Peak minimization for compartmental models

Emilio Molina Olivares¹ Alain Rapaport² Héctor Ramírez³

¹Gipsa-lab, Université Grenoble-Alpes
 ²UMR MISTEA, Univ. Montpellier, INRAE
 ³Department of Mathematical Engineering, Universidad de Chile

PGMO days, Paris November 2022

Outline

- Motivation: The covid problem
- Peak minimization on a SIR dynamic
- General models of peak minimization
 - Planar dynamics with L^1 constraints
 - Reformulations
- 4 Conclusion

Outline

- Motivation: The covid problem
- Peak minimization on a SIR dynamic
- General models of peak minimization
 - Planar dynamics with L^1 constraints
 - Reformulations
- 4 Conclusion

Context: Covid desease

High peaks overcrowd the healthy system.

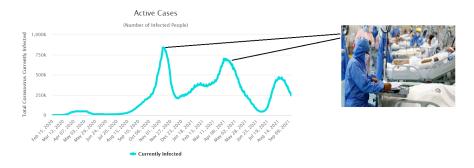


Figure: France's data from www.worldometers.info

Outline

- Motivation: The covid problem
- 2 Peak minimization on a SIR dynamic
- General models of peak minimization
 - Planar dynamics with L^1 constraints
 - Reformulations
- 4 Conclusion

SIR model

A classical SIR model corresponds to:

$$\begin{cases} \dot{S}(t) = -\beta S(t)I(t) \\ \dot{I}(t) = \beta S(t)I(t) - \gamma I(t) \\ \dot{R}(t) = \gamma I(t) \end{cases}$$

SIR model

A classical SIR model corresponds to:

$$\begin{cases} \dot{S}(t) = -\beta S(t)I(t) \\ \dot{I}(t) = \beta S(t)I(t) - \gamma I(t) \\ \dot{R}(t) = \gamma I(t) \end{cases}$$

where:

- S(t): portion of susceptible individuals at time t.
- I(t): portion of infected individuals at time t.
- R(t): portion of recovered individuals at time t.
- β : transmission rate.
- ullet γ : recovery rate.

SIR model

A classical SIR model corresponds to:

$$\begin{cases} \dot{S}(t) = -\beta S(t)I(t) \\ \dot{I}(t) = \beta S(t)I(t) - \gamma I(t) \\ \dot{R}(t) = \gamma I(t) \end{cases}$$

where:

- S(t): portion of susceptible individuals at time t.
- I(t): portion of infected individuals at time t.
- R(t): portion of recovered individuals at time t.
- β : transmission rate.
- ullet γ : recovery rate.

And

$$S(t) + I(t) + R(t) = 1, \forall t \geq 0$$

Problem formulation

We consider the identical dynamic

$$\dot{S}(t) = -(1 - u(t))\beta S(t)I(t)$$
$$\dot{I}(t) = (1 - u(t))\beta S(t)I(t) - \gamma I(t)$$

with the positive initial condition $(S(0), I(0)) = (S_0, I_0)$, and $S_0 + I_0 \le 1$.

Problem formulation

We consider the identical dynamic

$$\dot{S}(t) = -(1 - u(t))\beta S(t)I(t)$$
$$\dot{I}(t) = (1 - u(t))\beta S(t)I(t) - \gamma I(t)$$

with the positive initial condition $(S(0),I(0))=(S_0,I_0),$ and $S_0+I_0\leq 1.$

We add the constraint

$$\int_0^\infty u(t)dt \le Q. \tag{1}$$

Problem formulation

We consider the identical dynamic

$$\dot{S}(t) = -(1 - u(t))\beta S(t)I(t)$$
$$\dot{I}(t) = (1 - u(t))\beta S(t)I(t) - \gamma I(t)$$

with the positive initial condition $(S(0), I(0)) = (S_0, I_0)$, and $S_0 + I_0 \le 1$.

We add the constraint

$$\int_0^\infty u(t)dt \le Q. \tag{1}$$

We want:

$$\inf_{u(\cdot)\in\mathcal{U}}\max_{t\geq0}I(t),\tag{2}$$

where $\mathcal U$ denotes the set of measurable functions $u(\cdot)$ that take values in [0,1] and satisfying (1).

Equivalently, one can consider the extended dynamics.

$$\begin{cases}
\dot{S}(t) = -\beta S(t)I(1 - u(t)), \\
\dot{I}(t) = \beta S(t)I(t)(1 - u(t)) - \gamma I(t), \\
\dot{C}(t) = -u(t),
\end{cases}$$
(3)

with the initial condition $(S(0), I(0), C(0)) = (S_0, I_0, Q)$ and the state constraint

$$C(t) \geq 0, \quad t \geq 0.$$

Assumptions

Assumption 1

The basic reproduction number \mathcal{R}_0 is larger than one.

$$\mathcal{R}_0 := \frac{\beta}{\gamma} > 1.$$

Assumptions

Assumption 1

The basic reproduction number \mathcal{R}_0 is larger than one.

$$\mathcal{R}_0 := \frac{\beta}{\gamma} > 1.$$

Let us denote the immunity threshold

$$S_h := \mathcal{R}_0^{-1} = \frac{\gamma}{\beta} < 1.$$

Assumption 2

We consider the non trivial case:

$$S_0 > S_h$$
.

The maximum of $I(\cdot)$ in the not controlled case is:

$$I_h := I_0 + S_0 - S_h - S_h \log \left(\frac{S_0}{S_h}\right).$$
 (4)

The maximum of $I(\cdot)$ in the not controlled case is:

$$I_h := I_0 + S_0 - S_h - S_h \log \left(\frac{S_0}{S_h}\right).$$
 (4)

Definition 1

For $\bar{I} \in [I_0, I_h]$, consider the feedback control

$$\psi_{\bar{I}}(I,S) := \begin{cases} 1 - \frac{S_h}{S}, & \text{if } I = \bar{I} \text{ and } S > S_h, \\ 0, & \text{otherwise.} \end{cases}$$
 (5)

We denote the L^1 norm associated to the NSN control

$$\mathcal{L}(\bar{I}) := \int_0^{+\infty} u^{\psi_{\bar{I}}}(t)dt, \quad \bar{I} \in [I_0, I_h],$$

where $u^{\psi_{\bar{l}}}(\cdot)$ is the control generated by the feedback (11).

This control strategy consists in three phases:

This control strategy consists in three phases:

1 No intervention until the prevalence I reaches \overline{I} (null control).

This control strategy consists in three phases:

- **1** No intervention until the prevalence I reaches \bar{I} (null control).
- ② Maintain the prevalence I equal to \overline{I} by adjusting the interventions until S reaches S_h or the budget is entirely consumed (singular control).

This control strategy consists in three phases:

- **1** No intervention until the prevalence I reaches \bar{I} (null control).
- ② Maintain the prevalence I equal to \overline{I} by adjusting the interventions until S reaches S_h or the budget is entirely consumed (singular control).
- **3** No longer intervention when $S < S_h$ (null control).

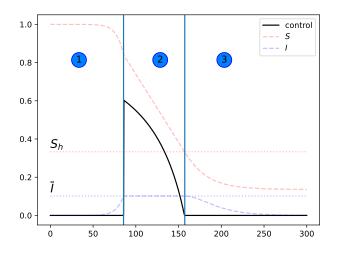


Figure: NSN strategy

Lemma 1

For any $\bar{I} \in [I_0, I_h]$, the maximal value of the control $u^{\psi_{\bar{I}}}(\cdot)$ is given by

$$u_{max}(\bar{I}) := 1 - \frac{S_h}{\bar{S}} < 1,$$

where \bar{S} is solution of

$$\bar{S} - S_h \log \bar{S} = S_0 + I_0 - S_h \log S_0 - \bar{I}.$$

Moreover, any solution given by the NSN strategy verifies

$$\max_{t>0}I(t)=\bar{I}.$$

Computing L^1 norm

Proposition 1

For $u^{\psi_{\bar{l}}}(\cdot)$ one has

$$\mathcal{L}(\bar{I}) = \frac{I_h - \bar{I}}{\beta S_h \bar{I}}, \quad \bar{I} \in [I_0, I_h]. \tag{6}$$

Computing L^1 norm

Proposition 1

For $u^{\psi_{\bar{l}}}(\cdot)$ one has

$$\mathcal{L}(\bar{I}) = \frac{I_h - \bar{I}}{\beta S_h \bar{I}}, \quad \bar{I} \in [I_0, I_h]. \tag{6}$$

Corollary

When $Q \leq \frac{I_h - I_0}{\beta S_h I_0}$, the smallest $\bar{I} \in [I_0, I_h]$ for which the solution with the NSN strategy is admissible, is given by the value

$$\bar{I}^{\star}(Q) := \frac{I_h}{Q\beta S_h + 1} \tag{7}$$

and one has

$$\mathcal{L}(\bar{I}^{\star}(Q)) = Q.$$

Proposition 2 (M-Rapaport)

Let Assumptions 1 and 2 be fulfilled. Then, the NSN feedback is optimal with

$$ar{I} = egin{cases} ar{I}^{\star}(Q), & Q < rac{I_h - I_0}{eta S_h I_0}, \ I_0, & Q \geq rac{I_h - I_0}{eta S_h I_0}, \end{cases}$$

where $\bar{I}^{\star}(Q)$ is defined in (7), and \bar{I} is the optimal value of problem (2).

Proposition 2 (M-Rapaport)

Let Assumptions 1 and 2 be fulfilled. Then, the NSN feedback is optimal with

$$ar{I} = egin{cases} ar{I}^{\star}(Q), & Q < rac{I_h - I_0}{eta S_h I_0}, \ I_0, & Q \geq rac{I_h - I_0}{eta S_h I_0}, \end{cases}$$

where $\bar{I}^{\star}(Q)$ is defined in (7), and \bar{I} is the optimal value of problem (2).

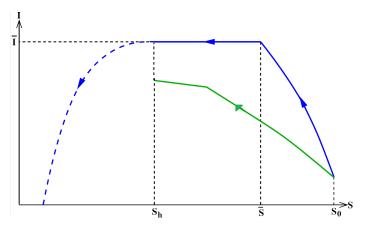
Sketch of proof: Non trivial case $Q < \frac{I_h - I_0}{\beta S_b I_b}$.

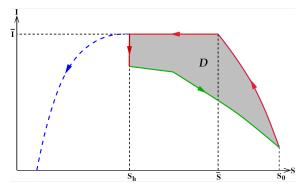
To remember:

$$\dot{C}(t) = -u(t).$$

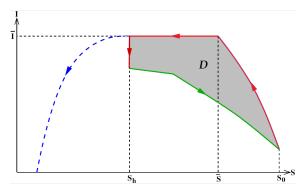
and we pass to the (S, I) plane

NSN strategy: $(S^*(\cdot), I^*(\cdot), C^*(\cdot))$ with $\bar{I} = \bar{I}^*(Q)$, and control $u^*(\cdot)$. Any other solution: $(S(\cdot), I(\cdot), C(\cdot))$ with $\max_t I(t) < \bar{I}$.





$$\Gamma := \frac{\{(\tilde{S}(\tau), \tilde{I}(\tau)), \ \tau \in [0, T]\} \cup}{\{(S(T + t_h - t), I(T + t_h - t)), \ \tau \in [T, T + t_h]\},}$$



$$\Gamma := \{ (\tilde{S}(\tau), \tilde{I}(\tau)), \ \tau \in [0, T] \} \cup \{ (S(T + t_h - t), I(T + t_h - t)), \ \tau \in [T, T + t_h] \},$$

Using Green theorem we proved:

$$\tilde{C}(T) - C(t_h) = \oint_{\Gamma} dC > 0$$

Outline

- Motivation: The covid problem
- 2 Peak minimization on a SIR dynamic
- 3 General models of peak minimization
 - Planar dynamics with L^1 constraints
 - Reformulations
- 4 Conclusion

Formulation general problem

We consider the following dynamical system in a domain $\mathcal{D} \subset \mathbb{R}^{n+1}$.

$$\begin{cases} \dot{x} = f(x, y, u) \\ \dot{y} = g(x, y, u) \end{cases}$$
 (8)

$$\mathcal{U} := \{u(\cdot) : [0, T] \mapsto U, \text{mesurable}\} \text{ and } (x_0, y_0) \in \mathcal{D}, \ T > 0.$$

Formulation general problem

We consider the following dynamical system in a domain $\mathcal{D} \subset \mathbb{R}^{n+1}$.

$$\begin{cases} \dot{x} = f(x, y, u) \\ \dot{y} = g(x, y, u) \end{cases}$$
 (8)

 $\mathcal{U} := \{u(\cdot) : [0, T] \mapsto U$, mesurable $\}$ and $(x_0, y_0) \in \mathcal{D}$, T > 0. The solutions set:

$$S := \{ (x(\cdot), y(\cdot)) \in \mathcal{AC}([0, T], \mathbb{R}^{n+1}), \text{ sol. of (8) for } u(\cdot) \in \mathcal{U} \\ \text{with } (x(0), y(0)) = (x_0, y_0) \}$$

Formulation general problem

We consider the following dynamical system in a domain $\mathcal{D} \subset \mathbb{R}^{n+1}$.

$$\begin{cases} \dot{x} = f(x, y, u) \\ \dot{y} = g(x, y, u) \end{cases}$$
 (8)

 $\mathcal{U}:=\{u(\cdot):[0,T]\mapsto U, \text{mesurable}\}\ \text{and}\ (x_0,y_0)\in\mathcal{D},\ T>0.$ The solutions set:

$$\mathcal{S} := \{ (x(\cdot), y(\cdot)) \in \mathcal{AC}([0, T], \mathbb{R}^{n+1}), \text{ sol. of (8) for } u(\cdot) \in \mathcal{U}$$

with $(x(0), y(0)) = (x_0, y_0) \}$

The optimal control problem:

$$\mathcal{P}: \quad \inf_{u(\cdot) \in \mathcal{U}} \left(\max_{t \in [0,T]} y(t) \right) = \inf_{(x(\cdot),y(\cdot)) \in \mathcal{S}} \left(\max_{t \in [0,T]} y(t) \right)$$

State of art

• L^{∞} -criterion.

$$\inf_{u(\cdot)} \operatorname{ess\,sup} y(t)$$

where $y(t) = \eta(\xi(t))$ with $\xi(\cdot)$ solution of a controlled system $\dot{\xi} = \phi(\xi, u)$, $\xi(t_0) = \xi_0$.

State of art

• L^{∞} -criterion.

$$\inf_{u(\cdot)} \operatorname{ess\,sup} y(t)$$

where $y(t) = \eta(\xi(t))$ with $\xi(\cdot)$ solution of a controlled system $\dot{\xi} = \phi(\xi, u)$, $\xi(t_0) = \xi_0$.

Typically

$$\min \left(\partial_t V + \inf_u \langle \partial_\xi V, \phi(x, u) \rangle , V - \eta \right) = 0.$$

State of art

• L^{∞} -criterion.

$$\inf_{u(\cdot)} \operatorname{ess\,sup} y(t)$$

where $y(t) = \eta(\xi(t))$ with $\xi(\cdot)$ solution of a controlled system $\dot{\xi} = \phi(\xi, u)$, $\xi(t_0) = \xi_0$.

Typically

$$\min\left(\partial_t V + \inf_u \langle \partial_\xi V, \phi(x, u) \rangle \;,\; V - \eta\right) = 0 \;.$$

 There is no practical tools to solve such problems, to the best of our knowledge.

State of art

• L^{∞} -criterion.

$$\inf_{u(\cdot)} \operatorname{ess\,sup} y(t)$$

where $y(t) = \eta(\xi(t))$ with $\xi(\cdot)$ solution of a controlled system $\dot{\xi} = \phi(\xi, u)$, $\xi(t_0) = \xi_0$.

Typically

$$\min\left(\partial_t V + \inf_u \langle \partial_\xi V, \phi(x, u) \rangle \;,\; V - \eta\right) = 0 \;.$$

 There is no practical tools to solve such problems, to the best of our knowledge.

Outline

- Motivation: The covid problem
- 2 Peak minimization on a SIR dynamic
- General models of peak minimization
 - ullet Planar dynamics with L^1 constraints
 - Reformulations
- 4 Conclusion

We consider a dynamics defined on an invariant domain \mathcal{D} of \mathbb{R}^2 $\begin{cases}
\dot{x} &= f_1(x,y) + g_1(x,y)u \\
\dot{y} &= f_2(x,y) + g_2(x,y)u
\end{cases} \quad u \ge 0 \tag{9}$

$$\begin{cases} \dot{y} &= f_2(x,y) + g_2(x,y)u \\ y &= f_2(x,y) + g_2(x,y)u \end{cases} \quad u \ge 0$$
al condition $(x_0, y_0) \in \mathcal{D}$, where f_1, f_2, g_1, g_2 are at least C^1 . We

with initial condition $(x_0, y_0) \in \mathcal{D}$, where f_1 , f_2 , g_1 , g_2 are at least C^1 . We consider the following optimal control problem:

$$\inf_{u(\cdot)} \sup_{t \ge 0} y(t), \tag{10}$$

subject to the constraint

$$\int_0^{+\infty} u(t)dt \leq K,$$

Let us define the sub-domains

$$\mathcal{D}_{\pm} := \{(x,y) \in \mathcal{D} \; ; \; \pm f_2(x,y) > 0\}, \; \mathcal{D}_0 := \{(x,y) \in \mathcal{D} \; ; \; f_2(x,y) = 0\}$$

and the function

$$\Delta(x, y) := f_2(x, y)g_1(x, y) - f_1(x, y)g_2(x, y).$$

Assumptions.

- With u=0, the domain \mathcal{D}_- is invariant and for any initial condition in \mathcal{D}_+ , the solution enters the domain \mathcal{D}_- in finite time.
- ② For any $(x,y) \in \mathcal{D}_+$, one has $f_1(x,y) < 0$ and $f_2(x,y) + g_2(x,y) < 0$
- **3** For any (x,y) in \mathcal{D}_+ , one has $\Delta(x,y) < 0$ and

$$\frac{\partial f_2(x,y)}{\partial x} > 0$$
 and $\frac{\partial}{\partial y} \left(\frac{f_2(x,y)}{\Delta(x,y)} \right) > 0$

• For any $(x,y) \in \mathcal{D}_0$, one has $g_2(x,y) < 0$ and

$$\operatorname{sgn}(\nabla f_2(x,y).f(x,y)) + \operatorname{sgn}(\nabla f_2(x,y).g(x,y)) = 0$$

(where the sgn function is defined as $\mathrm{sgn}(0)=0$ and $\mathrm{sgn}(\xi)=\xi/|\xi|$ for $\xi\neq 0$).

Definition 2

For $\bar{y} \in [y_0, y_{max}]$, consider the feedback control

$$\psi_{\bar{y}}(x,y) := \begin{cases} k(x) := -\frac{f_2(x,\bar{y})}{g_2(x,\bar{y})}, & \text{if } y = \bar{y} \text{ and } (x,\bar{y}) \in \mathcal{D}_+, \\ 0, & \text{otherwise.} \end{cases}$$
(11)

Proposition 3

For any $\bar{y} \in [y_0, y_{max}]$, one has

$$\mathcal{L}(\bar{y}) := \int_0^{+\infty} u^{\psi_{\bar{y}}}(t)dt = \int_{x_h(\bar{y})}^{\bar{x}(\bar{y})} \frac{-f_2(x,\bar{y})}{\Delta(x,\bar{y})} dx \tag{12}$$

where $x_h(\bar{y}) := \max\{x \leq \bar{x}(\bar{y}); f_2(x,\bar{y}) = 0\}$. Moreover, the map $\bar{y} \mapsto \mathcal{L}(\bar{y})$ is **decreasing**.

Proposition 4

Assume one has

$$\frac{\partial}{\partial y} \left(\frac{f_2(x,y)}{\Delta(x,y)} \right) + \frac{\partial}{\partial x} \left(\frac{f_1(x,y)}{\Delta(x,y)} \right) > 0, \quad (x,y) \in \mathcal{D}_+, \ y \le y_{max} \quad (13)$$

If $\mathcal{L}(y_0) > K$, then there exists $y^* \in [y_0, y_{max}]$ such that $\mathcal{L}(y^*) = K$ and the feedback ψ_{v^*} is optimal.

Proposition 4

Assume one has

$$\frac{\partial}{\partial y} \left(\frac{f_2(x,y)}{\Delta(x,y)} \right) + \frac{\partial}{\partial x} \left(\frac{f_1(x,y)}{\Delta(x,y)} \right) > 0, \quad (x,y) \in \mathcal{D}_+, \ y \le y_{max} \quad (13)$$

If $\mathcal{L}(y_0) > K$, then there exists $y^* \in [y_0, y_{max}]$ such that $\mathcal{L}(y^*) = K$ and the feedback ψ_{v^*} is optimal.

Examples 1

The SIR model presented.

Examples

Examples 2

The resource-consumer (or batch bioprocess) model where the control limits the contact between the resource and the consumer

$$\begin{cases} \dot{x} = -\frac{xy}{1+x}(1-u) \\ \dot{y} = \frac{xy}{1+x}(1-u) - \alpha y \end{cases} \quad u \in [0,1]$$

Examples

Examples 2

The resource-consumer (or batch bioprocess) model where the control limits the contact between the resource and the consumer

$$\begin{cases} \dot{x} = -\frac{xy}{1+x}(1-u) \\ \dot{y} = \frac{xy}{1+x}(1-u) - \alpha y \end{cases} \quad u \in [0,1]$$

Examples 3

The same resource-consumer model as the previous example but with a ratio-dependent growth

$$\begin{cases} \dot{x} = -\frac{xy}{x+y}(1-u) \\ \dot{y} = \frac{xy}{x+y}(1-u) - \alpha y \end{cases} \quad u \in [0,1]$$

Outline

- Motivation: The covid problem
- 2 Peak minimization on a SIR dynamic
- General models of peak minimization
 - Planar dynamics with L^1 constraints
 - Reformulations
- 4 Conclusion

The first basic reformulation is

$$\mathcal{P}_0: \inf_{u(\cdot)\in\mathcal{U}} z(T)$$

for the extended dynamics in $\mathcal{D} \times \mathbb{R}$

$$\begin{cases} \dot{x} = f(x, y, u) \\ \dot{y} = g(x, y, u) \\ \dot{z} = 0 \end{cases}$$

under the state constraint

$$C: \quad z(t)-y(t)\geq 0, \ t\in [0,T]$$

where $(x(0), y(0)) = (x_0, y_0)$ and z(0) is free .

The first basic reformulation is

$$\mathcal{P}_1: \inf_{u(\cdot)\in\mathcal{U}} z(T)$$

for the extended dynamics in $\mathcal{D} \times \mathbb{R}$

$$\begin{cases} \dot{x} = f(x, y, u) \\ \dot{y} = g(x, y, u) \\ \dot{z} = \max(g(x, y, u), 0)(1 - v) \quad , v \in [0, 1] \end{cases}$$

under the state constraint

$$C: \quad z(t)-y(t)\geq 0, \ t\in [0,T]$$

where $(x(0), y(0)) = (x_0, y_0)$ and $z(0) = y_0$.

The first basic reformulation is

$$\mathcal{P}_2: \inf_{u(\cdot)\in\mathcal{U}} z(T)$$

for the extended dynamics in $\mathcal{D} \times \mathbb{R}$

$$\begin{cases} \dot{x} = f(x, y, u) \\ \dot{y} = g(x, y, u) \\ \dot{z} = \max(g(x, y, u), 0)(1 - v) , v \in [0, 1] \end{cases}$$

under the state constraint

$$\mathcal{C}_m: \max(y(t)-z(t),0)(1-v(t))+z(t)-y(t)\geq 0, \quad \text{a.e. } t\in [0,T]$$
 where $(x(0),y(0))=(x_0,y_0)$ and $z(0)=y_0$.

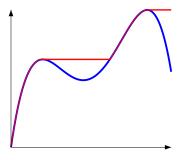


Figure: Illustration of the function z (red) corresponding to a function y (blue)

We posit $\Pi = (x, y, z) \in \mathcal{D} \times \mathbb{R}$ with dynamic:

$$\dot{\Pi} \in F(\Pi) := \bigcup_{(u,v) \in U \times [0,1]} \begin{bmatrix} f(x,y,u) \\ g(x,y,u) \\ h(x,y,z,u,v) \end{bmatrix}$$
(14)

and

$$h(x,y,z,u,v) = \max(g(x,y,u),0)(1-v\mathbb{1}_{\mathbb{R}^+}(z-y)).$$

Let $\mathcal{S}_\ell := \{\Pi(\cdot) \in AC., \dot{\Pi} \in F(\Pi) \text{ and } \Pi(0) = (x_0,y_0,y_0)$

$$\mathcal{P}_3: \inf_{\Pi(t)\in\mathcal{S}_s} z(T).$$

We posit $\Pi = (x, y, z) \in \mathcal{D} \times \mathbb{R}$ with dynamic:

$$\dot{\Pi} \in F(\Pi) := \bigcup_{(u,v) \in U \times [0,1]} \begin{bmatrix} f(x,y,u) \\ g(x,y,u) \\ h(x,y,z,u,v) \end{bmatrix}$$
(14)

and

$$h(x,y,z,u,v) = \max(g(x,y,u),0)(1-v\mathbb{1}_{\mathbb{R}^+}(z-y)).$$
 Let $\mathcal{S}_\ell := \{\Pi(\cdot) \in AC., \dot{\Pi} \in F(\Pi) \text{ and } \Pi(0) = (x_0,y_0,y_0)$ $\mathcal{P}_3 : \inf_{\Pi(\cdot) \in \mathcal{S}_\ell} z(T).$

Reformulation \mathcal{P}_3^{θ}

A dynamic parameterized by $\theta > 0$

$$\begin{cases} \dot{x} = f(x, y, u) \\ \dot{y} = g(x, y, u) \\ \dot{z} = h_{\theta}(x, y, z, u, v) \end{cases}$$
(15)

with

$$h_{\theta}(x, y, z, u, v) = \max(g(x, y, u), 0)(1 - v e^{-\theta \max(y - z, 0)})$$

The family of Mayer problems

$$\mathcal{P}_3^{\theta}: \inf_{\Pi(\cdot) \in \mathcal{S}_{\theta}} z(T)$$

where S_{θ} denotes the set of absolutely continuous solutions $\Pi(\cdot) = (x(\cdot), y(\cdot), z(\cdot))$ of (15) for the initial condition $\Pi(0) = (x_0, y_0, y_0)$

Returning to SIR model

Remembering the dynamic

$$\begin{split} \dot{S}(t) &= -(1 - u(t))\beta S(t)I(t) \\ \dot{I}(t) &= (1 - u(t))\beta S(t)I(t) - \gamma I(t) \\ \dot{C}(t) &= -u(t), \end{split}$$

Returning to SIR model

Remembering the dynamic

$$\dot{S}(t) = -(1 - u(t))\beta S(t)I(t)
\dot{I}(t) = (1 - u(t))\beta S(t)I(t) - \gamma I(t)
\dot{C}(t) = -u(t),$$

with initial condition (S_0, I_0, Q) and $C(T) \ge 0$

Returning to SIR model

Remembering the dynamic

$$\dot{S}(t) = -(1 - u(t))\beta S(t)I(t)
\dot{I}(t) = (1 - u(t))\beta S(t)I(t) - \gamma I(t)
\dot{C}(t) = -u(t),$$

with initial condition (S_0, I_0, Q) and $C(T) \ge 0$ and we want

$$\min_{u}\max_{t\in[0,T]}I(t)$$

Numerical examples

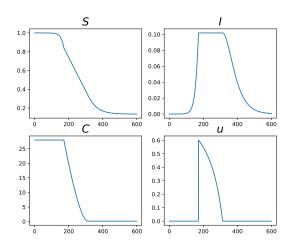


Figure: The optimal solution for the SIR problem using NSN strategy

To improve convergence we used the approximation:

$$rac{\log\left(e^{\lambda\xi}+1
ight)}{\lambda} \mathop{\longrightarrow}\limits_{\lambda o +\infty} \mathsf{max}(\xi,0), \quad \xi \in \mathbb{R}$$

To improve convergence we used the approximation:

$$rac{\log\left(e^{\lambda\xi}+1
ight)}{\lambda} \mathop{\longrightarrow}\limits_{\lambda o +\infty} \max(\xi,0), \quad \xi \in \mathbb{R}$$

Using $\lambda=100$ we obtain

problem	$\max_{t \in [0,T]} y(t)$	computation time
\mathcal{P}_0	0.1015	10 s
\mathcal{P}_1	0.1015	12 s
\mathcal{P}_2	0.1015	13 <i>s</i>

Table: Comparison of performances for problems \mathcal{P}_0 , \mathcal{P}_1 , \mathcal{P}_2

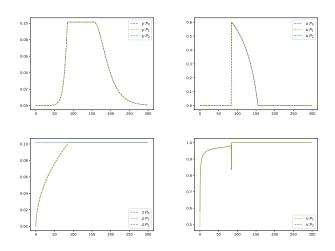


Figure: Comparisons of numerical results for the methods \mathcal{P}_0 , \mathcal{P}_1 , \mathcal{P}_2

Numerical solutions \mathcal{P}_3^{θ}

The function h_{θ} is approximated by the expression

$$h_{ heta}(x,y,z,u,v) \simeq rac{\log\left(e^{\lambda_1 g(x,y,u)}+1
ight)}{\lambda_1} \left(1-ve^{rac{ heta}{\lambda_2}\log\left(e^{\lambda_2(y-z)}+1
ight)}
ight)$$

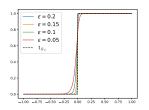
which depends on three parameters λ_1 , λ_2 and θ .

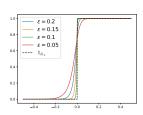
Numerical solutions \mathcal{P}_3^{θ}

The function h_{θ} is approximated by the expression

$$h_{ heta}(x,y,z,u,v) \simeq rac{\log\left(e^{\lambda_1 g(x,y,u)}+1
ight)}{\lambda_1} \left(1-ve^{rac{ heta}{\lambda_2}\log\left(e^{\lambda_2(y-z)}+1
ight)}
ight)$$

which depends on three parameters λ_1 , λ_2 and θ . We can approximate indicator function depending of a parameter $\varepsilon = \varepsilon(\theta, \lambda_2)$





arepsilon	θ	<i>z</i> (<i>T</i>)	$\max_{t \in [0,T]} y(t)$	computation time
0.2	40.18	0.0684	0.1038	80 <i>s</i>
0.15	84.31	0.0823	0.1038	65 <i>s</i>
0.1	230.26	0.0954	0.1037	51 <i>s</i>
0.075	460.49	0.0993	0.1050	83 <i>s</i>
0.05	1198.29	0.1010	0.1036	97 <i>s</i>

Table: Comparison of performances for problem $\mathcal{P}_3^{ heta}$

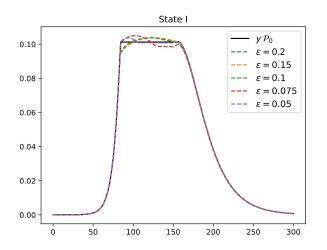


Figure: Comparison of the numerical results for problem $\mathcal{P}_3^{ heta}$

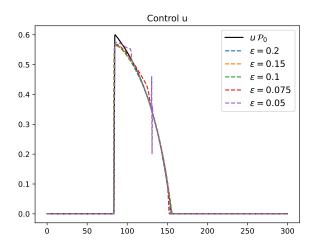


Figure: Comparison of the numerical results for problem $\mathcal{P}_3^{ heta}$

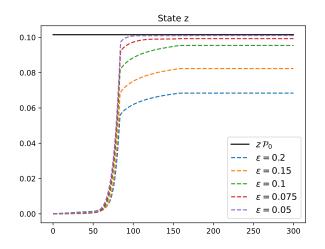


Figure: Comparison of the numerical results for problem $\mathcal{P}_3^{ heta}$

A simple SIR-vector model (inspired from Wei, Li, Matcheva 2007)

The host population follow a SIR dynamic and we call V(t) to the portion infectious vector (ex: mosquitoes) at time t.

$$\dot{S}(t) = -\beta S(t)V(t)
\dot{I}(t) = \beta S(t)V(t) - \gamma I(t)
\dot{V}(t) = \alpha I(t)(1 - V(t)) - \mu V(t) - u(t)V(t)$$

$$\min_{u} \max_{t} I(t), \quad \int_{0}^{T} u \leq Q$$

A simple SIR-vector model (inspired from Wei, Li, Matcheva 2007)

The host population follow a SIR dynamic and we call V(t) to the portion infectious vector (ex: mosquitoes) at time t.

$$\dot{S}(t) = -\beta S(t)V(t)$$

$$\dot{I}(t) = \beta S(t)V(t) - \gamma I(t)$$

$$\dot{V}(t) = \alpha I(t)(1 - V(t)) - \mu V(t) - u(t)V(t)$$

$$\min_{u} \max_{t} I(t), \quad \int_{0}^{T} u \leq Q$$

β	γ	α	$\mid \mu \mid$	T	Q	<i>S</i> (0)	<i>I</i> (0)	V(0)	Ī
0.21	0.07	0.12	0.02	300	28	0.999	0.001	0.005	0.06

Solution

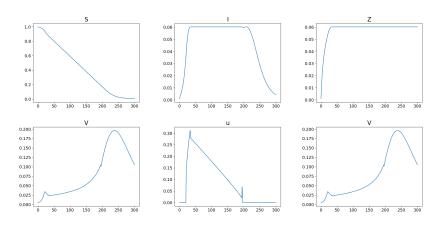
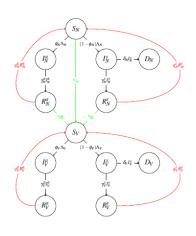


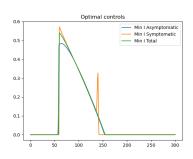
Figure: Solutions using reformulations

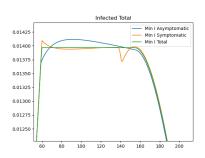
A model including vaccines

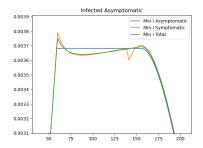


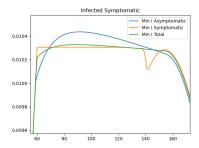
$$\Lambda_i(t) = (1 - f_i(t)) \left(\sum_{j \in \{N, V, V_r\}} ((1 - u(t)) eta_{i,j}^{s} I_j^{s}(t) + (1 - \mu) eta_{i,j}^{s} I_j^{s}(t)) \right) S_i(t)$$

Solution

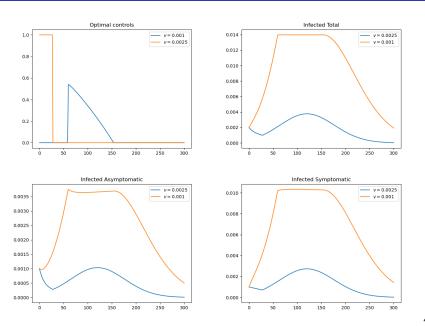








Solution increasing vaccination speed



Summary

Formulation	\mathcal{P}_0	\mathcal{P}_1 or \mathcal{P}_2	\mathcal{P}_3	$\mathcal{P}_3^{ heta}$
suitable to direct methods	yes	yes	no	yes
suitable to HJB methods	no	yes	yes	yes
suitable to shooting methods	no	no/yes	no	yes
provides approximations from below	no	no	no	yes

Table: Comparison of the different formulations

Outline

- Motivation: The covid problem
- 2 Peak minimization on a SIR dynamic
- General models of peak minimization
 - Planar dynamics with L^1 constraints
 - Reformulations
- 4 Conclusion

• We have proved that the NSN strategy minimize the peak of infected over a SIR model with a L^1 constraint on the control.

- We have proved that the NSN strategy minimize the peak of infected over a SIR model with a L^1 constraint on the control.
- We are interested on the study of generalize the NSN strategy on more general planar dynamics. Preliminary results were exhibited.

- We have proved that the NSN strategy minimize the peak of infected over a SIR model with a L^1 constraint on the control.
- We are interested on the study of generalize the NSN strategy on more general planar dynamics. Preliminary results were exhibited.
- We have proposed several reformulations which can be use for general cases of peaks minimization.

- We have proved that the NSN strategy minimize the peak of infected over a SIR model with a L^1 constraint on the control.
- We are interested on the study of generalize the NSN strategy on more general planar dynamics. Preliminary results were exhibited.
- We have proposed several reformulations which can be use for general cases of peaks minimization.
- The study of necessary optimality conditions using this reformulations will be the matter of a future work.

Thanks

Gracias

Merci