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Statement of the optimal control problem

Modeling of a continuous bioreactor by the chemostat system

= D= s
Feed pump Outlet pump when V' = tynar
e S —resource ; X = consumer ; P = products

e Chemical reaction S —» X + P

o s e Speed pump : u(¢) = the control (for the input substrate sj, > 0)
e Goal : waste water treatment / selection / optimal production of
et species,...

= bioenergy

C)F)
by |
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Statement of the optimal control problem

Iex(t, ¢)

o Consider a chemostat system with a phenotypical trait? and mutation:

= u(s(t), @)x(t, @) — u(t)x(L, p) + eDpx(t, ),
B0 =- [ w60 9)x(t )’ + u(0(sn=s(0), >0

pe

2Population dynamics model, see, e.g., [Mirrahimi, Perthame, Wakano, '12] o = = = waQ
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where x = consumer ; s = resource ; (0, ) =0, Vo € Q.




Statement of the optimal control problem

o Consider a chemostat system with a phenotypical trait? and mutation:
aix(t, )

= p(s(t), p)x(t, @) — u(t)x(t, ) + ebpx(t,p),  t>0 @eQ
B0 =- [ w60 9)x(t )’ + u(0(sn=s(0), >0
+
where x = consumer ; s = resource ; 1(0,¢) =0, Y € Q.
e Initial conditions + boundary conditions:
s(0)

= 50 € (0, Sin),
x(0,9)

=Xxo(p) =0, forall ¢ € Q,
E(tg) =0,

for t > 0and ¢ € 9.

2Population dynamics model, see, e.g., [Mirrahimi, Perthame, Wakano, '12] o = = = waQ




Statement of the optimal control problem

o Consider a chemostat system with a phenotypical trait? and mutation:
aix(t, )

= p(s(t), p)x(t, @) — u(t)x(t, ) + ebpx(t,p),  t>0 @eQ
B0 =- [ w60 9)x(t )’ + u(0(sn=s(0), >0
+
where x = consumer ; s = resource ; 1(0,¢) =0, Y € Q.
e Initial conditions + boundary conditions:
s(0)

= 50 € (0, Sin),
x(0,9)

= Xxo(p) 20, forallp € Q,
E(tp) =0, for t >0 and ¢ € 9.
o Objective : optimize w.r.t. u € L*([0, T], [0, Umax])

T
maxf u(t) U x(t, @) d(p] dt
0 Q
2Population dynamics model, see, e.g., [Mirrahimi, Perthame, Wakano, '12] o = = = waQ



Statement of the optimal control problem

o Existence /uniqueness of a solution for a given control function t — u(t)

e For a constant control u, what is the asymptotical behavior of the system?
e Existence and characterization of an optimal control?
= reduction / discretization in space
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Statement of the optimal control problem

e Consider a chemostat system with a finite number of species:
X;

= pi(s)xi — u(t)x; + e(Mx);, 1 <i<n, x(0) = xo € R \{Ogn}
i n (8)x;
5 :—Zu—ku(t)(sm—s), 5(0) =s% € [0,1] M
=R
where ¢ > 0, yj : Ry - Ry, ¥; >0, ue L*(Ry, [0, Unax]), and M € R™" is the symmetric
quasi-positive irreducible matrix
-1 1 0 0
1 -2 A 0 n
M:=| : = Z(Mx),- =0.
0 1 -2 1 =1
0 0o 1 -1
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Statement of the optimal control problem

o Consider a chemostat system with a finite number of species
X;

= ,ul(s)xi - U(t)X,' + E(MX),,

<n,
where € > 0, ;

1<
Z @ + u(t)(sin - 8)
=

x(0) = X0 € RT\{Orn}
quasi-positive irreducible matrix

s(0) = s% €[0,1] M
+ =Ry, Y;j>0,ue L®(Ry, [0, Unax]), and M € R™" is the symmetric
-1 1 0 0
1 -2 1 0 n
M:=| o = Z(Mx),- =0

0o - 1 -2 1 i=1

o - 0 1 -
e Objective function

x(t)u(t)dt
U0 ] f Z !
(=] = - = QA
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Stability of the chemostat system with mutation

X = D(s)x — ux+ eMx x(0) =xp € ]Rﬂr\{O]
§ ==Y wyex+u(t-s) s0)eo1] @
=1

Kinetics : u;(s) == % s > 0 (Monod'’s kinetics)
D(s) = diag(it1(8), - 1in(S))

e Parameters : ¢ > 0 and u € [0, + ).
Yj=1for1<j<nandsj=1.
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Stability of the chemostat system with mutation

X = D(s)x — ux + eMx x(0) =xp € ]Rﬁ’r\{O]
§ ==Y wyex+u(t-s) s0)eo1] @
=1

Kinetics : p;(s) := % s > 0 (Monod'’s kinetics)
D(s) = diag(it1(8), - 1in(S))

e Parameters : ¢ > 0 and u € [0, + ).
Yj=1for1<j<nandsj=1.

Some basic remarks:
e When ¢ = 0, we recover the usual chemostat system.

e Mass conservation : m := ):;':1 xj+sissuchthat m=u(1 -m)= m(t) > 1ast— +co
(provided that u > 0).
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Stability of the chemostat system with mutation

X = D(s)x — ux + eMx x(0) =xp € ]Rﬁ’r\{O]
§ ==Y wyex+u(t-s) s0)eo1] @
=1

Kinetics : p;(s) := % s > 0 (Monod'’s kinetics)
D(s) = diag(it1(8), - 1in(S))

e Parameters : ¢ > 0 and u € [0, + ).
Yj=1for1<j<nandsj=1.

Some basic remarks:

e When ¢ = 0, we recover the usual chemostat system.

e Mass conservation : m := ):;':1 xj+sissuchthat m=u(1 -m)= m(t) > 1ast— +co
(provided that u > 0).

e The fact that m(t) — 1 is crucial ; it may fail to hold for a more general matrix M and if Y; # 1
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Stability of the chemostat system with mutation

Local stability after regular perturbation

Define uc(¢) := A(D(1) + M) where A(-) denotes the Perron root.

Proposition (B., Cazenave-Lacroutz, Coville,22)
e Forall (e,u) € R, x(0,uc(¢)), (2) has a unique LAS equilibrium E, , € D := R7\{0} x [0, 1]
called coexistence steady-state.
e In addition, E., = (x*¥, s*") with x;' > 0 for every 1 < i < n where E., = (x*¥, s*).

e Whene |0, one has E., = Ej; + ¢(a, ) + o(e) where « € R" is such that a; = 0 for
i¢{ip—1,ip,io+1}andp < 0.

When ¢ = 0, the system has n+ 1 equilibria

Ewo :=(0,..,0,1),
E; =(1- y1’1 (u),0, .4.,0,p1_1 (u)),
E, =(0,.,1- ‘u%‘ (u),..,0, ‘LLU (v)),

and one GAS steady-state point Ej, (competitive exclusion principle).
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Stability of the chemostat system with mutation

Global stability

e For ¢ > 0, GAS is a difficult (open) question!

e Counter-example : the system x = X( - 1+1X2 + e) for which 0 is GAS for ¢ = 0 and LAS for

every ¢ € [0,1). But 0 is never GAS for every ¢ € (0,1)!
o In[De Leenheer et al./10], GAS is obtained provided that Y; ~ 1 and y; ~ uy, 1 <i<n

Theorem (B., Cazenave-Lacroutz, Coville,22)
For all ¢ > 0, there is us(¢) € (0, uc(¢)] s.t. for every u € (0, us(¢)), E“Y is GAS in D.

e our initial objective was to address this question when ¢ | 0 (the question remains).
o the proof requires to derive persistence results about species.

@ H.L. SMITH, P. WALTMAN, Perturbation of a globally stable steady state, Proc. Amer. Math. Soc., vol. 127,
2, pp. 447-453, 1999.
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Optimal control problem via Pontryagin’s Principle

X

s =

= D(s)x — u(t)x + eMx,

x(0) = Xo € R7\{Ogo}
—ZH/‘(S)X/' +u(t)(1-5), s(0)=s"€]o,1]
=
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Optimal control problem via Pontryagin’s Principle

X

= D(s)x — u(t)x + eMx,
5

x(0) = Xo € R7\{Ogo}
—ZH/‘(S)X/' +u(t)(1-5), s(0)=s"€]o,1]
=

Given T > 0, the OCP reads as follows:

@)

T n
ma fo u(t)j;‘ x(t)dt

« To simplify, we suppose that initial conditions are such that Y., le <tands®+Y7, xIP =1.

=} F DA
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Optimal control problem via Pontryagin’s Principle

n
e Hamiltonian:  H(x,A,u) := Zl’-’:1 AjXjuj+eMA - x +u 2(1 L

j=1
————
switching function ¢
e Covector : A = —-VyHand A(T) =0 = ¢(T) > 0and A > 0 in some interval [T — 7, T)
e Control law (except on singular arcs):
o(t)>0 = u(t) = Umax,
P(t)<0 = u(t)=0,
o Derivative of the switching function : ¢ = Y wx = (X ) (Ei Ajxity)-

e Along a singular arc, Legendre-Clebsch’s necessary condition Ej}u > 0 must be verified:

n n n 2 n
b, =2(Y %) Y- (X x) Y auy 0.
= = = =

(LC)
=} F = = DA
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Optimal control problem via Pontryagin’s Principle

Conclusions about an (open loop) optimal control

Proposition

Every optimal extremal (x, A, u) is such that there exists 1 > 0 such that u(t) = Umax and A;(t) > 0
foreveryte [T —n,T]and1<i<n.

Conjecture

For every initial condition, an optimal control u (in open loop) is of turnpike type
B.-S-B; 4)

and Legendre-Clebsch’s condition is satisfied in the case of Monod's kinetics.
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Optimal control problem via Pontryagin’s Principle

Conclusions about an (open loop) optimal control

Proposition

Every optimal extremal (x, A, u) is such that there exists 1 > 0 such that u(t) = Umax and A;(t) > 0
foreveryte [T —n,T]and1 <i<n.

Conjecture

For every initial condition, an optimal control u (in open loop) is of turnpike type
B.-S-B; 4)
and Legendre-Clebsch’s condition is satisfied in the case of Monod's kinetics.

o Difficulties : H is affine w.r.t. u, so, it is unclear if the turnpike result applies in this framework.
e Since n> 1 is large, LC condition is hard to check theoretically.
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Optimal control problem via Pontryagin’s Principle

Substrate s

time time

@
@

Species a;
IS

~

Productivity u ;
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o
o

0 20 40 60 80 100 0 20 40 60 80 100
time time

Figure: Solutions of the optimal control problem obtained with Bocop. The black dashed lines correspond to the
case with one species without mutation. The color lines correspond to the same problem with mutation
(¢ =0.01).

= In any case, it is NOT evident to transfer a robust control law (like a feedback) to a practitionner.
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Synthesis of efficient feedback control laws

e Strategy:

e Goal : define robust control strategies approximating well the value function.

1. We compute the turnpike (static optimization problem) ;

max
(x,5,u)eDX[0,Umax]

2. We construct (explicitly) feedback control laws (defining sub-optimal strategies)

& 0
oY st |
=

= D(s) - ulp + M
where D := IR’}r\{O]Rn} % (0,1).

0 =-X7u(s)x+u(l-s)

=} F DA
Terence Bayen (LMA, Université d’Avignon)




Synthesis of efficient feedback control laws

e Forevery (¢,u) € R, x (0,uc(e)), (x*¥,s%V) is a steady-state of the system iff

MD(s) +eM)=u; Y. x+s=1; (D(s) +eM)x = ux. )
j=1

Proposition

The static optimization problem

is equivalent to

max (1 —8) x A(D(S) + eM).
s€(0,1)

which has a solution s¥ € (0,1) (and a corresponding u¥ for the
first problem).

o We expect the solution to be unique whenever the kinetics is of Monod type.
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Synthesis of efficient feedback control laws

Taking u = u(x, s) yields

n
5= ) wi(s)y+ u(x,s)(1-5)
=1
Fix o € (0, 1). Plugging u(x, s) = gs(x) with g,(x) := 11?7 27:1 wj(o)x; yields

-3

1i(8)X; + o (x)(1 - 5),
—
stt) =0

=>s(t)y=o0 Vt=t

=} F = DA
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Synthesis of efficient feedback control laws

Definition of feedback control laws
Taking u = u(x, s) yields

s§= —Z wi(8)x; + u(x,s)(1 —s)
=

Fix o € (0, 1). Plugging u(x, s) = g,(x) with g,(x) := 1%0 Z;’:1 wj(0)x; yields

s ==Y (9% +e.(0(1-9),
j=1

s(ty) =o

=5(t) =0, Ytz 1.

Proposition (B., Coville, Mairet, 22)
The closed-loop system (3) with the feedback control g,(x) = 1+J Z/’-;1 wj(o)x; or

ho(s,x) == 15 L] 1j(8)x; is GAS in D around (o, x*) where u := A(D(c) + ¢M).
o the proof relies on an explicit integration of a Lotka-Volterra skew-symmetric type system

X = Za,',/x,-xj, 1<i<n
i

after using the theory of asymptotically autonomous systems.
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Synthesis of efficient feedback control laws

Remind that the OCP reads as follows:

T n
max Jr(u) = fo u(t)j;x,-(t)dt st.
X

= D(s)x — u(t)x + eMx,
5§ =-

x(0)=xp € ]Ri\{OJRn}
n
Y wis)+ u(h(1-s), s(0)=s°€[0,1]
=1
e Strategy 1 : Optimal solution (bocop) ;

e Strategy 2 : Constant control : apply u = u* after solving the static OCP ;
o Strategy 3 : Feedback controlled apply u = ¢, or u = ¢4(s, x) with 0 = s7.
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Synthesis of efficient feedback control laws

Remind that the OCP reads as follows:

T n
max Jr(u) = fo u(t)j;x,-(t)dt st.
X

= D(s)x — u(t)x + eMx,
5§ =-

x(0) = xo € R7 \{Ogn}
Y wis)+ u(h(1-s), s(0)=s°€[0,1]
j=1

e Strategy 1 : Optimal solution (bocop) ;

e Strategy 2 : Constant control : apply u = u* after solving the static OCP ;
o Strategy 3 : Feedback controlled apply u = ¢, or u = ¢4(s, x) with 0 = s7.
Observe that Strategy 2 and 3 do not depend on the initial condition.
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Synthesis of efficient feedback control laws

150 T T T T T T
o
Bocop
Feedback control 1
Feedback control 2
100 r

50

o 1

0 50 100 150 200 250

300 350
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Synthesis of efficient feedback control laws
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Synthesis of efficient feedback control laws

Conclusion and perspectives

Conclusions:

e Two main contributions :

- LAS and GAS (provided that u is small enough) of the chemostat system with mutation
- GAS stability for the closed-loop system with u = g,(x, s) or u = h,(x, s)

e The PMP provides qualitative properties of optimal paths (in open loop) ;

e Sub-optimal feedback controls are of great interest in presence of uncertainties. From a
practical point of view, h, corresponds to biogas production (can be measured) ;

e The gap between the value function and the cost of sub-optimal controls (defined by ¢, and
;) tends to be very small as T — +co.

Perspectives:

o Generalize to the PDE model (existence of a solution / convergence, stabilization of the
integro-differential system)

e Prove the GAS stability (using Lyapunov functions or other methods)

e Generalize the study (dynamical system properties ; OCP) to Haldane kinetics and whenever
the mutation factor is more general (and Y; # 1).
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Synthesis of efficient feedback control laws

Thank you for your attention
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