibility with multi-threaded CPUs, NVIDIA, AMD, and Intel GPUs.
▶ MadNLP is currently only compatible with NVIDIA,

but making it portable is not difficult.
▶ Main obstacle: AMD and Intel GPUs are limited in sparse (Cholesky or LU) linear solvers.
▶ Work-arounds?

▶ Preconditioned iterative solver with reduction.
▶ Domain-specific linear solvers (e.g., Riccati solver for optimal control).

Krylov.jl: A Julia Basket of Hand-Picked Krylov Methods https://github.com/JuliaSmoothOptimizers/Krylov.jl
Cole et. al., Exploiting GPU/SIMD Architectures for Solving Linear-Quadratic MPC Problems, ACC (2023).

20 / 21

https://github.com/JuliaSmoothOptimizers/Krylov.jl

Future Outlook: Towards Portability

Table: GPU Compatibility of Nonlinear Optimization Frameworks

CPU (single) CPU (multi) NVIDIA GPU AMD GPU Intel GPU Apple Metal

Algebraic Modeling Platforms
AMPL ✓ ✗ ✗ ✗ ✗ ✗

JuMP ✓ ✗ ✗ ✗ ✗ ✗

ExaModels ✓ ✓ ✓ ✓ ✓ ✗

NLP Solvers
Ipopt ✓ ✗ ✗ ✗ ✗ ✗

MadNLP ✓ ✗ ✓ ✗ ✗ ✗

▶ ExaModels has full compatibility with multi-threaded CPUs, NVIDIA, AMD, and Intel GPUs.
▶ MadNLP is currently only compatible with NVIDIA, but making it portable is not difficult.

▶ Main obstacle: AMD and Intel GPUs are limited in sparse (Cholesky or LU) linear solvers.
▶ Work-arounds?

▶ Preconditioned iterative solver with reduction.
▶ Domain-specific linear solvers (e.g., Riccati solver for optimal control).

Krylov.jl: A Julia Basket of Hand-Picked Krylov Methods https://github.com/JuliaSmoothOptimizers/Krylov.jl
Cole et. al., Exploiting GPU/SIMD Architectures for Solving Linear-Quadratic MPC Problems, ACC (2023).

20 / 21

https://github.com/JuliaSmoothOptimizers/Krylov.jl

Future Outlook: Towards Portability

Table: GPU Compatibility of Nonlinear Optimization Frameworks

CPU (single) CPU (multi) NVIDIA GPU AMD GPU Intel GPU Apple Metal

Algebraic Modeling Platforms
AMPL ✓ ✗ ✗ ✗ ✗ ✗

JuMP ✓ ✗ ✗ ✗ ✗ ✗

ExaModels ✓ ✓ ✓ ✓ ✓ ✗

NLP Solvers
Ipopt ✓ ✗ ✗ ✗ ✗ ✗

MadNLP ✓ ✗ ✓ ✗ ✗ ✗

▶ ExaModels has full compatibility with multi-threaded CPUs, NVIDIA, AMD, and Intel GPUs.
▶ MadNLP is currently only compatible with NVIDIA, but making it portable is not difficult.
▶ Main obstacle: AMD and Intel GPUs are limited in sparse (Cholesky or LU) linear solvers.

▶ Work-arounds?
▶ Preconditioned iterative solver with reduction.
▶ Domain-specific linear solvers (e.g., Riccati solver for optimal control).

Krylov.jl: A Julia Basket of Hand-Picked Krylov Methods https://github.com/JuliaSmoothOptimizers/Krylov.jl
Cole et. al., Exploiting GPU/SIMD Architectures for Solving Linear-Quadratic MPC Problems, ACC (2023).

20 / 21

https://github.com/JuliaSmoothOptimizers/Krylov.jl

Future Outlook: Towards Portability

Table: GPU Compatibility of Nonlinear Optimization Frameworks

CPU (single) CPU (multi) NVIDIA GPU AMD GPU Intel GPU Apple Metal

Algebraic Modeling Platforms
AMPL ✓ ✗ ✗ ✗ ✗ ✗

JuMP ✓ ✗ ✗ ✗ ✗ ✗

ExaModels ✓ ✓ ✓ ✓ ✓ ✗

NLP Solvers
Ipopt ✓ ✗ ✗ ✗ ✗ ✗

MadNLP ✓ ✗ ✓ ✗ ✗ ✗

▶ ExaModels has full compatibility with multi-threaded CPUs, NVIDIA, AMD, and Intel GPUs.
▶ MadNLP is currently only compatible with NVIDIA, but making it portable is not difficult.
▶ Main obstacle: AMD and Intel GPUs are limited in sparse (Cholesky or LU) linear solvers.
▶ Work-arounds?

▶ Preconditioned iterative solver with reduction.
▶ Domain-specific linear solvers (e.g., Riccati solver for optimal control).

Krylov.jl: A Julia Basket of Hand-Picked Krylov Methods https://github.com/JuliaSmoothOptimizers/Krylov.jl
Cole et. al., Exploiting GPU/SIMD Architectures for Solving Linear-Quadratic MPC Problems, ACC (2023). 20 / 21

https://github.com/JuliaSmoothOptimizers/Krylov.jl

Summary

▶ Optimization on GPUs is a growing area (LPs, QPs, domain-specific problems)!

▶ GPU hardware offers significant potential for accelerating large-scale optimization.

▶ Porting algorithms on GPUs often requires complete redesign of the algorithms.

▶ We have achieved promising results: up to 20x faster solutions with moderate accuracy.

▶ Chellenges remain: Ill-conditioning of condensed KKT system and portability.

▶ We envision expanding the application scope of nonlinear programming.
▶ Extremely large-scale problems (coupled infrastructures, multi-stage, multiscale).
▶ Problems involving expensive surrogate models (neural nets, simulations).

21 / 21

Summary

▶ Optimization on GPUs is a growing area (LPs, QPs, domain-specific problems)!

▶ GPU hardware offers significant potential for accelerating large-scale optimization.

▶ Porting algorithms on GPUs often requires complete redesign of the algorithms.

▶ We have achieved promising results: up to 20x faster solutions with moderate accuracy.

▶ Chellenges remain: Ill-conditioning of condensed KKT system and portability.

▶ We envision expanding the application scope of nonlinear programming.
▶ Extremely large-scale problems (coupled infrastructures, multi-stage, multiscale).
▶ Problems involving expensive surrogate models (neural nets, simulations).

21 / 21

Summary

▶ Optimization on GPUs is a growing area (LPs, QPs, domain-specific problems)!

▶ GPU hardware offers significant potential for accelerating large-scale optimization.

▶ Porting algorithms on GPUs often requires complete redesign of the algorithms.

▶ We have achieved promising results: up to 20x faster solutions with moderate accuracy.

▶ Chellenges remain: Ill-conditioning of condensed KKT system and portability.

▶ We envision expanding the application scope of nonlinear programming.
▶ Extremely large-scale problems (coupled infrastructures, multi-stage, multiscale).
▶ Problems involving expensive surrogate models (neural nets, simulations).

21 / 21

Summary

▶ Optimization on GPUs is a growing area (LPs, QPs, domain-specific problems)!

▶ GPU hardware offers significant potential for accelerating large-scale optimization.

▶ Porting algorithms on GPUs often requires complete redesign of the algorithms.

▶ We have achieved promising results: up to 20x faster solutions with moderate accuracy.

▶ Chellenges remain: Ill-conditioning of condensed KKT system and portability.

▶ We envision expanding the application scope of nonlinear programming.
▶ Extremely large-scale problems (coupled infrastructures, multi-stage, multiscale).
▶ Problems involving expensive surrogate models (neural nets, simulations).

21 / 21

Summary

▶ Optimization on GPUs is a growing area (LPs, QPs, domain-specific problems)!

▶ GPU hardware offers significant potential for accelerating large-scale optimization.

▶ Porting algorithms on GPUs often requires complete redesign of the algorithms.

▶ We have achieved promising results: up to 20x faster solutions with moderate accuracy.

▶ Chellenges remain: Ill-conditioning of condensed KKT system and portability.

▶ We envision expanding the application scope of nonlinear programming.
▶ Extremely large-scale problems (coupled infrastructures, multi-stage, multiscale).
▶ Problems involving expensive surrogate models (neural nets, simulations).

21 / 21

Summary

▶ Optimization on GPUs is a growing area (LPs, QPs, domain-specific problems)!

▶ GPU hardware offers significant potential for accelerating large-scale optimization.

▶ Porting algorithms on GPUs often requires complete redesign of the algorithms.

▶ We have achieved promising results: up to 20x faster solutions with moderate accuracy.

▶ Chellenges remain: Ill-conditioning of condensed KKT system and portability.

▶ We envision expanding the application scope of nonlinear programming.
▶ Extremely large-scale problems (coupled infrastructures, multi-stage, multiscale).
▶ Problems involving expensive surrogate models (neural nets, simulations).

21 / 21

	Motivation
	CUDA.jl and CUDSS.jl
	Nonlinear Optimization Software
	Nonlinear Programming on GPUs
	Condensed-Space Interior-Point Method

	Future Outlook

