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High peaks overcrowd the healthy system.
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Figure: France's data from www.worldometers.info
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© Peak minimization on a SIR dynamic
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SIR model

A classical SIR model corresponds to:

$(6) = —BS(D)I(1)
i(t) = BS(£)I(8) — i)

R(t) = 71(t)
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SIR model

A classical SIR model corresponds to:

$(t) = —BS(1)/(1)
I(t) = B5(8)1(¢) = 71(t)
R(t) = ~1(¢)
where:
@ 5(t): portion of susceptible individuals at time t.
@ /(t): portion of infected individuals at time ¢.
e R(t): portion of recovered individuals at time t¢.
@ (3: transmission rate.

@ 7y: recovery rate.
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SIR model

A classical SIR model corresponds to:

$(t) = —BS(1)/(1)
I(t) = B5(8)1(¢) = 71(t)
R(t) =~I(t)
where:
@ 5(t): portion of susceptible individuals at time t.
@ /(t): portion of infected individuals at time ¢.
e R(t): portion of recovered individuals at time t¢.
@ (3: transmission rate.
@ ~: recovery rate.
And
S(t)+1(t)+ R(t)=1,Vt>0
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Problem formulation

We consider the identical dynamic

5(t) = — (1 - u(1))BS(1)I(t)
I(t) = (1 — u(£))BS(t)I(t) — 7I(t)

with the positive initial condition (5(0), /(0)) = (So, k), and Sp + lo < 1.
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Problem formulation

We consider the identical dynamic

5(t) = — (1 - u(t))BS(8)I(t)

I(t) = (1 — u())BS(t)I(t) — vI(t)
with the positive initial condition (5(0),/(0)) =
We add the constraint

(50, /0) and So+ p < 1.

o
/ u(t)dt < Q. (1)
0
We want:
inf I(t 2
u(l-r)]EZ/l Tzaé( ( )’ ( )

where U denotes the set of measurable functions u(-) that take values in
[0, 1] and satisfying (1).
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Equivalently, one can consider the extended dynamics.

$(8) = ~BS(8)I(1 - u(t)),
i(t) = BS(B)I(1)(1 - u(t)) —7I(t), 3)

C(t) = —u(t),
with the initial condition (5(0), /(0), C(0)) = (So, lp, @) and the state

constraint
C(t)>0, t>0.
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The basic reproduction number Ry is larger than one.

Ro = 52 > 1.

v
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The basic reproduction number Ry is larger than one.

Ro = 52 > 1.

v

Let us denote the immunity threshold

Sp = 73671 =—-<1

s
g

We consider the non trivial case:

So > Sp.
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The NSN (null-singular-null) strategy

The maximum of /(-) in the not controlled case is:

S
Ih =l + So — Sp — Shlog <S°> . (4)
h
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The NSN (null-singular-null) strategy

The maximum of /(-) in the not controlled case is:

S
Ih =l + So — Sp — Shlog (;) (4)
h

For I € [ly, Iy], consider the feedback control

1-%, ifl=Iand S> S,

0, otherwise.

¥i(l,S) = { (5)

We denote the L1 norm associated to the NSN control

£(l) = /0+°° Wit T € [lo, bl

where u¥1(-) is the control generated by the feedback (11).
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The NSN (null-singular-null) strategy

This control strategy consists in three phases:
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@ No intervention until the prevalence / reaches I (null control).
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The NSN (null-singular-null) strategy

This control strategy consists in three phases:
@ No intervention until the prevalence / reaches I (null control).

@ Maintain the prevalence / equal to I by adjusting the interventions
until S reaches Sy, or the budget is entirely consumed (singular
control).
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The NSN (null-singular-null) strategy

This control strategy consists in three phases:
@ No intervention until the prevalence / reaches I (null control).
@ Maintain the prevalence / equal to I by adjusting the interventions
until S reaches Sy, or the budget is entirely consumed (singular

control).

© No longer intervention when S < Sp (null control).
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The NSN (null-singular-null) strategy
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Figure: NSN strategy
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The NSN (null-singular-null) strategy

For any I € [ly, Iy], the maximal value of the control u¥i(-) is given by

Umax(l_) =1- % <1,

where S is solution of
S —SplogS =Sy + Iy — Splog So — .

Moreover, any solution given by the NSN strategy verifies

rpza(;(l(t): l.
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Computing L' norm

Proposition 1

For u¥i(-) one has B
A .
LN =2""" Tell ] 6
(=2t Telbh] )

12/42



Computing L' norm

Proposition 1

For u¥i(-) one has

£(l) = ZT_;JI T € [lo, Iy). (6)

Corollary

When Q < g’s ',0, the smallest I € [l, /5] for which the solution with the

NSN strategy is admissible, is given by the value

- . lh
and one has B
L(I"(Q)) = Q.
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Main result

Proposition 2 (M-Rapaport)
Let Assumptions 1 and 2 be fulfilled. Then, the NSN feedback is optimal

with

P {TQ), @<t
b, Q> #53

where 1*(Q) is defined in (7), and I is the optimal value of problem (2).

v
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Main result

Proposition 2 (M-Rapaport)
Let Assumptions 1 and 2 be fulfilled. Then, the NSN feedback is optimal

with

- {P(Q)’ Q< 5

Ih—1Io
o, Q> BShly’

where 1*(Q) is defined in (7), and I is the optimal value of problem (2).

v

Sketch of proof: Non trivial case Q < gs_h’,z

To remember:

and we pass to the (S, /) plane
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Main result

NSN strategy: (S*(-), /*(-), C*()) with I = I*(Q), and control u*(-).
), C(-)) with max, I(t) < I.

Any other solution: (S(-). /(-

|
w
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Main result

S S So

M= {(5(r),i(r)), €0, TI}U
{(S(T+th—1t),(T+th—1t)), T[T, T+ tp]},
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Main result

S S So

= {(5(7’), 7(7‘)), Te[0, T]}U
{(S(T+th—1t),(T+th—1t)), T[T, T+ tp]},

Using Green theorem we proved:
C(T) - C(ty) = ?{dc >0
r
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© General models of peak minimization
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Formulation general problem

We consider the following dynamical system in a domain D ¢ R+,

x = f(x,y,u)
{ y:g(x,y,u) (8)

U :={u(-): [0, T] — U, mesurable} and (xo,y0) € D, T > 0.

16 /42



Formulation general problem

We consider the following dynamical system in a domain D ¢ R+,

x = f(x,y,u)
{ y:g(x,y,u) (8)
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Formulation general problem

We consider the following dynamical system in a domain D C R™1.

{ x = f(x,y,u)
y:g(X,y, u)

U :={u(-): [0, T] — U, mesurable} and (xo,y0) € D, T > 0.
The solutions set:

S = {(x(),y(-)) € AC([0, T],R"*1), sol. of (8) for u(-) cU
with (x(0),y(0)) = (xo0, y0)}

The optimal control problem:
P: inf < max (t)) = inf ( (t)>
u(-)eU \t€[0,T] (x(-)y(-))eS [0 T]
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State of art

@ [®°-criterion.

inf esssup y(t)
u(*) tefty, T]

where y(t) = n(£(t)) with &(-) solution of a controlled system
§ = ¢(&, u), £(to) = So-
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© General models of peak minimization
@ Planar dynamics with L' constraints
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We consider a dynamics defined on an invariant domain D of R?

x = filx,y)+gx y)u
{5’ = f(x,y)+ g(x,y)u u=0 (9)

with initial condition (xg, o) € D, where fi, f2, g1, g are at least Cl. We
consider the following optimal control problem:

inf sup y(t), (10)
u(-) £>0

subject to the constraint

+00
/ u(t)dt < K,
0

Let us define the sub-domains
Dy :={(x,y) € D; £h(x,y) >0}, Dy:={(x,y) € D; fax,y) =0}
and the function

A(x,y) = h(x, y)g(x,y) — fi(x, y)g(x, y).
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@ With u =0, the domain D_ is invariant and for any initial condition
in D4, the solution enters the domain D_ in finite time.

@ For any (x,y) € Dy, one has fi(x,y) < 0 and f(x,y) + g(x,y) <0
© For any (x,y) in Dy, one has A(x,y) < 0 and

of(x, y) 9 [ h(xy)
Ix >0 and ay \ A(x,y) >0

@ For any (x,y) € Dy, one has g»(x,y) < 0 and

sgn(Vh(x, y).f(x,y)) +sgn(VH(x,y).g(x,y)) =0

(where the sgn function is defined as sgn(0) = 0 and sgn(&) = £/[¢|
for £ #0).
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Definition 2
For ¥ € [y0, Ymax], consider the feedback control

Yy(x,y) = {k(x) . _M’ ify=yand (x,y) €Dy,

82(x, ) (11)

0, otherwise.

Proposition 3

For any y € [yo, Ymax|, one has

_ —+00 _ )_((}_/) f (X, }7)
= u¥ = Al D) 2 x
L(y) : /o (t)dt /xh(y) (<.7) d (12)

where xp(y) = max{x < X(y); f2(x,y) = 0}. Moreover, the map
y +— L(y) is decreasing.
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Proposition 4

Assume one has

9 (h(xy) 9 (f(x.y)

— [ ———= — [ ——= ] >0, ) €D, y < Ymax 13
ay (A(ny) + Ox A(X,y) (X y) +5 Y Yma ( )
If L(yo) > K, then there exists y* € [yo, Ymax| such that L(y*) = K and
the feedback 1« is optimal.
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Proposition 4

Assume one has

ﬁ f2(X7y) i fl(X;}/) X
ay (A(X,y)) + Ox (A(x,y)) >0, ( ’y) €D+> Y < Ymax (13)

If L(yo) > K, then there exists y* € [yo, Ymax| such that L(y*) = K and
the feedback 1« is optimal.

The SIR model presented.
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Examples

Examples 2

The resource-consumer (or batch bioprocess) model where the control
limits the contact between the resource and the consumer

{ X = 1—|—X(1_u)

u € [0,1]
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The resource-consumer (or batch bioprocess) model where the control
limits the contact between the resource and the consumer

{ X = 1+X(]‘_u)

y = 1+X(l—u)—ozy

u € [0,1]

The same resource-consumer model as the previous example but with a
ratio-dependent growth

X = 1—u
x| ) u e [0,1]

.)./ = X+y(1_u)_ay
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© General models of peak minimization

@ Reformulations
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Reformulation P

The first basic reformulation is

for the extended dynamics in D x R

x = f(x,y,u)
y =g(x,y,u)
=0

under the state constraint
C: z(t)—y(t)>0,te]0,T]

where (x(0),y(0)) = (xo0, yo) and z(0) is free .
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Reformulation P;

The first basic reformulation is

for the extended dynamics in D x R

x = f(x,y,u)
y :g(X,y, U)
z=max(g(x,y,u),0)(1—-v) ,vel01]

under the state constraint
C: z(t)—y(t)>0,te]0,T]

where (x(0),y(0)) = (x0, y0) and z(0) = yp.
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Reformulation P,

The first basic reformulation is

for the extended dynamics in D x R

x = f(x,y,u)

y=g(x,y,u)

z':max(g(x,y, U),O)(l—V) 7‘/6[071]
under the state constraint

Cm: max(y(t) — z(t),0)(1 — v(t)) + z(t) —y(t) >0, ae te]0,T]

where (x(0),y(0)) = (x0, y0) and z(0) = yp.
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o

Figure: lllustration of the function z (red) corresponding to a function y (blue)
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Reformulation P;

We posit 1 = (x,y,z) € D x R with dynamic:
_ f(x,y,u)
nerm:= Y g(x,y,u) (14)
(uv)eUx[oa] | h(x,y,z,u,v)

and
h(X7y727 u, V) = max(g(x,y, U), 0)(1 - VILRJr(Z - .y))
Let S, := {M(:) € AC.,11 € F(MN) and N(0) = (x0, Yo, o)

Ps - inf T).
3 ”(I‘?GSZ 2(T)

25 /42



Reformulation P;

We posit 1 = (x,y,z) € D x R with dynamic:
_ f(x,y,u)
nerm:= Y g(x,y,u) (14)
(uv)eUx[oa] | h(x,y,z,u,v)

and
h(X>y727 u, V) - max(g(x7y, U),O)(l - VJ]-]R*(Z - .y))
Let S, := {M(:) € AC.,11 € F(MN) and N(0) = (x0, Yo, o)

Ps - inf T).
3 ”(I‘?GSZ 2(T)
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Reformulation 733?

A dynamic parameterized by 6 > 0

x=f(x,y,u)
y =g(x,y,u) (15)
z=hy(x,y,z,u,v)

with
ho(x,y, 2, u,v) = max(g(x, y, u),0)(1 — v e~/ malr=20))
The family of Mayer problems

0. inf T
P3 rl(l-;]ESQ Z( )

where Sy denotes the set of absolutely continuous solutions
() = (x(), y(-), z(-)) of (15) for the initial condition M(0) = (xo, Y0, o)
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Returning to SIR model

Remembering the dynamic

5(t) =~ (1 - u(1))BS(1)I(t)
I(t) = (1 — u())BS(t)I(t) — 7I(t)
C(t) = — u(v),

27 /42



Returning to SIR model

Remembering the dynamic

5(t) =~ (1 - u(1))BS(1)I(t)
I(t) = (1 — u())BS(t)I(t) — 7I(t)
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Returning to SIR model

Remembering the dynamic

5(t) =~ (1 - u(1))BS(1)I(t)
I(t) = (1 — u())BS(t)I(t) — 7I(t)
C(t) = — u(v),

with initial condition (Sg, o, Q) and C(T) > 0 and we want

min max_/(t)
u tel0,T)

Bl v [ T[l@] S0 |«
0.210.07 [ 30028 |1—-10° |10

0 I
~¢ ] 0.1015
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Numerical examples

10 0.10
0.8 0.08
06 0.06
0.04
0.4
0.02
0.2
0.00
0 200 400 600 0 200 400 600
C u
0.6
25
0.5
20 04
15 03
10 0.2
5 0.1
0 0.0
0 200 400 600 0 200 400 600

Figure: The optimal solution for the SIR problem using NSN strategy
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Numerical solutions

To improve convergence we used the approximation:

log (e* +1)
B )\_)—+>OO max(£,0), £€R
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Numerical solutions

To improve convergence we used the approximation:

log (e* +1)
B )\_)—+>OO max(£,0), £€R

Using A = 100 we obtain

problem | max y(t) | computation time
te[0,T]
Po 0.1015 10s
P1 0.1015 12s
P 0.1015 13s

Table: Comparison of performances for problems Py, Py, P
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Numerical solutions
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Figure: Comparisons of numerical results for the methods Py, P1, P
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Numerical solutions P

The function hyg is approximated by the expression

lo e)‘lg(Xv}/;U) +1 0 )
ho(x,y,z,u,v) ~ g( ) (1—vekz IOg(EQY +1))

A1

which depends on three parameters A1, A» and 6.
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Numerical solutions P

The function hyg is approximated by the expression

log (ehg(&y,U) +1)

hg(X,y,Z,U, V)2 )\1

(1- ve's 'Og(E*Q‘Y*“H))

which depends on three parameters A1, A» and . We can approximate
indicator function depending of a parameter ¢ = £(6, \2)

] — e=02
£=0.15
o1 — e=01
—— €=0.05

¥l — e=02

£=0.15

31/42



Numerical solutions

€ 0 z(T) | max y(t) | computation time
te[0,T]
0.2 40.18 | 0.0684 | 0.1038 80s
0.15 | 84.31 | 0.0823 0.1038 65s
0.1 230.26 | 0.0954 0.1037 51s
0.075 | 460.49 | 0.0993 0.1050 83s
0.05 | 1198.29 | 0.1010 0.1036 97s

Table: Comparison of performances for problem 7§
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Numerical solutions

State |

0.10 A

0.08 +

0.06

0.04 A

0.02 A

0.00 A

T T T T T
0 50 100 150 200 250 300

Figure: Comparison of the numerical results for problem P
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Numerical solutions

Control u
0'6. — Upo
--- £=0.2
0.5 --- €=0.15
--- £=0.1
0.4 --- £=0.075
--- £=0.05
0.3 -
0.2 1
0.1
0.0
0 50 100 150 200 250 300

Figure: Comparison of the numerical results for problem P
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Numerical solutions

State z

0.10 A T o-—-——-——-—-——-———————-——------=

1,77 T mmmmmm s m s m—m—————

/,”

e

0.08 A T
//’

/e
0.06 o

N

N

o

d
0.04 A — 2P,

.." --- £=02
.O.'.' --- £=0.15
0.02 A .,; e =01
N --- £=0.075
Q&’
0.00 rcmmmmss? --- £=0.05
0 50 100 150 200 250 300

Figure: Comparison of the numerical results for problem P
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A simple SIR-vector model (inspired from Wei, Li,

Matcheva 2007)

The host population follow a SIR dynamic and we call V/(t) to the portion
infectious vector (ex: mosquitoes) at time t.

5(t) :—/35( V()
I(t) =BS(t)V(t) = 7I(2)
V(t) =al(t)(1— V(1)) — pV(t) — u(t) V(1)

T
min max /(t), /USQ
u ot 0
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A simple SIR-vector model (inspired from Wei, Li,

Matcheva 2007)

The host population follow a SIR dynamic and we call V/(t) to the portion
infectious vector (ex: mosquitoes) at time t.

5(t) :—/35( V()
I(t) =BS(t)V(t) = 7I(2)
V(t) =al(t)(1— V(1)) — pV(t) — u(t) V(1)

u

T
min m?xl(t), / u< @
0

flafe|p|[T[Q[SO]N)][VO)] !
0.21 [ 0.07 | 0.12 | 0.02 | 300 | 28 | 0.999 | 0.001 | 0.005 || 0.06
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Solution

S | z
10{ 006 0.06
0zl 005 005
004 0.04
061
003 003
0.4+
002 0.02
02
001 001
0,01 0.00 0.00
G 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
\ u Vv
02007 0.200
030
0175+ 0175
025
0150 0150
0.125+ 020 0.125
0100+ 015 0.100
0075+ 0075
010
0,050+ 0.050
005
0,025+ 0.025
0.000 4 000 0.000
G 50 100 150 200 250 300 0 0 100 150 200 250 300 0 50 100 150 200 250 300

Figure: Solutions using reformulations
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Solution

0.0039

0.0038

0.0037

0.0036

0.0035

0.0034

0.0033

0.0032

0.0031

Optimal controls

—— Min | Asymptomatic
—— Min | Symptomatic
— Min | Total

Infected Asymptomatic

—— Min | Asymptomatic
—— Min | Symptomatic
— Min | Total

50 75 100 125 150 175 200

0.01425

0.01400

0.01375

0.01350

0.01325

0.01300

0.01275

0.01250

0.0104

0.0102

0.0100

0.0098

0.0096

Infected Total

—— Min | Asymptomatic
—— Min | Symptomatic

’\/\ —— Min | Total

Infected Symptomatic

—— Min | Asymptomatic
—— Min | Symptomatic
— Min I Total
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Solution increasing vaccination speed

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

Optimal controls

— — v=0.001

Infected Asymptomatic

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0.000

0.010

0.008

0.006

0.004

0.002

0.000

Infected Total

Infected Symptomatic
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Formulation ‘ Po ‘ Py or P> ‘ Ps ‘ 733‘?
suitable to direct methods yes yes no | yes
suitable to HJB methods no yes yes | yes
suitable to shooting methods no | no/yes | no | yes
provides approximations from below | no no no | yes

Table: Comparison of the different formulations
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Conclusion and ongoing work

@ We have proved that the NSN strategy minimize the peak of infected
over a SIR model with a L! constraint on the control.

@ We are interested on the study of generalize the NSN strategy on
more general planar dynamics. Preliminary results were exhibited.

@ We have proposed several reformulations which can be use for general
cases of peaks minimization.

@ The study of necessary optimality conditions using this reformulations
will be the matter of a future work.
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