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Introduction

Selected Results of the 2019 UN World Population Projections
POPULATION AND DEVELOPMENT REVIEW 45(3): 687–694 (Sept. 2019)
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Key findings on global waste generation

The world generates 0.74 kilograms of waste per capita per day

Low-income countries: waste generation may increase by more than three
times by 2050

Food/green waste make up more than 50% of total waste in low- and
middle-income countries

37% of waste is disposed of in some sort of landfill
Only 8% of them include gas collection systems

Open dumping : 33%
Recycling & composting accounts for 19%

11% use modern incineration systems

Data from : https://landfillsolutions.eu/
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Waste : global impact

Global waste generation is a problem [https://landfillsolutions.eu/]

1 Deterioration of the living environment
2 Pollutes the air, soil, and water
3 Blocks drainage system blockage and floods
4 Enters the food chain and impacts health
5 It chokes and causes death to animals

Undeniable facts: World produced 250 million tonnes of plastic waste ≈ 12% of total MSW

Contribution to climate change:

Waste management causes 5% of global greenhouse gas (GHG) emissions

Growth of global waste generation may increase GHG emissions to 2.6
billion tonnes per year (+62,5%)

Data from : https://landfillsolutions.eu/
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Waste-to-Energy

Definition 1.1 (Waste–to–energy process)

Energy recovery from waste is the conversion of non-recyclable waste materials into usable
heat, electricity, or fuel through a variety of processes, including combustion, gasification,
pyrolization, anaerobic digestion and landfill gas recovery

Waste management methods: landfills & incineration

Main issues:

1 Mismanagement & logistical problems

2 High operating costs, profitability (need for optimization)

3 Significant levels of pollution, Health and environment risk...

- https://www.conserve-energy-future.com/advantages-and-disadvantages-incineration.php
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The mathematical model

thermal powerbiogas

Waste stock

Waste valorization
Processing units

Biodegradation

Investment 

: stock control

Depreciation

Energy 
production

redeployment

Dynamic model:


ẋ(t) = ω −

(
β + K (t)q(t)

)
x(t)

K̇ (t) = I (t)− γK (t)

Ė (t) = µK (t)x(t)q(t)− αE (t)

(1)
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The mathematical model

Dynamic model:


ẋ(t) = ω −

(
β + K (t)q(t)

)
x(t)

K̇ (t) = I (t)− γK (t)

Ė (t) = µK (t)x(t)q(t)− αE (t)

x : cumulative quantity of waste

K : capital dedicated to the activity

E : cumulative quantity of produced energy

ω ≥ 0 : constant waste streams entering the landfill

0 < β ≤ 1 : coefficient of biodegradation

0 < α ≤ 1 : depreciation rate + loss of energy due to dessipation.

0 ≤ q(t) ≤ 1 : ratio of recovered waste (control)

I (t) ≥ 0 : investment related to the activity (control)

0 < γ ≤ 1 : capital depreciation rate.
As depreciation is considered in the model, investments do not only include acquisition decisions but also maintenance
efforts.

µ : (constant) proportional conversion rate waste-to-energy
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The mathematical model

Dynamic model:


ẋ(t) = ω −

(
β + K (t)q(t)

)
x(t)

K̇ (t) = I (t)− γK (t)

Ė (t) = µK (t)x(t)q(t)− αE (t)

This is an upgraded version of the model recently introduced and analyzed in [1]

Its design is widely inspired from Fishery models as in [2], particularly for the
capital dynamics K , and the Cobb–Douglas production function in E

[1] Cherkaoui Dekkaki, O., El Khattabi, N., & Raissi, N. (2022). Bioeconomic modeling of household waste recovery.
Mathematical Methods in the Applied Sciences, 45(1), 468-482..

[2] Clark, C. W., Clarke, F. H., Munro, G. R. (1979). The Optimal Exploitation of Renewable Resource Stocks: Problems of
Irreversible Investment. Econometrica, 47(1), 25–47.
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The optimal control problem (OCP)

[OCP] Find admissible controls (I , q) maximizing,

J :=

∫ T

0

e−δtJ (t)dt (2)

J (t) = pE (t)− cK (t)x(t)q(t)− I (t)(c1 + c2I (t)) (3)

over a finite fixed-time horizon [0,T ]

[1] Kamien, M. I., Schwartz, N. L. (2012). Dynamic optimization: the calculus of variations and optimal control in economics
and management. 2nd Edition, Advanced textbooks in economics, 31, Dover Publications, Inc.

[2] Moser, E., Grass, D., Tragler, G. (2016). A non-autonomous optimal control model of renewable energy production under
the aspect of fluctuating supply and learning by doing. Or Spectrum, 38(3), 545-575.

[3] Reed, W. J. (1988). Optimal harvesting of a fishery subject to random catastrophic collapse. Mathematical Medicine and
Biology: A Journal of the IMA, 5(3), 215-235.
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OCP

T > 0 be a finite time-horizon. In practice, T is rather large since it is more
interesting to study long-term behavior in investment.

T specifically designates the end of the limited-term agreement between the
investor and the legal authority managing the incineration/landfill units

Instantaneous yield energy E (t) is supposed to be sold at a given constant
unit price p

Taking into account a given actualization rate δ, a constant unit cost of
production c , and we distinguish between linear investment cost c1 and
quadratic adjustment cost c2 that arise from installation efforts.

Sets of admissible controls:

I = {I : [0,T ] → [0, Imax] | I (·) ∈ L∞
loc([0,T ])} ,

Q = {q : [0,T ] → [0, 1] | q(·) ∈ L∞
loc([0,T ])} ,

Imax > 0 : maximum possible amount of instantaneous investment
I,Q: subsets of L∞

loc (R
+), the space of locally integrable functions on every compact set on R+
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The PMP application

H: the current-value Hamiltonian:

H : R3 × R3 × U → R
(ξ, λ, u) 7→ H(ξ, λ, u) = L(ξ, u) + ⟨λ, f (ξ, u)⟩

λ = (λ1, λ2, λ3) : pseudo-covector. Using the system’s dynamics and the criterion:

H = pE − cKxq − I (c1 + c2I ) + λ1 (ω − (β + qK)x) + λ2 (I − γK) + λ3 (µxKq − αE)

Consequently:
H = h(X ,Λ) + h̃Kxq + h†(I ) (4)

h(X ,Λ) = pE + λ1(w − βx)− λ2γK − λ3αE

h̃ = −c − λ1 + µλ3

h†(I ) = −I (c1 + c2I ) + λ2I
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Pseudo-costates and transversality conditions

An absolutely continuous pseudo-covector λ = (λ1, λ2, λ3):
λ̇1 = δλ1 − ∂H

∂x

λ̇2 = δλ2 − ∂H
∂K

λ̇3 = δλ3 − ∂H
∂E

Using (4), we end up with:
λ̇1 = (δ + β)λ1 − h̃Kq

λ̇2 = (δ + γ)λ2 − h̃xq

λ̇3 = (δ + α)λ3 − p ⇒ λ3(t) =
p

δ+α

[
1− e−(α+γ)(T−t)

]
Transversality conditions:

λi (T ) = 0, ∀i = 1, 2, 3 (5)
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PMP maximization condition

PMP aims to determine the admissible controls s.t., for almost all t ∈ [0,T ]:

(I (t), q(t)) ∈I∈I, I (t)∈[0,Imax]; q∈Q, q(t)∈[0,1] H

Proposition: For almost all t ∈ [0,T ], T fixed final-time:
i) The optimal control I ∗(t) satisfies,

I ∗(t) =


0 if λ2(t) ≤ c1

min
{

λ2(t)−c1
2c2

, Imax

}
if λ2(t) > c1

(6)

ii) The optimal control q∗(t) satisfies

q∗(t) =


0, if h̃ = −c − λ1 + µλ3 < 0

1 if h̃ > 0,

qs(t) if h̃ ≡ 0 over [t1, t2], t1 < t2,

(7)
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Single arcs in the optimal ratio of recovered waste

I = [t1, t2], s.t. t1 < t2, the singular arc qs(t) occurs, i.e.,

h̃(t) = 0 ⇐⇒ −c − λ1(t) + µλ3(t) = 0, ∀t ∈ [t1, t2]. (8)

If h̃ ≡ 0 over I , then ˙̃h(t) = 0, i.e., −λ̇1(t) + µλ̇3(t) = 0 :

−(δ + β)λ1 + µ(δ + α)λ3 − µp = 0 (9)

Next, the second derivative of h̃ fulfills the equality:

¨̃h = −(δ + β)2λ1 + µ(δ + α)2λ3 − µ(δ + α)p (10)

which does not explicitly involve q

Through a process of successive derivation:

h̃(n) = −(δ + β)nλ1 + µ(δ + α)nλ3 − µ(δ + α)n−1p (11)

which do not involve q for all n ≥ 1. Consequently, λ1 and λ3 must satisfy over the singular arc
of q the (n + 1)-equations
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if α ̸= β, then the existence of a singular arc is ruled out. Indeed, when,
(δ + α)n ̸= (δ + β)n, for all n ≥ 1, leading to an overdetermined and inconsistent systems
of (n + 1)-linear equations:

0 = −λ1 + µλ3 − c

0 = −(δ + β)λ1 + µ(δ + α)λ3 − µp

. . . . . . . . .

0 = −(δ + β)nλ1 + µ(δ + α)nλ3 − µ(δ + α)n−1p

if α = β then the previous system reduces to,{
0 = −c − λ1 + µλ3,

0 = −λ1 + µλ3 − µ
δ+α

p,

which is an exact determined system of linear equation, leading to,

− c +
µ

δ + α
p = 0. (12)

If (12) or α = β do not hold, then the optimal q∗ cannot have a singular phase
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Characterization of the final-time

At the final-time:

Since λ2(T ) = 0 ≤ c1, then there exists an ε > 0 s.t. the optimal control I∗ activated
over [T − ε,T ] is a bang-0, i.e.,

∃ε > 0, s.t., I∗(t) = 0, for t ∈ [T − ε,T ]

Since λ1(T ) = 0 and λ3(T ) = 0, if follows that h̃(T ) = −c < 0. Consequently there
exists an ε > 0 s.t. the optimal control q activated over [T − ε,T ] is a bang-0, i.e.,

∃ε > 0, s.t., q∗(t) = 0, for t ∈ [T − ε,T ]

The results derived from the PMP are illustrated using a direct optimization method
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Direct optimization

Numerical direct methods that we use are implemented in Bocop that transforms
the OCP into a nonlinear programming problem (NLP) in finite-dimension,
through the discretization step of the controls and the state variables

Table 1: Discretization scheme and Bocop settings

Discretization method Lobatto IIIC

(implicit, 4-stage, order 6)

Time steps 4000
NLP tolerance 10−30

The state and the control variables (1) are discretized in Bocop using a Lobatto

method, which is based on Runge-Kutta schemes (of the type Lobatto-IIIC,
order 6 implementing an implicit trapezoidal rule)
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Example 1

Table 2: Model parameters and criterion settings in Example 1.

w 50

β 0.25

α 0.1

γ 0.2

δ 0.1

µ 0.8

p 1

c 2

c1 2

c2 3

T (final-time) 50

Initial condition : (x0,K 0,E 0) = (1, 1, 0)

UCA—Inria 19 / 35



Introduction Dynamic model OCP statement PMP Direct optimization Strategic redeployment plan for energy
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Figure 1: The optimal controls I ∗(t) and q∗(t), obtained using Bocop in
Example 1 (Tab. 1-2), when the final-time is T = 50.
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Figure 2: The optimal trajectories x(t), K (t) and E (t), associated with the
optimal controls in Fig. 1.
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Figure 3: The co-state trajectories derived from Bocop. Using these co-states, it
is possible to recover the pseudo-costates
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Figure 4: Optimal pseudo-costate trajectories (λ1, λ2, λ3) derived from the
current-value Hamiltonian. These trajectories are reconstituted using the optimal

co-states (λx , λK , λE ) in Fig. 3.
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0 5 10 15 20 25 30 35 40 45 50
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Figure 5: Optimal q∗(t) satisfies the necessary optimality conditions derived
from the PMP: q∗(t) is bang-1 when h̃(t) is positive, while q∗(t) is bang-0 when

h̃(t) is negative. The last control phase is a bang-0
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Figure 6: Optimal I ∗(t) satisfies the necessary optimality conditions derived
from the PMP: I ∗(t) (in red) maximizes h†(I ), it coincides with (λ2 − c1)/2c2 (in

blue) when it is positive. I ∗(t) follows the description in Proposition 1.
The last phase is a bang-0
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Strategic redeployment plan for the produced energy

Upgraded model:


ẋ(t) = ω −

(
β + K (t)q(t)

)
x(t)

K̇ (t) = I (t)− γK (t)

Ė (t) = µK (t)x(t)q(t)− α(K (t))E (t)

(13)

We focus on the typical case:

α(K ) = a+ nK where, a > 0, n ≥ 0 (14)

The objective is the same as in the previous OCP :

Maximizing the criterion (2)-(3) under similar considerations
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To illustrate the effect of the function α we compare the following situations:

Example 2–A. n = 0

Example 2–B. n > 0

Table 3: Model parameters and criterion settings in Ex. 2–A and 2–B

w 10
β 0.5
a 0.1
n (Example 2–A) 0
n (Example 2–B) 0.015
γ 0.2
δ 0.2
µ 0.9
p 1
c 1
c1 0.25
c2 0.25
T (final time) 40
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Numerical results in Example 2–A. (n = 0)

0 5 10 15 20 25 30 35 40
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2

Figure 7: The optimal control I ∗(t) in Example 2-A satisfies the necessary
optimality condition derived from the PMP.
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Numerical results in Example 2–A. (n = 0)
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-2

-1

0

1

2

Figure 8: The optimal control q∗(t) in Example 2-A satisfies the necessary
optimality conditions derived from the PMP.
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Numerical results in Example 2–A. (n = 0)
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Figure 9: Optimal trajectories x(t), K (t) and E (t), associated with the optimal
controls in Fig. 7, and Fig. 8 in Example 2-A.

UCA—Inria 30 / 35



Introduction Dynamic model OCP statement PMP Direct optimization Strategic redeployment plan for energy

Numerical results in Example 2–B. (n > 0)
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Figure 10: Optimal controls I ∗(t) and q∗(t), given by Bocop in Example 2-B
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Numerical results in Example 2–B. (n > 0)
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Figure 11: The optimal trajectories x(t), K (t) and E (t) in Example 2–B.
associated with the optimal controls in Fig. 10.
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Numerical results in Example 2–B. (n > 0)
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Figure 12: The optimal control I ∗(t) in Example 2–B. has a more complicated
structure, but it satisfies similar necessary optimality conditions as those derived

in Example 2–A.
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Numerical results in Example 2–B. (n > 0)
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Figure 13: Optimal q∗(t) in Example 2–B. also satisfies similar necessary
optimality conditions derived from the PMP
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Concluding discussion and open problems

To investigate the behaviors observed in Example 2–B., we need to adapt the
PMP-analysis performed for Model (1) :

We prove that the PMP maximization conditions are similar to those
given in Proposition 1 based on (1).

The co-states have more complicated dynamics when n > 0, resulting in
richer behaviors that reflect the control structure given in Fig. 12.

It also appears that the analysis of the singular control qs is more
complicated, requiring the use of second order optimality
conditions1which deserve a separated study

1Legendre clebsch conditions for systems with non-affine controls?
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