Some optimisation problems for magnetic confinement in stellarator

Rémi Robin

McTAO seminar, October 27th 2022

Joint work with Yannick Privat, Mario Sigalotti and Francesco Volpe
1. Introduction to stellarators

2. Magnetic forces on a surface

3. Coil Winding Surface optimization

4. Existence of surface optimizing some PDE shape functionals
Nuclear Fusion: principle

\[^2H + ^3H \rightarrow ^4He + 3.5 \text{ MeV} \]

\[n + 14.1 \text{ MeV} \]

Figures from Wikipedia
Controlled nuclear fusion: motivations

Serious candidate for power plants.

Avantages

- abundant reagents\(^1\)
- No direct emission of greenhouse gases
- No highly radioactive wastes\(^1\)
- No risk of runaway reaction
- No military applications\(^2\)

1. mostly true...
2. for magnetic technologies
Problem: Confine a 150 million Kelvin plasma.
Controlled nuclear fusion: magnetic confinement

Problem: Confine a 150 million Kelvin plasma.
strategy: Plasma is made up of charged particles \rightarrow react with external magnetic field.
 Controlled nuclear fusion : magnetic confinement

Problem : Confine a 150 million Kelvin plasma.
strategy : Plasma is made up of charged particles \Rightarrow react with external magnetic field.
Figure – Left : scheme of a Tokamak, right : simulation by Robin Roussel (LJLL).
Stellarator

Strategy: ensure confinement only with the external field.

\textbf{FIGURE} – Wendelstein 7-X, Max-Planck Institut für Plasmaphysik
Figure – Poincaré map, from *An introduction to symmetries in stellarators*, Imbert-Gérard et al.
Design of a stellarator

1. Find a good target magnetic field B_T inside the plasma.
Design of a stellarator

1. Find a good target magnetic field B_T inside the plasma.
2. Use a *Coil winding surface* to find a surface current distribution generating B_T^3

Figure – Coil winding surface and plasma surface of NCSX.

Design of a stellarator

1. Find a good target magnetic field B_T inside the plasma.
2. Use a *Coil winding surface* to find a surface current distribution generating B_T^3.
3. (approach the current density by discrete coils)

Figure – Coil winding surface and plasma surface of NCSX.

An optimization problem:

$$\inf_{j \in L^2(\mathcal{X}(S))} \chi_B^2(j)$$

div $j = 0$

Cost function:

$$\chi_B^2(j) = \int_P |\text{BS}(j)(y) - B_T(y)|^2 dy$$

Biot–Savart law:

$$\forall y \notin S, \text{BS}(j)(y) = \int_S j(x) \times \frac{y - x}{|y - x|^3} dx$$
An inverse problem

$BS(\cdot)$ is continuous $L^2(\mathcal{X}(S)) \rightarrow C^k(P, \mathbb{R}^3)$. In particular,

$$L^2(\mathcal{X}(S)) \rightarrow L^2(P, \mathbb{R}^3)$$

$$j \mapsto BS(j)$$

is compact.
An inverse problem

$BS(\cdot)$ is continuous $L^2(\mathcal{X}(S)) \rightarrow C^k(P, \mathbb{R}^3)$. In particular,

$$L^2(\mathcal{X}(S)) \rightarrow L^2(P, \mathbb{R}^3)$$

$$j \mapsto BS(j)$$

is compact.

Solutions:

- Solve on a finite dimensional space
- Use a Tychonoff regularisation

$$\|j\|_{L^2}^2 = \int_S |j|^2 dS$$

Lemme

For $\lambda > 0$, the optimization problem

$$\inf_{j \in L^2(\mathcal{X}(S))} \chi_B^2(j) + \lambda \|j\|_{L^2}^2$$

admits a unique minimiser j_S given by

$$j_S = (\lambda \text{Id} + BS^\dagger BS)^{-1} BS^\dagger B_T$$
click here
Magnetic forces: motivations

Building a stellarator is expensive. Compact stellarators require higher magnetic fields. Higher magnetic fields call for higher currents. Magnetic forces ($\mathbf{dF} = \mathbf{i} \mathbf{dl} \wedge \mathbf{B}$) increase quadratically. We have to optimize the magnetic forces. Problem: how to define the magnetic forces on a current-sheet?
Magnetic forces: motivations

- Building a stellarator is expensive...
Magnetic forces: motivations

- Building a stellarator is expensive...
- Compact stellarators require higher magnetic field
Building a stellarator is expensive...

- compact stellarators require higher magnetic field
- Higher magnetic fields call for higher currents
Magnetic forces : motivations

- Building a stellarator is expensive...
- compact stellarators require higher magnetic field
- Higher magnetic fields call for higher currents
- Magnetic forces ($d\vec{F} = i\,dl \wedge \vec{B}$) increase quadratically.
Magnetic forces: motivations

- Building a stellarator is expensive...
- Compact stellarators require higher magnetic field
- Higher magnetic fields call for higher currents
- Magnetic forces \(\vec{dF} = i \vec{dl} \wedge \vec{B} \) increase quadratically.

\[\Rightarrow \quad \text{We have to optimize the magnetic forces.} \]

Problem: how to define the magnetic forces on a current-sheet?
Statement of the problem

Let S be a surface and $j \in \mathcal{X}(S)$ a vector field on S. Biot–Savart

$$\forall y \not\in S, \quad \text{BS}(j)(y) = \int_S j(x) \times \frac{y - x}{|y - x|^3} dS(x)$$

⚠️ $\int_S \frac{1}{|x - y|^2} dx = \infty \quad \text{si } y \in S$
Statement of the problem

Let S be a surface and $j \in \mathcal{X}(S)$ a vector field on S. Biot–Savart

$$\forall y \not\in S, \quad \text{BS}(j)(y) = \int_S j(x) \times \frac{y - x}{|y - x|^3} dS(x)$$

$$\int_S \frac{1}{|x - y|^2} dx = \infty \quad \text{si } y \in S$$

There is a magnetic discontinuity on the surface given by

$$B_1^T - B_2^T = n_{12} \wedge j.$$
Toward a definition

B does not blow-up near S.

Average magnetic forces

We define

\[
L_\varepsilon(j)(y) = \frac{1}{2} (j \wedge \left[B(j)(y + \varepsilon n(y)) + B(j)(y - \varepsilon n(y)) \right])
\]

\[
L(j) = \lim_{\varepsilon \to 0} L_\varepsilon(j)
\]
This definition raises several questions:

1. Under which assumptions on j can we ensure that $L(j)$ is well defined?

2. Can we find an explicit expression of $L(j)$ (i.e. without a limit on ε)?

3. Which functional space does $L(j)$ belong to (for j in a given functional space)?
A 3 scale problem

To compute L from L_ε, we need 3 scales:

1. the discretisation-length of S: h,
2. the infinitesimal displacement ε,
3. the characteristic distance of variation of the magnetic field, d_B.

With:

- $h \ll \varepsilon$ as $\int_S |y + \varepsilon n(y) - x|^{-2} dS(x)$ blows up when $\varepsilon \to 0$.
- $\varepsilon \ll d_B$ to approximate L.

Assume $j \in H^1$, then $L_\varepsilon(j)$ converge in $L^p(S, \mathbb{R}^3)$ for $1 \leq p < \infty$ as $\varepsilon \to 0$.

Besides, L is a continuous (quadratic) $H^1 \rightarrow L^p(S, \mathbb{R}^3)$ given by

$$L(j)(y) = -\int_S \frac{1}{|y - x|} \left[\text{div}_x(\pi_x j(y)) + \pi_x j(y) \cdot \nabla_x \right] j(x) \, dx$$

$$+ \int_S \langle j(y) \cdot n(x) \rangle \frac{\langle y - x \cdot n(x) \rangle}{|y - x|^3} j(x) \, dx$$

$$+ \int_S \frac{1}{|y - x|} \left[\langle j(y) \cdot j(x) \rangle \text{div}_x(\pi_x) + \nabla_x \langle j(y) \cdot j(x) \rangle \right] \, dx$$

$$- \int_S \langle j(y) \cdot j(x) \rangle \frac{\langle y - x \cdot n(x) \rangle}{|y - x|^3} n(x) \, dx$$
Some ideas of the proof

- Use $A \wedge (B \wedge C) = (A \cdot C)B - (A \cdot B)C$
- Note that $\frac{y-x}{|y-x|^3} = -\nabla_x \frac{1}{|y-x|}$.
- Do an integration by part on the tangential component of the gradient.
- Use some estimates when ε is small to eliminate the part responsible for the magnetic discontinuity.
- Tools: Hardy-Littlewood-Sobolev inequality and Sobolev embedding on compact manifold.
Optimization

We introduce the following costs:

- χ_B to ensure that we produce the magnetic field chosen:
 \[\chi_B^2 = \int_{\partial P} \langle B(x) \cdot n(x) \rangle^2 \, dx \]

- A penalization term on j
 \[\chi_j^2 = \int_S |j|^2 \, dx \]
 \[\chi_{\nabla j}^2 = \int_S (|\nabla j_x|^2 + |\nabla j_y|^2 + |\nabla j_z|^2) \, dx \]

- A penalizing term on the Laplace forces, for example $L^p(S, \mathbb{R}^3)$
 \[\chi_F^2 = |L(j)|_{L^p} = \left(\int_S |L(j)|_2^p \right)^{1/p} \, dx \]

Thus, we will minimize the new cost with relative weights $\lambda_1, \lambda_2, \gamma \geq 0$.
\[\chi^2 = \chi_B^2 + \lambda_1 \chi_j^2 + \lambda_2 \chi_{\nabla j}^2 + \gamma \chi_F^2 \]
Theorem [R., Volpe]

Suppose $\lambda_1, \lambda_2, \gamma > 0$ and $p < \infty$ then

$$\inf_{j \in E} \chi_B^2 + \lambda_1 \chi_j^2 + \lambda_2 \nabla \chi_j^2 + \gamma |L(j)|_{L^p}$$

admits a minimizer.

We also introduce a cost to penalize only high values of the forces: $C_e = \int_S f_e(|L(j)|)$
\begin{align*}
\text{Case} & & \lambda_1 & & \lambda_2 & & \gamma & & \chi_F^2 \\
1 & & 1.5 \cdot 10^{-16} & & 0 & & 0 & & 0 \\
2 & & 0 & & 0 & & 10^{-17} & & \frac{|L(j)|_2^2}{C_e} \\
3 & & 0 & & 0 & & 10^{-16} & & \frac{C_e}{Ce} \\
4 & & 10^{-19} & & 10^{-19} & & 10^{-16} & & \frac{C_e}{Ce} \\
\end{align*}
CWS optimization

\[\inf_{j \in L^2(\mathcal{X}(S))} \chi_B^2(j) + \lambda \|j\|_{L^2}^2 \]

\[\text{div } j = 0 \]

Figure – Coil winding surface and plasma surface of NCSX.
CWS optimization

\[
\inf_{S \in \mathcal{O}_{\text{adm}}} \inf_{j \in L^2(\mathcal{X}(S))} \chi_B^2(j) + \lambda \|j\|_{L^2}^2
\]

Figure – Coil winding surface and plasma surface of NCSX.
Previous works

First approach by Paul et al. (2018)

- Finite dimensional approach (discretize then optimize)
- Regularity of the surface is ensured by non intrinsic cost (Fourier compression).
Previous works

First approach by Paul et al. (2018)
- Finite dimensional approach (discretize then optimize)
- Regularity of the surface is ensured by non intrinsic cost (Fourier compression).

Our contribution
- Existence of a minimizer of the shape optimisation problem,
- Computation of the shape gradient in the set of admissible shapes,
- Numerics based on our approach.
admissible shapes

Constraints on the set of admissible shapes $S \in \mathcal{O}_{\text{adm}}$:

1. S is an orientable surface homotopic to the usual torus
2. $\text{dist}(S, P) \geq \delta$
3. S is included inside a given compact set
4. $\mathcal{H}^2(S) \leq A_M$
click here
admissible shapes

Constraints on the set of admissible shapes $S \in \mathcal{O}_{\text{adm}}$:

1. S is a orientable surface homotopic to the usual torus
2. $\text{dist}(S, P) \geq \delta$
3. S is included inside a given compact set
4. $\mathcal{H}^2(S) \leq A_M$
5. Lower bound on the reach of S
$V \subset \mathbb{R}^n$ closed, $\text{Sk}(V)$ the set of points in \mathbb{R}^n whose orthogonal projection on V is not unique.

$$U_h(V) = \{x \mid d(x, V) < h\}$$

$$\text{Reach}(V) = \sup\{h \mid U_h(V) \cap \text{Sk}(V) = \emptyset\}$$
Theorem [Privat, R., Sigalotti, JMPA, 2022]

The shape optimization problem

$$\inf_{S \in \mathcal{O}_{adm}} \inf_{j \in L^2(\mathcal{X}(S))} \chi_B^2 + \lambda \|j\|_{L^2}^2$$

admits a minimizer.
Shape gradient

- Let $\theta \in W^{2,\infty}(\mathbb{R}^3, \mathbb{R}^3)$ be a perturbation.
Shape gradient

- Let $\theta \in W^{2,\infty}(\mathbb{R}^3, \mathbb{R}^3)$ be a perturbations.
- $\varphi^\varepsilon = \text{Id} + \varepsilon \theta$ induces a diffeomorphism from S to S^ε
Shape gradient

- Let $\theta \in W^{2,\infty}(\mathbb{R}^3, \mathbb{R}^3)$ be a perturbation.
- $\varphi^\varepsilon = \text{Id} + \varepsilon \theta$ induces a diffeomorphism from S to S^ε.
- We want to study $\lim_{\varepsilon \to 0} \frac{C(S^\varepsilon) - C(S)}{\varepsilon}$.
Shape gradient

- Let $\theta \in W^{2,\infty}(\mathbb{R}^3, \mathbb{R}^3)$ be a perturbation.
- $\varphi^\varepsilon = \text{Id} + \varepsilon \theta$ induces a diffeomorphism from S to S^ε.
- We want to study $\lim_{\varepsilon \to 0} \frac{C(S^\varepsilon) - C(S)}{\varepsilon}$.

$$\frac{\partial \tilde{C}(S, j_S)}{\partial S} = \frac{\partial \tilde{C}}{\partial S}(S, j_S) + \frac{\partial \tilde{C}}{\partial j} \frac{\partial j_S}{\partial S}(S, j_S).$$
Shape gradient

- Let \(\theta \in W^{2,\infty}(\mathbb{R}^3, \mathbb{R}^3) \) be a perturbations.
- \(\varphi^\varepsilon = \text{Id} + \varepsilon \theta \) induces a diffeomorphism from \(S \) to \(S^\varepsilon \).
- We want to study \(\lim_{\varepsilon \to 0} \frac{\mathcal{C}(S^\varepsilon) - \mathcal{C}(S)}{\varepsilon} \).
-
 \[
 \frac{\partial \tilde{\mathcal{C}}(S,j_s)}{\partial S} = \frac{\partial \tilde{\mathcal{C}}}{\partial S}(S,j_s) + \frac{\partial \tilde{\mathcal{C}}}{\partial j_s} \frac{\partial j_s}{\partial S}(S,j_s).
 \]
- The differential of \(\varphi^\varepsilon = \text{Id} + \varepsilon \theta \) provides a diffeomorphism from \(\mathcal{X}(S) \) to \(\mathcal{X}(S^\varepsilon) \).
Shape gradient

- Let $\theta \in W^{2,\infty}(\mathbb{R}^3, \mathbb{R}^3)$ be a perturbation.
- $\varphi^\varepsilon = \text{Id} + \varepsilon \theta$ induces a diffeomorphism from S to S^ε.
- We want to study $\lim_{\varepsilon \to 0} \frac{C(S^\varepsilon) - C(S)}{\varepsilon}$

$$
\frac{\partial \tilde{C}(S, j_S)}{\partial S} = \frac{\partial \tilde{C}}{\partial S}(S, j_S) + \frac{\partial \tilde{C}}{\partial j} \frac{\partial j_S}{\partial S}(S, j_S).
$$

- The differential of $\varphi^\varepsilon = \text{Id} + \varepsilon \theta$ provides a diffeomorphism from $X(S)$ to $X(S^\varepsilon)$.
- Nevertheless the range of \mathcal{H}_S^0 by φ^ε does not coincide with $\mathcal{H}_{S^\varepsilon}^0$.

Shape gradient

- Let $\theta \in W^{2,\infty}(\mathbb{R}^3, \mathbb{R}^3)$ be a perturbation.
- $\varphi^\varepsilon = \text{Id} + \varepsilon \theta$ induces a diffeomorphism from S to S^ε.
- We want to study $\lim_{\varepsilon \to 0} \frac{C(S^\varepsilon) - C(S)}{\varepsilon}$.

\[
\begin{align*}
\frac{\partial \tilde{C}(S, j_S)}{\partial S} &= \frac{\partial \tilde{C}}{\partial S}(S, j_S) + \frac{\partial \tilde{C}}{\partial j} \frac{\partial j_S}{\partial S}(S, j_S).
\end{align*}
\]

- The differential of $\varphi^\varepsilon = \text{Id} + \varepsilon \theta$ provides a diffeomorphism from $\mathcal{X}(S)$ to $\mathcal{X}(S^\varepsilon)$.
- Nevertheless the range of \mathcal{F}^0_S by φ^ε does not coincide with $\mathcal{F}^0_{S^\varepsilon}$.

\[
\Phi^\varepsilon : \mathcal{F}_S \longrightarrow \mathcal{F}_{S^\varepsilon}
\]

\[
X \longmapsto \frac{1}{[J(\mu_S, \mu^\varepsilon_S)\varphi^\varepsilon] \circ \varphi^{-\varepsilon}} (\text{Id} + \varepsilon D\theta)X \circ \varphi^{-\varepsilon}
\]
Shape gradient

For every $\theta \in W^{2,\infty}(\mathbb{R}^3, \mathbb{R}^3)$, we get

$$\left\langle dC(S), \theta \right\rangle = \int_{S} \theta \cdot (X_1 - \text{div}_S(X_2)_i:) \, d\mu_S$$

where

$$X_1 = -2\hat{Z}_P(BS_j - B_T, j_S)$$
$$X_2 = -2Z_P(BS_j - B_T)j_S^T + 2\lambda jSj_S^T - \lambda|j_S|^2(I_3 - \nu\nu^T),$$

where $i \in \{1, 2, 3\}$, $(X_2)_i:$ is the i-line of X_2 and ν is the unit normal outward vector on $S = \partial V$.

And

$$Z_P(k) = \int_P K(\cdot, y) \times k(y) \, d\mu_P(y)$$
$$\hat{Z}_P(k, j)(x) = \int_P D_x \left(\frac{x - y}{|x - y|^3} \right)^T (k(y) \times j(x)) \, d\mu_P(y), \quad \forall x \in S.$$
Click here
Perspectives

- Optimisation on specific set of surfaces and optimization of Stellacode\(^6\)
- Magnetic forces and shape optimization together
- Optimization of the plasma

A shape functional

For Ω regular enough,

$$F(\Omega) = \int_{\partial \Omega} j(x, \nu_{\partial \Omega}(x), B_{\partial \Omega}(x)) \, d\mu_{\partial \Omega}(x),$$

- $\nu_{\partial \Omega}$ is the normal outward vector,
- $B_{\partial \Omega}(x)$ is either a geometric quantity (mean curvature, Gauss curvature . . .) or the solution of a PDE defined on Ω or $\partial \Omega$.
A shape functional

For Ω regular enough,

$$F(\Omega) = \int_{\partial \Omega} j(x, \nu_{\partial \Omega}(x), B_{\partial \Omega}(x)) \, d\mu_{\partial \Omega}(x),$$

- $\nu_{\partial \Omega}$ is the normal outward vector,
- $B_{\partial \Omega}(x)$ is either a geometric quantity (mean curvature, Gauss curvature . . .) or the solution of a PDE defined on Ω or $\partial \Omega$.

Existence of minimizers

Can we find $\Omega^* \in \mathcal{O}_{adm}$ such that

$$F(\Omega^*) = \inf_{\Omega \in \mathcal{O}_{adm}} F(\Omega)?$$
Uniform ball property

\[\Omega \in \mathcal{O}_{\text{adm}} \text{ if and only if } \Omega \subset D \text{ compact, } \forall x \in \partial \Omega, \exists d_x \in \mathbb{R}^n \]

\[\|d_x\|_{\mathbb{R}^d} = 1, \ B_r(x - r_0 d_x) \subset \Omega \text{ and } B_r(x + r_0 d_x) \subset \mathbb{R}^n \setminus \Omega. \]

Figure taken from Dalphin.
Existing results

Theorem (Guo-Yang, 2013)

Let j be a continuous function from $\mathbb{R}^d \times S^{d-1}$ to \mathbb{R}, then the following optimization problem

$$\inf_{\Omega \in \mathcal{O}_{adm}} \int_{\partial \Omega} j(x, \nu(x)) d\mu_{\partial \Omega}(x)$$

admits a minimiser.

Theorem (Dalphin, 2018)

Let j be a continuous function from $\mathbb{R}^d \times S^{d-1} \times \mathbb{R}$ and convex with respect to the last variable, then the following optimization problem

$$\inf_{\Omega \in \mathcal{O}_{adm}} \int_{\partial \Omega} j(x, \nu(x), H_{\partial \Omega}(x)) d\mu_{\partial \Omega}(x)$$

admits a minimiser.
Let $h \in L^2(D)$, $g \in H^2(D)$, and define u_Ω as the solution of

$$\begin{cases}
\Delta u_\Omega = h & \text{in } \Omega, \\
u = g & \text{in } \partial \Omega.
\end{cases}$$

Theorem (Dalphin, 2020)

Let j be a continuous function from $\mathbb{R}^d \times \mathbb{S}^{d-1} \times \mathbb{R} \times \mathbb{R}^d$, then the following optimization problem

$$\inf_{\Omega \in \mathcal{O}_{adm}} \int_{\partial \Omega} j(x, \nu(x), u_\Omega(x), \nabla u_\Omega(x)) \, d\mu_{\partial \Omega}(x)$$

admits a minimiser.
The direct method of calculus of variations

1. Define a (sequential) topology on \mathcal{O}_{adm}.
The direct method of calculus of variations

1. Define a (sequential) topology on \mathcal{O}_{adm}.
2. Take a minimizing sequence and use a compactness result.
The direct method of calculus of variations

1. Define a (sequential) topology on \mathcal{O}_{adm}.
2. Take a minimizing sequence and use a compactness result.
3. Prove the lower-semicontinuity of the functional.
Signed distance

Distances functions

\[d_\Omega(x) = \inf_{y \in \Omega} \| x - y \| \]

\[b_\Omega(x) = d_\Omega(x) - d_{\mathbb{R}^d \setminus \Omega}(x) \]

Some properties

- For \(x \in \partial \Omega \), \(\nabla b_\Omega(x) \) is the unit outward normal vector,
- For \(x \in \partial \Omega \), \(\text{Tr}(\nabla^2 b_\Omega(x)) \) is the mean curvature,
- etc.
Uniform reach property

Definition

\[\text{Reach}(\Omega) = \sup\{ h > 0 \mid d_\Omega \text{ is differentiable in } U_h(\Omega) \setminus \Omega \}. \]

Assume \(\text{Reach}(\partial \Omega) = r_0 > 0 \), we have

- if \(\mathcal{H}^d(\partial \Omega) = 0 \), then \(\partial \Omega \) is a \(C^{1,1} \) hypersurface of \(\mathbb{R}^d \) and satisfies the uniform ball property.

- For \(h < r_0 \), \(\nabla b_\Omega \) is \(\frac{2}{r_0 - h} \)-Lipschitz continuous on the tubular neighborhood \(U_h(\partial \Omega) \).

- The restriction of \(\nabla b_\Omega \) to \(\partial \Omega \) is \(\frac{1}{r_0} \)-Lipschitz continuous.
A new framework

R-convergence in \mathcal{O}_{adm}

Given $(\Omega_n)_{n \in \mathbb{N}} \in \mathcal{O}_{adm}^\mathbb{N}$, we say that $(\Omega_n)_{n \in \mathbb{N}}$ R-converges to $\Omega_\infty \in \mathcal{O}_{adm}$ and we write $\Omega_n \xrightarrow{R} \Omega_\infty$ if

\[
\begin{align*}
 b_{\Omega_n} &\to b_{\Omega_\infty} \\
\end{align*}
\]

\[
\begin{cases}
 \text{in } C(\overline{D}), \\
 \text{in } C^{1,\alpha}(U_r(\partial \Omega_\infty)), \quad \forall r < r_0, \quad \forall \alpha \in [0, 1), \\
 \text{weakly-star in } W^{2,\infty}(U_r(\partial \Omega_\infty)), \quad \forall r < r_0.
\end{cases}
\]

Theorem

\mathcal{O}_{adm} is sequentially compact for the R-convergence.
For $0 < h < r_0$, consider

$$T_{\partial \Omega} : (-h, h) \times \partial \Omega \rightarrow U_h(\partial \Omega)$$

$$(t, x) \mapsto x + t \nabla b_\Omega(x).$$

Since $T_{\partial \Omega}$ is Lipschitz continuous, it is differentiable at almost every (t_0, x_0), with

$$d_{(t_0, x_0)} T_{\partial \Omega}(s, y) = y + s \nabla b_\Omega(x_0) + t_0 d_{x_0} \nabla b_\Omega(y), \quad \forall (s, y) \in \mathbb{R} \times T_{x_0} \partial \Omega.$$

Lemma

For every $\varepsilon > 0$, there exists $h > 0$ such that for all $\Omega \in \mathcal{O}_{adm}$,

$$1 - \varepsilon \leq \det(d_{(t_0, x_0)} T_{\partial \Omega}) \leq 1 + \varepsilon, \quad \text{for a.e. } (t_0, x_0) \in (-h, h) \times \partial \Omega.$$
Lemma

If $\Omega_n \xrightarrow{R} \Omega_\infty$ then

1. $\mathcal{H}^{d-1}(\partial\Omega_n)$ converges toward $\mathcal{H}^{d-1}(\partial\Omega_\infty)$ as $n \to +\infty$.

2. $\mathcal{H}^{d}(\Omega_n)$ converges toward $\mathcal{H}^{d}(\Omega_\infty)$ as $n \to +\infty$.

3. If all the $\partial\Omega_n$ belong to the same homotopic class, then $\partial\Omega_\infty$ also belongs such a class.

Corollary

\[\{\Omega \in \mathcal{O}_{\text{adm}} \mid a \leq \mathcal{H}^{d-1}(\partial\Omega) \leq b, \partial\Omega \text{ is homotopic to } \partial\Omega_0\} \]

is sequentially compact
Let \(j \) be a continuous function from \(\mathbb{R}^d \times S^{d-1} \times \mathbb{R} \) and convex with respect to the last variable.

\[
F(\Omega) = \int_{\partial \Omega} j(x, \nu(x), H_{\partial \Omega}(x)) \, d\mu_{\partial \Omega}(x)
\]

\textbf{Theorem}

\(F \) is a lower-semicontinuous shape functional for the \(R \)-convergence, i.e., for every sequence \((\Omega_n)_{n \in \mathbb{N}} \in \mathcal{O}_{\text{adm}}^{\mathbb{N}} \) that \(R \)-converges toward \(\Omega_\infty \), one has

\[
\liminf_{n \to +\infty} F(\Omega_n) \geq F(\Omega_\infty).
\]

As a consequence, the shape optimization problem

\[
\inf_{\Omega \in \mathcal{O}_{\text{adm}}} F(\Omega)
\]

has a solution.
\[F(\Omega_n) = \int_{\partial \Omega_n} j(x, \nabla b_{\Omega_n}(x), H_{\partial \Omega_n}(p_n(y))) d\mu_{\partial \Omega_n}(x) \]
\[= \frac{1}{2h} \int_{U_h(\partial \Omega_n)} j(p_n(y), \nabla b_{\Omega_n}(p_n(y)), H_{\partial \Omega_n}(p_n(y))) \det(dT_n^{-1}(y) T_n) dy. \]

\[F(\Omega_n) = \frac{1}{2h} \int_{U_{h-t}(\partial \Omega_\infty)} j(p_n(y), \nabla b_{\Omega_n}(p_n(y)), H_{\partial \Omega_n}(p_n(y))) \det(dT_n) dy \]
\[+ \frac{1}{2h} \int_{U_h(\partial \Omega_n) \setminus U_{h-t}(\partial \Omega_\infty)} j(p_n(y), \nabla b_{\Omega_n}(p_n(y)), H_{\partial \Omega_n}(p_n(y))) \det(dT_n) dy. \]
Definition

Let $f \in \mathcal{C}^0(D)$. We consider $v_{\partial \Omega}$ the solution of the equation

$$\Delta_{\partial \Omega} v_{\partial \Omega}(x) = f(x) \quad \text{in} \quad \partial \Omega,$$
Let \(f \in C^0(D) \). We consider \(v_{\partial \Omega} \) the solution of the equation

\[
\Delta_{\partial \Omega} v_{\partial \Omega}(x) = f(x) \quad \text{in } \partial \Omega,
\]

\(v_{\partial \Omega} \) is the unique minimiser of

\[
\mathcal{E}_{\partial \Omega} : H^1_*(\partial \Omega) \ni u \mapsto \frac{1}{2} \int_{\partial \Omega} |\nabla_{\partial \Omega} u(x)|^2 d\mu_{\partial \Omega} - \int_{\partial \Omega} f(x)u(x)d\mu_{\partial \Omega}
\]

(2)

Lemma [Privat, R., Sigalotti, 2022]

For any \(\Omega \in \mathcal{O}_{\text{adm}} \), Eq. (2) admits one and only one minimiser.
\[
F(\Omega) = \int_{\partial \Omega} j(x, \nu(x), \nu_{\partial \Omega}(x), \nabla_{\partial \Omega} \nu_{\partial \Omega}(x)) \, d\mu_{\partial \Omega}(x),
\]
where \(j : \mathbb{R}^d \times S^{d-1} \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R} \) is assumed to be continuous.

Theorem [Privat, R., Sigalotti, 2022]

The shape functional \(F \) is lower-semicontinuous for the \(R \)-convergence, i.e., for every sequence \((\Omega_n)_{n \in \mathbb{N}} \in \mathcal{O}_{adm}^\mathbb{N} \) that \(R \)-converges toward \(\Omega_\infty \), one has

\[
\liminf_{n \to +\infty} F(\Omega_n) \geq F(\Omega_\infty). \tag{3}
\]

As a consequence, the shape optimization problem

\[
\inf_{\Omega \in \mathcal{O}_{adm}} F(\Omega)
\]

has a solution.
1. Transport $v_{\partial \Omega_n}$ to $\partial \Omega_\infty$ thanks to the orthogonal projector on $\partial \Omega_n$.

2. The sequence obtained is bounded $H^1(\partial \Omega_\infty)$, extract and called $v^* \in H^1_*(\partial \Omega_\infty)$ the limit.

3. Check that $v^* = v_{\partial \Omega_\infty}$.

4. Passing to the limit is similar to the previous case.
In a nutshell

Hypersurfaces with a uniform Reach condition enjoy nice properties:

- Sequential compactness for the R-convergence.
- Many functionals involving geometric or PDE related cost are lower-semicontinuous for the R-convergence.
- Proofs are (relatively) straightforward.
A few references

- **P. Merkel.** “Solution of stellarator boundary value problems with external currents”. In: *Nuclear Fusion* 27.5 (1987), p. 867-871

- **M. Landreman.** “An improved current potential method for fast computation of stellarator coil shapes”. In: *Nuclear Fusion* 57.4 (2017)

- **R. Robin et F. A. Volpe.** “Minimization of magnetic forces on stellarator coils”. In: *Nuclear Fusion* 62.8 (2022), p. 086041

- **Y. Privat, R. Robin et M. Sigalotti.** “Optimal shape of stellarators for magnetic confinement fusion”. In: *Journal de Mathématiques Pures et Appliquées* 163 (2022), p. 231-264

software: Stellacode
https://rrobin.pages.math.cnrs.fr/stellacode/
Hodge decomposition

On a closed Riemannian manifold M

$$L^2_p(M) = B_p \oplus B^*_p \oplus \mathcal{H}_p,$$

where

- B_p is the L^2-closure of $\{d\alpha \mid \alpha \in \Omega^{p-1}(M)\}$
- B^*_p is the L^2-closure of $\{d^*\beta \mid \beta \in \Omega^{p+1}(M)\}$
- \mathcal{H}_p is the set $\{\omega \in \Omega^p(M) \mid \Delta_H \omega = 0\}$ of harmonic p-forms with Δ_H the Hodge Laplacian
In vacuo Maxwell equations on a toroidal 3D domain

Let P be a toroidal domain. Let Γ be a toroidal loop inside P and denote by I_p the electric current-flux across any surface enclosed by Γ (also equal to the circulation of B along Γ).

Lemma

Let $B \in C^\infty(P, \mathbb{R}^3)$ such that $\text{div} \, B = 0$ and $\text{curl} \, B = 0$ in P. Let g be the normal magnetic field on ∂P. Then g and I_p determine completely the magnetic field B in P. Besides, there exists a constant $C > 0$ such that for every other magnetic field \tilde{B} with the same total poloidal currents, $|B - \tilde{B}|_{H^{1/2}(P, \mathbb{R}^3)} \leq C |g - \tilde{g}|_{L^2(\partial P)}$ where \tilde{g} is the normal component of $\tilde{B}|_{\partial P}$.

Idea: consider the cochain complex

$$C^\infty(P) \xrightarrow{\text{grad}} C^\infty(P, \mathbb{R}^3) \xrightarrow{\text{curl}} C^\infty(P, \mathbb{R}^3) \xrightarrow{\text{div}} C^\infty(P).$$