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The Keplerian distance function

Let (Ej, vj), j = 1, 2 be the orbital elements of two celestial bodies on
Keplerian orbits with a common focus:
Ej represents the trajectory of a body,
vj is a parameter along it.
Set V = (v1, v2). For a given
two-orbit configuration
E = (E1,E2), we introduce the
Keplerian distance function

T2 ∋ V 7→ d(E ,V) = |X1 −X2|.

We are interested in the local
minimum points of d and in
particular in the absolute
minimum dmin, called orbit
distance, or MOID.
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Geometry of two confocal Keplerian orbits

Is there still something that we do not know about distance of
points on conic sections?

ἐθεώρουν σε σπεύδοντα μετασχεῖν

τῶν πεπραγμένων ἡμῖν κωνικῶν
(1)

(Apollonius of Perga, Conics, Book I)

(1) I observed you were quite eager to be kept informed of the work I was doing in conics.
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Critical points of d2

The local minimum points of d can be found by computing all the
critical points of d2 (so that crossing points are also critical).

How many can they be?

Apart from the case of two concentric coplanar circles, or two
overlapping ellipses, d2 has finitely many critical points...

... but they can be more than what we expect!

There exist configurations with 12 critical points, and 4 local
minima of d2.
This is thought to be the maximum possible, but a proof is not
known yet.
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Computation of the local minima

There are several papers in the literature about the computation of
the MOID, e.g. Sitarski (1968), Dybczyński et al. (1986) and more
recently Hedo et al. (2018), Baluev and Mikryukov (2019).

The following papers introduced algebraic methods to compute all the
critical points of d2:

Kholshevnikov and Vassiliev, CMDA (1999), with Gröbner
bases;

Gronchi, SJSC (2002), CMDA (2005), with resultant theory.

They are based on a polynomial formulation of the problem, which
gives some advantages.

Giovanni F. Gronchi Nice, March 8, 2023 (France)



Algebraic formulation

The critical points equations is

∇Vd2(E ,V) = 0. (1)

By the coordinate change

s = tan(v1/2) ; t = tan(v2/2)

we obtain from (1) a system of 2 polynomials in 2 unknowns{
p(s, t) = f4(t) s4 + f3(t) s3 + f2(t) s2 + f1(t) s + f0(t) = 0
q(s, t) = g2(t) s2 + g1(t) s + g0(t) = 0

each with total degree 6; precisely p(s, t) has degree 4 in s and
degree 2 in t, while q(s, t) has degree 2 in s and degree 4 in t.
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Computation of the solutions

From elimination theory we know that p and q have a common
solution if and only if

Res(p, q, s)(t) = detS(t) = 0 ;

where

S(t) =


f4 0 g2 0 0 0
f3 f4 g1 g2 0 0
0 f3 g0 g1 g2 0
f1 0 0 g0 g1 g2
f0 f1 0 0 g0 g1
0 f0 0 0 0 g0

 .

R(t) = Res(p, q, s)(t) is a polynomial with degree 20; it has a
factor (1 + t2)2 giving 4 imaginary roots.
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Scheme of the algorithm

We use an interpolation method to compute its coefficients:

Evaluate the polynomial coefficients of the matrix S(t) at the
32–th roots of unit ωk = e2πi k

32 , k = 0 . . . 31 by a DFT

Compute the determinant of the 32 Sylvester matrices and
observe that

(detS(t))|t=ωk
= detS(ωk) , k = 0 . . . 31

Apply an IDFT to obtain the coefficients of R(t) from its 32
evaluations

Compute the real roots of R(t)

Given t ∈ R : R(t) = 0, search for s ∈ R such that (t, s) is a
solution.
Hint! in some cases for each root t of R(t) we can find more than
one such s.
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Maximal number of critical points

For the case of two bounded orbits we can prove the following:

If there are finitely many critical points of d2, then they are at
most 16 in the general case and at most 12 if one orbit is
circular.
The proof uses Bernstein’s theorem, which says that an upper bound
for the solutions in C2 is given by the mixed area of Newton’s
polygons of p e q:

Mixed Area(P,Q) = Area(P + Q)− Area(P)− Area(Q)
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Example with 12 critical points, 4 minima
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level curves of d2, plane of the
eccentric anomalies + = max

+ = min
∗ = saddle

By Morse theory
#(max) + #(min) = #(saddles)

Q e1 q e2 iM ω
(1)
M ω

(2)
M

0.585 0.415 0.462 0.615 80.0◦ 8.0◦ 176.0◦
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Conjecture

The following table gives a conjecture on the maximum number
of critical points in case of bounded orbits:

e1 ̸= 0 e2 ̸= 0 12 points
e1 ̸= 0 e2 = 0 10 points
e1 = 0 e2 ̸= 0 10 points
e1 = 0 e2 = 0 8 points

This is still an open problem!

Giovanni F. Gronchi Nice, March 8, 2023 (France)



The local minimum distance maps

Gronchi and Tommei, DCDS-B (2007)

Let Vh = Vh(E) be a local minimum point of V 7→ d2(E ,V).
Consider the maps

E 7→ dh(E) = d(E ,Vh) ,

E 7→ dmin(E) = min
h

dh(E) .

The map E 7→ dmin(E) gives the MOID.
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Singularities of dh and dmin
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(i) dh and dmin are not differentiable where they vanish;
(ii) two local minima can exchange their role as absolute

minimum thus dmin loses its regularity without vanishing;
(iii) when a bifurcation occurs the definition of the maps dh may

become ambiguous after the bifurcation point.
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Problems in computing the uncertainty of dmin

Given a nominal orbit configuration Ē , with its covariance matrix
ΓĒ , the covariance propagation of a function of E , like dmin, is
based on a linearization of the function near Ē .

orbital
element

MOID map

MOID map

linearized 

nominal
value

distance

orbital
element

MOID map

MOID map

linearized 

nominal
value

distance

regularized
MOID map

Remark: dmin(E) is not smooth where it vanishes, thus usually
the linearizzation of dmin in a neighborhood of the nominal orbit
is not a good approximation (see fig. on the left)
Problem: can we give a sign to dmin(E) so that its linearization
becomes meaningful (see fig. on the right)?
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Smoothing through change of sign

y−axis

x−axis

y−axis

x−axis

Toy problem:

f (x, y) =
√

x2 + y2 f̃ (x, y) =
{

−f (x, y) for x > 0
f (x, y) for x < 0

Can we smooth the maps dh(E), dmin(E)
through a change of sign?
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Local smoothing of dh at a crossing singularity

Smoothing dh, the procedure for dmin is the same.
Consider the points on the two orbits

X (h)
1 = X1(E1, v(h)1 ) ; X (h)

2 = X2(E2, v(h)2 ) .

corresponding to the local minimum point
Vh = (v(h)1 , v(h)2 ) of d2;
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Local smoothing of dh at a crossing singularity

introduce the tangent vectors to the trajectories E1,E2 at
these points:

τ1 =
∂X1

∂v1
(E1, v(h)1 ) , τ2 =

∂X2

∂v2
(E2, v(h)2 ) ,

and their cross product

τ3 = τ1 × τ2;
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Local smoothing of dh at a crossing singularity

define also

∆ = X1 −X2, ∆h = X (h)
1 −X (h)

2 .

The vector ∆h joins the points attaining a local minimum of
d2 and |∆h| = dh.

Note that ∆h × τ3 = 0.
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Smoothing the crossing singularity

smoothing rule:

d̃h = sign(τ3 ·∆h)dh

E 7→ d̃h(E) is an analytic map in a neighborhood of most
crossing configurations.
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Uncertainty of the MOID

For a given orbit Ē , with its covariance matrix ΓĒ , the
covariance propagation formula

Γd̃min(Ē) =

[
∂d̃min

∂E
(Ē)

]
ΓĒ

[
∂d̃min

∂E
(Ē)

]t

allows us to compute the covariance of the regularized MOID.
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Using the orbit distance

to detect observational biases

in the discovery of NEAs
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(q, ω) plot of all the known NEAs

Gronchi and Valsecchi, MNRAS (2014)
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The blue dots are NEAs with H > 22.
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Geometry of ground-based observations

Consider the orbits of the
Earth and of a NEA. We
denote by dmin the MOID
between the trajectories of
these two bodies.
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Most NEAs with a small value of dmin are detected, sooner
or later;
small NEAs with a large value of dmin are likely to be
unobserved.
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(q, dmin) plot of all the known NEAs
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Projections

In all the previous plots we see projections on a plane of data
from an N-dimensional space, with N > 2.

pi

‘Nothing was visible, nor could be
visible, to us, except Straight Lines’
(E. A. Abbot), Flatland.
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The near-Earth asteroid class

We define the NEA class N as the set of cometary orbital
elements (q, e, I,Ω, ω) such that

q ∈ [0, qmax], e ∈ [0, 1], I ∈ [0, π], Ω ∈ [0, 2π], ω ∈ [0, 2π].

Here q is the perihelion distance and qmax = 1.3 au.

We use
q′ = 1, e′ = 0, I′ = 0, Ω′ = 0, ω′ = 0

for the elements of the Earth.
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Possible values of dmin as function of (q, ω)

Let D1 = {(e, I) : 0 ≤ e ≤ 1, 0 ≤ I ≤ π}. For each choice of
(q, ω), with 0 < q ≤ qmax, 0 ≤ ω ≤ 2π, we have

max
(e,I)∈D1

dmin = max{q′ − q, δ(q, ω)}

where δ(q, ω) is the distance
between the orbit of the
Earth and a parabolic orbit
(e = 1) with I = π/2.
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Maximal orbit distance as function of (q, ω)
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Distribution of NEAs in the plane (q, ω)
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Blue dots are NEAs with H > 22, red dots with H < 16.
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Distribution of NEAs in the plane (q, dmin)
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Distribution of NEAs in the plane (q, dmin)
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The eccentric case e′ ∈ (0, 1)

Problem: generalize this theory to the eccentric case e′ ∈ (0, 1).

Gronchi and Niederman, CMDA (2020)

Mutual orbital elements: EM = (q, e, q′, e′, IM, ωM, ω′
M)

O

A

A′

mutual nodal line

ωM

ω′
M

IM
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The eccentric case e′ ∈ (0, 1)
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Graphic of maxD̃1
dmin(q, ω), with D̃1 = {(e, I, ω′) : 0 ≤ e ≤ 1, 0 ≤ I ≤ π/2, 0 ≤ ω′ ≤ 2π}.

e′ = 0.1 (top left), e′ = 0.2 (top right), e′ = 0.3 (bottom left), e′ = 0.4 (bottom right). Here we set q′ = 1.
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The nodal distance

Let

r+ =
q(1 + e)

1 + e cosω
, r− =

q(1 + e)
1 − e cosω

,

r′+ =
q′(1 + e′)

1 + e′ cosω′ , r′− =
q′(1 + e′)

1 − e′ cosω′

and introduce the ascending and descending nodal distances:

d+
nod = r′+ − r+, d−

nod = r′− − r−.

The (minimal) nodal distance δnod is the minimum between the
absolute values of the ascending and descending nodal distances:

δnod = min
{
|d+

nod|, |d
−
nod|

}
. (2)

Note that δnod does not depend on the mutual inclination I.
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Optimal bounds for δnod when e′ ∈ (0, 1)

Let

D1 = {(e, ω′) : 0 ≤ e ≤ 1, 0 ≤ ω′ ≤ π},
D2 = {(q, ω) : 0 < q ≤ qmax, 0 ≤ ω ≤ π/2}.

For each choice of (q, ω) ∈ D2 we have

max
(e,ω′)∈D1

δnod = max
{

uωint, uωext, uωlink
}
,
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Optimal bounds for δnod when e′ ∈ (0, 1)

where1

uωint(q, ω) = p′ − q,

uω
ext(q, ω) = min

{ 2q
1 − cosω

− p′

1 − ξ̂′∗
,

2q
1 + cosω

− q′
}
,

with
ξ̂
′
∗ = min{ξ′∗, e′}, ξ

′
∗(q, ω) =

4q cosω

p′ sin2 ω +
√

p′2 sin4 ω + 16q2 cos2 ω
,

and

uω
link(q, ω) = min

{
Q′ − q(1 + ê∗)

1 + ê∗ cosω
,

2q
1 − cosω

− q′
}
, (3)

with

ê∗ = max
{

0,min{e∗, 1}
}
, e∗(q, ω) =

2(p′ − q(1 − e′2))

q(1 − e′2) +
√

q2(1 − e′2)2 + 4p′ cos2 ω(p′ − q(1 − e′2))
.

1we admit infinite values for the considered functions
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Secular evolution of crossing orbits
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The restricted three-body problem

Three-body problem: Sun, Earth, asteroid
Restricted problem: the asteroid does not influence the motion of the
two larger bodies

Equations of motion of the asteroid:

ÿ = −G
[

m⊙
(y − y⊙(t))
|y − y⊙(t)|3

+ m⊕
(y − y⊕(t))
|y − y⊕(t)|3

]

y is the unknown position of the asteroid;

y⊙(t), y⊕(t) are known functions of time, solutions of the
two-body problem Sun-Earth.
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The restricted three–body problem

In heliocentric coordinates

ẍ = −k2
[

x
|x|3

+ µ

(
(x − x′)
|x − x′|3

− x′

|x′|3

)]

x = y − y⊙, x′ = y⊕ − y⊙;

k2 = Gm⊙, µ = m⊕
m⊙

is a small parameter;

−k2µ (x−x′)
|x−x′|3 is the direct perturbation of the planet on the

asteroid;

k2µ x′
|x′|3 is the indirect perturbation, due to the interaction

Sun-planet.

Hint! We can model the dynamics of an asteroid in the solar system
by summing up the contribution of each planet to the perturbation.
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Canonical formulation of the problem

Use Delaunay’s variables Y = (L,G,Z, ℓ, g, z) for the motion of the
asteroid: 

L = k
√

a
G = L

√
1 − e2

Z = G cos I

 ℓ = n(t − t0)
g = ω
z = Ω

These are canonical variables, representing the osculating orbit,
solution of the 2-body problem Sun-asteroid.

Denote by Y ′ = (L′,G′,Z′, ℓ′, g′, z′) Delaunay’s variables for the planet.
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Canonical formulation of the problem

Hamilton’s equations are

Ẏ = J∇YH ,

where

H = H0 + ϵH1, ϵ = µk2, J =

[
O3 −I3
I3 O3

]
.

H0 = − k4

2L2 (unperturbed part),

H1 = −
(

1
|X − X ′|

− X · X ′

|X ′|3

)
(perturbing function).

Here X ,X ′ denote x, x′ as functions of Y, Y ′.
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The averaging method

The averaging principle is used to study the qualitative behavior
of solutions of ODEs in perturbation theory, see Arnold, Kozlov,
Neishtadt (1997).

unperturbed
{

ϕ̇ = ω(I)
İ = 0

ϕ ∈ Tn, I ∈ Rm

perturbed
{

ϕ̇ = ω(I) + ϵf (ϕ, I, ϵ)
İ = ϵg(ϕ, I, ϵ)

averaged J̇ = ϵG(J) , G(J) =
1

(2π)n

∫
Tn

g(ϕ, J, 0) dϕ1 . . . dϕn
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Averaged equations

Gronchi and Milani, CMDA (1998)

Averaged Hamilton’s equations:

Ẏ = ϵ J∇YH1 , (4)

with Y = (G,Z, g, z).
If no orbit crossing occurs, (4) are equal to

Ẏ = ϵ J∇YH1 (5)

with

H1 =
1

(2π)2

∫
T2
H1 dℓ dℓ′ = − 1

(2π)2

∫
T2

1
|X − X ′|

dℓ dℓ′

The average of the indirect term of H1 is zero.
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Crossing singularities

If there is an orbit crossing, then averaging on the fast angles ℓ, ℓ′

produces a singularity in the averaged equations:
we take into account every possible position on the orbits, thus also
the collision configurations:

H1 = − 1
(2π)2

∫
T2

1
|X − X ′|

dℓ dℓ′

and ∣∣X (E1, v(h)
1 )−X ′(E2, v(h)

2 )
∣∣ = 0 .
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Near-Earth asteroids and crossing orbits

(433) Eros: the first near-Earth asteroid
(NEA, with q = a(1 − e) ≤ 1.3 AU),
discovered in 1898; it can cross the
trajectory of Mars.

from NEAR mission (NASA)

Today (March 8, 2023) we know about 31500 NEAs: several of
them cross the orbit of the Earth during their evolution.
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Derivative jumps

Let Ec be a non–degenerate crossing configuration for dh, with
only 1 crossing point.
Given a neighborhood W of Ec, we set

W+ = W ∩ {d̃h > 0} ,

W− = W ∩ {d̃h < 0} .

The averaged vector field ∇YH1 is not defined on Σ = {dH = 0}.
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Derivative jumps

Gronchi and Tardioli, DCDS-B (2013)

The averaged vector field ∇YH1 can
be naturally extended to two
Lipschitz–continuous vector fields
(∇YH1)

±
h on a neighborhood W of Ec.

The components of the extended
fields, restricted to W+, W−

respectively, correspond to ∂H1
∂yk

.
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Derivative jumps

Moreover the following relations hold:

Diffh

(
∂H1

∂yk

)
def
=

(∂H1

∂yk

)−

h
−
(∂H1

∂yk

)+

h
=

= − 1
π

[
∂

∂yk

(
1√

det(Ah)

)
d̃h +

1√
det(Ah)

∂d̃h

∂yk

]
,

where yk is a component of Delaunay’s elements Y.
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Extraction of the singularity

d2(E ,V) = d2
h(E) + (V − Vh) · Ah(E)(V − Vh) +R(h)

3 (E ,V) ,

where

2Ah(E) =
∂2d2

∂V2 (E ,Vh(E))

is the Hessian matrix of d2 in Vh and R(h)
3 is Taylor’s remainder in the

integral form.

Introduce the approximated distance

δh =
√

d2
h + (V − Vh) · Ah(V − Vh) .
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Extraction of the singularity

Consider the following decomposition:

W \ Σ ∋ E 7→
∫
T2

∂

∂yk

1
d

dℓdℓ′

=

∫
T2

∂

∂yk

(1
d
− 1

δh

)
dℓdℓ′ +

∫
T2

∂

∂yk

1
δh

dℓdℓ′

We can prove that:

i) the two maps W± ∋ E 7→
∫
T2

∂

∂yk

1
δh

dℓdℓ′ admits two different

analytic extensions to W;

ii) the map W \ Σ ∋ E 7→
∫
T2

∂

∂yk

(1
d
− 1

δh

)
dℓdℓ′ admits a

Lipschitz–continuous extension to W .
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Idea of the proof of i)

W \ Σ ∋ E 7→
∫
T2

∂

∂yk

1
δh

dℓ dℓ′ =
∂

∂yk

∫
T2

1
δh

dℓ dℓ′

Moreover, set

D = {V ∈ T2 : (V − Vh) · Ah(V − Vh) ≤ r}.

We have ∫
D

1
δh

dℓ dℓ′ =
2π√
detAh

(
√

d2
h + r − dh)
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Idea of the proof of i)

Moreover we have∫
T2

∂

∂yk

1
δh

dℓ dℓ′ =
∂

∂yk

( 2π√
detAh

)
(
√

d2
h + r2 − dh) +

+
2π√
detAh

dh√
d2

h + r2

∂dh

∂yk
− 2π√

detAh

∂dh

∂yk
+

∂

∂yk

∫
T2\D

1
δh

dℓ dℓ′

so that we take(∫
T2

∂

∂yk

1
δh

dℓ dℓ′
)±

h
=

∂

∂yk

( 2π√
detAh

)
(
√

d2
h + r2 ∓ d̃h) +

+
2π√
detAh

d̃h√
d2

h + r2

∂d̃h

∂yk
∓ 2π√

detAh

∂d̃h

∂yk
+

∂

∂yk

∫
T2\D

1
δh

dℓ dℓ′
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Generalized solutions

Figure: Runge-Kutta-Gauss method and continuation of the solutions
of equations (4) beyond the singularity.

The averaged solutions are piecewise–smooth
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Averaged evolution of (1620) Geographos
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Proper elements for NEAs: (1620) Geographos
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Proper elements for NEAs: (2102) Tantalus

Giovanni F. Gronchi Nice, March 8, 2023 (France)



Secular evolution of the orbit distance

Define the secular evolution of the minimal distances

dh(t) = d̃h(Ē(t)) , dmin(t) = d̃min(Ē(t))

in an open interval containing a crossing time tc.

Proposition: Assume tc is a crossing time and Ec = E(tc) is a
non-degenerate crossing configuration with only one crossing point,
i.e. dh(Ec) = 0. Then there exists an interval (ta, tb), ta < tc < tb such
that dh ∈ C1((ta, tb);R).
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Secular evolution of the orbit distance

idea of the proof:

lim
t→t−c

ḋh(t)− lim
t→t+c

ḋh(t) = Diffh
(
∇YH1

)
· ϵ J2∇Y d̃h

∣∣∣
E=Ec

= − ϵ

π
√
detAh

{d̃h, d̃h}Y

∣∣∣
E=Ec

= 0 ,

The secular evolution of d̃min is more regular than that of the
orbital elements in a neighborhood of a planet crossing time.
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Evolution of the orbit distance for 1979 XB
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Transition through a planet crossing for 1979 XB

linearized secular evolution
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Transition through a planet crossing for 1979 XB

nonlinear secular evolution
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Thank you for your attention!
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