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Context: Covid desease

High peaks overcrowd the healthy system.

Figure: France’s data from www.worldometers.info
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SIR model

A classical SIR model corresponds to:
Ṡ(t) = −βS(t)I (t)
İ (t) = βS(t)I (t)− γI (t)

Ṙ(t) = γI (t)

where:

S(t): portion of susceptible individuals at time t.

I (t): portion of infected individuals at time t.

R(t): portion of recovered individuals at time t.

β: transmission rate.

γ: recovery rate.

And
S(t) + I (t) + R(t) = 1,∀t ≥ 0
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Ṙ(t) = γI (t)

where:

S(t): portion of susceptible individuals at time t.

I (t): portion of infected individuals at time t.

R(t): portion of recovered individuals at time t.

β: transmission rate.

γ: recovery rate.

And
S(t) + I (t) + R(t) = 1,∀t ≥ 0

4 / 42



Problem formulation

We consider the identical dynamic

Ṡ(t) =− (1− u(t))βS(t)I (t)

İ (t) = (1− u(t))βS(t)I (t)− γI (t)

with the positive initial condition (S(0), I (0)) = (S0, I0), and S0 + I0 ≤ 1.

We add the constraint ∫ ∞

0
u(t)dt ≤ Q. (1)

We want:
inf

u(·)∈U
max
t≥0

I (t), (2)

where U denotes the set of measurable functions u(·) that take values in
[0, 1] and satisfying (1).
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Equivalently, one can consider the extended dynamics.
Ṡ(t) = −βS(t)I (1− u(t)),

İ (t) = βS(t)I (t)(1− u(t))− γI (t),

Ċ (t) = −u(t),

(3)

with the initial condition (S(0), I (0),C (0)) = (S0, I0,Q) and the state
constraint

C (t) ≥ 0, t ≥ 0.
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Assumptions

Assumption 1

The basic reproduction number R0 is larger than one.

R0 :=
β

γ
> 1.

Let us denote the immunity threshold

Sh := R−1
0 =

γ

β
< 1.

Assumption 2

We consider the non trivial case:

S0 > Sh.
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The NSN (null-singular-null) strategy

The maximum of I (·) in the not controlled case is:

Ih := I0 + S0 − Sh − Sh log

(
S0
Sh

)
. (4)

Definition 1

For Ī ∈ [I0, Ih], consider the feedback control

ψĪ (I , S) :=

{
1− Sh

S , if I = Ī and S > Sh,

0, otherwise.
(5)

We denote the L1 norm associated to the NSN control

L(Ī ) :=
∫ +∞

0
uψĪ (t)dt, Ī ∈ [I0, Ih],

where uψĪ (·) is the control generated by the feedback (11).
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The NSN (null-singular-null) strategy

This control strategy consists in three phases:

1 No intervention until the prevalence I reaches Ī (null control).

2 Maintain the prevalence I equal to Ī by adjusting the interventions
until S reaches Sh or the budget is entirely consumed (singular
control).

3 No longer intervention when S < Sh (null control).
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The NSN (null-singular-null) strategy
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Figure: NSN strategy
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The NSN (null-singular-null) strategy

Lemma 1

For any Ī ∈ [I0, Ih], the maximal value of the control uψĪ (·) is given by

umax(Ī ) := 1− Sh

S̄
< 1,

where S̄ is solution of

S̄ − Sh log S̄ = S0 + I0 − Sh log S0 − Ī .

Moreover, any solution given by the NSN strategy verifies

max
t≥0

I (t) = Ī .
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Computing L1 norm

Proposition 1

For uψĪ (·) one has

L(Ī ) = Ih − Ī

βSh Ī
, Ī ∈ [I0, Ih]. (6)

Corollary

When Q ≤ Ih−I0
βShI0

, the smallest Ī ∈ [I0, Ih] for which the solution with the
NSN strategy is admissible, is given by the value

Ī ⋆(Q) :=
Ih

QβSh + 1
(7)

and one has
L(Ī ⋆(Q)) = Q.
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, the smallest Ī ∈ [I0, Ih] for which the solution with the
NSN strategy is admissible, is given by the value
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Main result

Proposition 2 (M-Rapaport)

Let Assumptions 1 and 2 be fulfilled. Then, the NSN feedback is optimal
with

Ī =

{
Ī ⋆(Q), Q < Ih−I0

βShI0
,

I0, Q ≥ Ih−I0
βShI0

,

where Ī ⋆(Q) is defined in (7), and Ī is the optimal value of problem (2).

Sketch of proof: Non trivial case Q < Ih−I0
βShI0

.
To remember:

Ċ (t) = −u(t).

and we pass to the (S , I ) plane
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where Ī ⋆(Q) is defined in (7), and Ī is the optimal value of problem (2).

Sketch of proof: Non trivial case Q < Ih−I0
βShI0

.
To remember:

Ċ (t) = −u(t).

and we pass to the (S , I ) plane

13 / 42



Main result

NSN strategy: (S⋆(·), I ⋆(·),C ⋆(·)) with Ī = Ī ⋆(Q), and control u⋆(·).
Any other solution: (S(·), I (·),C (·)) with maxt I (t) < Ī .
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Main result

Γ := {(S̃(τ), Ĩ (τ)), τ ∈ [0,T ]}∪
{(S(T + th − t), I (T + th − t)), τ ∈ [T ,T + th]},

Using Green theorem we proved:

C̃ (T )− C (th) =

∮
Γ
dC > 0
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Γ := {(S̃(τ), Ĩ (τ)), τ ∈ [0,T ]}∪
{(S(T + th − t), I (T + th − t)), τ ∈ [T ,T + th]},

Using Green theorem we proved:

C̃ (T )− C (th) =

∮
Γ
dC > 0

15 / 42



Outline

1 Motivation: The covid problem

2 Peak minimization on a SIR dynamic

3 General models of peak minimization
Planar dynamics with L1 constraints
Reformulations

4 Conclusion

15 / 42



Formulation general problem

We consider the following dynamical system in a domain D ⊂ Rn+1.{
ẋ = f (x , y , u)
ẏ = g(x , y , u)

(8)

U := {u(·) : [0,T ] 7→ U,mesurable} and (x0, y0) ∈ D, T > 0.

The solutions set:

S := {(x(·), y(·)) ∈ AC([0,T ],Rn+1), sol. of (8) for u(·) ∈ U
with (x(0), y(0)) = (x0, y0)}

The optimal control problem:

P : inf
u(·)∈U

(
max

t∈[0,T ]
y(t)

)
= inf

(x(·),y(·))∈S

(
max

t∈[0,T ]
y(t)

)
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State of art

L∞-criterion.
inf
u(·)

ess sup
t∈[t0,T ]

y(t)

where y(t) = η(ξ(t)) with ξ(·) solution of a controlled system
ξ̇ = ϕ(ξ, u), ξ(t0) = ξ0.

Typically

min
(
∂tV + inf

u
⟨∂ξV , ϕ(x , u)⟩ , V − η

)
= 0 .

There is no practical tools to solve such problems, to the best of our
knowledge.
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We consider a dynamics defined on an invariant domain D of R2{
ẋ = f1(x , y) + g1(x , y)u
ẏ = f2(x , y) + g2(x , y)u

u ≥ 0 (9)

with initial condition (x0, y0) ∈ D, where f1, f2, g1, g2 are at least C 1. We
consider the following optimal control problem:

inf
u(·)

sup
t≥0

y(t), (10)

subject to the constraint ∫ +∞

0
u(t)dt ≤ K ,

Let us define the sub-domains

D± := {(x , y) ∈ D ; ±f2(x , y) > 0}, D0 := {(x , y) ∈ D ; f2(x , y) = 0}

and the function

∆(x , y) := f2(x , y)g1(x , y)− f1(x , y)g2(x , y).
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Assumptions.

1 With u = 0, the domain D− is invariant and for any initial condition
in D+, the solution enters the domain D− in finite time.

2 For any (x , y) ∈ D+, one has f1(x , y) < 0 and f2(x , y) + g2(x , y) < 0

3 For any (x , y) in D+, one has ∆(x , y) < 0 and

∂f2(x , y)

∂x
> 0 and

∂

∂y

(
f2(x , y)

∆(x , y)

)
> 0

4 For any (x , y) ∈ D0, one has g2(x , y) < 0 and

sgn(∇f2(x , y).f (x , y)) + sgn(∇f2(x , y).g(x , y)) = 0

(where the sgn function is defined as sgn(0) = 0 and sgn(ξ) = ξ/|ξ|
for ξ ̸= 0).
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Definition 2

For ȳ ∈ [y0, ymax ], consider the feedback control

ψȳ (x , y) :=

k(x) := − f2(x , ȳ)

g2(x , ȳ)
, if y = ȳ and (x , ȳ) ∈ D+,

0, otherwise.
(11)

Proposition 3

For any ȳ ∈ [y0, ymax ], one has

L(ȳ) :=
∫ +∞

0
uψȳ (t)dt =

∫ x̄(ȳ)

xh(ȳ)

−f2(x , ȳ)

∆(x , ȳ)
dx (12)

where xh(ȳ) := max{x ≤ x̄(ȳ); f2(x , ȳ) = 0}. Moreover, the map
ȳ 7→ L(ȳ) is decreasing.
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Proposition 4

Assume one has

∂

∂y

(
f2(x , y)

∆(x , y)

)
+

∂

∂x

(
f1(x , y)

∆(x , y)

)
> 0, (x , y) ∈ D+, y ≤ ymax (13)

If L(y0) > K, then there exists y∗ ∈ [y0, ymax ] such that L(y∗) = K and
the feedback ψy∗ is optimal.

Examples 1

The SIR model presented.
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Examples

Examples 2

The resource-consumer (or batch bioprocess) model where the control
limits the contact between the resource and the consumer{

ẋ = − xy
1+x (1− u)

ẏ = xy
1+x (1− u)− αy

u ∈ [0, 1]

Examples 3

The same resource-consumer model as the previous example but with a
ratio-dependent growth ẋ = − xy

x+y (1− u)

ẏ = xy
x+y (1− u)− αy

u ∈ [0, 1]
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Reformulation P0

The first basic reformulation is

P0 : inf
u(·)∈U

z(T )

for the extended dynamics in D × R
ẋ = f (x , y , u)
ẏ = g(x , y , u)
ż = 0

under the state constraint

C : z(t)− y(t) ≥ 0, t ∈ [0,T ]

where (x(0), y(0)) = (x0, y0) and z(0) is free .
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Reformulation P1

The first basic reformulation is

P1 : inf
u(·)∈U

z(T )

for the extended dynamics in D × R
ẋ = f (x , y , u)
ẏ = g(x , y , u)
ż = max(g(x , y , u), 0)(1− v) , v ∈ [0, 1]

under the state constraint

C : z(t)− y(t) ≥ 0, t ∈ [0,T ]

where (x(0), y(0)) = (x0, y0) and z(0) = y0.
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Reformulation P2

The first basic reformulation is

P2 : inf
u(·)∈U

z(T )

for the extended dynamics in D × R
ẋ = f (x , y , u)
ẏ = g(x , y , u)
ż = max(g(x , y , u), 0)(1− v) , v ∈ [0, 1]

under the state constraint

Cm : max(y(t)− z(t), 0)(1− v(t)) + z(t)− y(t) ≥ 0, a.e. t ∈ [0,T ]

where (x(0), y(0)) = (x0, y0) and z(0) = y0.
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Idea

Figure: Illustration of the function z (red) corresponding to a function y (blue)
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Reformulation P3

We posit Π = (x , y , z) ∈ D × R with dynamic:

Π̇ ∈ F (Π) :=
⋃

(u,v)∈U×[0,1]

 f (x , y , u)
g(x , y , u)

h(x , y , z , u, v)

 (14)

and
h(x , y , z , u, v) = max(g(x , y , u), 0)(1− v1R+(z − y)).

Let Sℓ := {Π(·) ∈ AC ., Π̇ ∈ F (Π) and Π(0) = (x0, y0, y0)

P3 : inf
Π(·)∈Sℓ

z(T ).
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Reformulation Pθ
3

A dynamic parameterized by θ > 0
ẋ = f (x , y , u)
ẏ = g(x , y , u)
ż = hθ(x , y , z , u, v)

(15)

with

hθ(x , y , z , u, v) = max(g(x , y , u), 0)(1− v e−θmax(y−z,0))

The family of Mayer problems

Pθ
3 : inf

Π(·)∈Sθ

z(T )

where Sθ denotes the set of absolutely continuous solutions
Π(·) = (x(·), y(·), z(·)) of (15) for the initial condition Π(0) = (x0, y0, y0)

26 / 42



Returning to SIR model

Remembering the dynamic

Ṡ(t) =− (1− u(t))βS(t)I (t)

İ (t) = (1− u(t))βS(t)I (t)− γI (t)

Ċ (t) =− u(t),

with initial condition (S0, I0,Q) and C (T ) ≥ 0 and we want

min
u

max
t∈[0,T ]

I (t)

β γ T Q S(0) I (0) Ī

0.21 0.07 300 28 1− 10−6 10−6 0.1015
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and we want

min
u

max
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Numerical examples
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Figure: The optimal solution for the SIR problem using NSN strategy
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Numerical solutions

To improve convergence we used the approximation:

log
(
eλξ + 1

)
λ

−→
λ→+∞

max(ξ, 0), ξ ∈ R

Using λ = 100 we obtain

problem max
t∈[0,T ]

y(t) computation time

P0 0.1015 10 s
P1 0.1015 12 s
P2 0.1015 13 s

Table: Comparison of performances for problems P0, P1, P2
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Numerical solutions
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Figure: Comparisons of numerical results for the methods P0, P1, P2
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Numerical solutions Pθ
3

The function hθ is approximated by the expression

hθ(x , y , z , u, v) ≃
log

(
eλ1g(x ,y ,u) + 1

)
λ1

(
1− ve

θ
λ2

log(eλ2(y−z)+1)
)

which depends on three parameters λ1, λ2 and θ.

We can approximate
indicator function depending of a parameter ε = ε(θ, λ2)
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Numerical solutions

ε θ z(T ) max
t∈[0,T ]

y(t) computation time

0.2 40.18 0.0684 0.1038 80 s
0.15 84.31 0.0823 0.1038 65 s
0.1 230.26 0.0954 0.1037 51 s

0.075 460.49 0.0993 0.1050 83 s
0.05 1198.29 0.1010 0.1036 97 s

Table: Comparison of performances for problem Pθ
3
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Numerical solutions
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Figure: Comparison of the numerical results for problem Pθ
3
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Numerical solutions
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Figure: Comparison of the numerical results for problem Pθ
3
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Numerical solutions
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Figure: Comparison of the numerical results for problem Pθ
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A simple SIR-vector model (inspired from Wei, Li,
Matcheva 2007)

The host population follow a SIR dynamic and we call V (t) to the portion
infectious vector (ex: mosquitoes) at time t.

Ṡ(t) =− βS(t)V (t)

İ (t) =βS(t)V (t)− γI (t)

V̇ (t) =αI (t)(1− V (t))− µV (t)− u(t)V (t)

min
u

max
t

I (t),

∫ T

0
u ≤ Q

β γ α µ T Q S(0) I (0) V (0) Ī

0.21 0.07 0.12 0.02 300 28 0.999 0.001 0.005 0.06
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Solution

Figure: Solutions using reformulations
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A model including vaccines

Λi (t) = (1−fi (t))

 ∑
j∈{N,V ,Vr}

((1− u(t))βai ,j I
a
j (t) + (1− µ)βsi ,j I

s
j (t))

Si (t) i ∈ {N,V ,Vr}.
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Solution
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Solution increasing vaccination speed
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Summary

Formulation P0 P1 or P2 P3 Pθ
3

suitable to direct methods yes yes no yes
suitable to HJB methods no yes yes yes
suitable to shooting methods no no/yes no yes
provides approximations from below no no no yes

Table: Comparison of the different formulations
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Conclusion and ongoing work

We have proved that the NSN strategy minimize the peak of infected
over a SIR model with a L1 constraint on the control.

We are interested on the study of generalize the NSN strategy on
more general planar dynamics. Preliminary results were exhibited.

We have proposed several reformulations which can be use for general
cases of peaks minimization.

The study of necessary optimality conditions using this reformulations
will be the matter of a future work.
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