Stellarator 000000000000 Laplace

CWS optimization

Some optimisation problems for magnetic confinement in stellarator

Rémi Robin

McTAO seminar, October 27th 2022

Joint work with Yannick Privat, Mario Sigalotti and Francesco Volpe

Stellarator	Laplace	CWS optimization	Existence	references

- 2 Magnetic forces on a surface
- 3 Coil Winding Surface optimization
- Existence of surface optimizing some PDE shape functionals

 Stellarator
 Laplace
 CWS optimization
 Existence
 references

 •0000000000
 0000000000
 0000000000
 00000000000
 0

Nuclear Fusion : principle

 Stellarator
 Laplace
 CWS optimization
 Existence
 references

 0<000000000</td>
 0000000000
 0000000000
 00000000000
 0

Controlled nuclear fusion : motivations

Serious candidate for power plants.

Avantages

- abundant reagents¹
- No direct emission of greenhouse gases
- No highly radioactive wastes ¹
- No risk of runaway reaction
- No military applications²

^{1.} mostly true...

^{2.} for magnetic technologies

 Stellarator
 Laplace
 CWS optimization
 Existence
 references

 0000000000
 00000000000
 000000000000
 0

Controlled nuclear fusion : magnetic confinement

Problem : Confine a 150 million Kelvin plasma.

 Stellarator
 Laplace
 CWS optimization
 Existence
 references

 Controlled
 nuclear
 fusion
 magnetic
 confinement

Problem : Confine a 150 million Kelvin plasma. strategy : Plasma is made up of charged particles \implies react with external magnetic field.
 Stellarator
 Laplace
 CWS optimization
 Existence
 references

 Controlled
 nuclear
 fusion : magnetic confinement

Problem : Confine a 150 million Kelvin plasma. strategy : Plasma is made up of charged particles \implies react with external magnetic field.

Stellarator	Laplace	CWS optimization	Existence	references
000●0000000	00000000000		000000000000000	O

Figure – Left : scheme of a Tokamak, right : simulation by Robin Roussel (LJLL).

Stellarator	Laplace	CWS optimization	Existence	references
00000000000	00000000000		000000000000000	0
Stellarator				

Strategy : ensure confinement only with the external field.

FIGURE – Wendelstein 7-X, Max-Planck Institut für Plasmaphysik

Stellarator 000000000000

Laplace 000000000000 CWS optimization

Existence 00000000000000000 references 0

Stellarator

FIGURE – Poincaré map, from *An introduction to symmetries in stellarators*, Imbert-Gérard et al.

Stellarator	Laplace	CWS optimization	Existence	references
000000000000	00000000000		000000000000000	O
Design of a	a stellarator	•		

• Find a good target magnetic field B_T inside the plasma.

Stellarator	Laplace	CWS optimization	Existence	references
000000000000	00000000000		000000000000000	O
Design of a	a stellarator			

- O
 - Find a good target magnetic field B_T inside the plasma.
 - Q Use a Coil winding surface to find a surface current distribution generating B_{T}^{3}

FIGURE – Coil winding surface and plasma surface of NCSX.

3. P. Merkel (1986)

Stellarator	Laplace	CWS optimization	Existence	references
000000000000	000000000000		0000000000000000	O

Design of a stellarator

- Find a good target magnetic field B_T inside the plasma.
- ⁽²⁾ Use a *Coil winding surface* to find a surface current distribution generating B_T ³
- (approach the current density by discrete coils)

 $\ensuremath{\operatorname{Figure}}$ – Coil winding surface and plasma surface of NCSX.

3. P. Merkel (1986)

Stellarator	Laplace	CWS optimization	Existence	references
000000000000	00000000000		000000000000000	O
Modelisati	on			

An optimization problem :

$$\inf_{\substack{j \in L^2(\mathfrak{X}(S))\\ \text{div } j=0}} \chi_B^2(j)$$

Cost function :

$$\chi_B^2(j) = \int_P |\mathsf{BS}(j)(y) - B_T(y)|^2 dy$$

Biot–Savart law :

$$\forall y \notin S, \mathsf{BS}(j)(y) = \int_S j(x) imes rac{y-x}{|y-x|^3} dx$$

Stellarator	Laplace	CWS optimization	Existence	references
000000000000				

An inverse problem

 $BS(\cdot)$ is continuous $L^2(\mathfrak{X}(S)) \to C^k(P, \mathbb{R}^3)$. In particular,

$$L^2(\mathfrak{X}(S)) o L^2(P, \mathbb{R}^3)$$

 $j \mapsto BS(j)$

is compact.

An inverse problem

 $BS(\cdot)$ is continuous $L^2(\mathfrak{X}(S)) o C^k(P, \mathbb{R}^3)$. In particular,

$$L^2(\mathfrak{X}(S)) o L^2(P, \mathbb{R}^3)$$

 $j \mapsto BS(j)$

is compact.

Solutions :

- Solve on a finite dimensional space⁴
- Use a Tychonoff regularisation ⁵

$$\|j\|_{L^2}^2 = \int_{S} |j|^2 dS$$

- 4. P. Merkel (1986)
- 5. M. Landreman (2017)

Stellarator	Laplace	CWS optimization	Existence	references
00000000000				

Lemme

For $\lambda > 0$, the optimization problem

$$\inf_{\substack{j \in L^2(\mathfrak{X}(S)) \\ \text{div} \, j = 0}} \chi_B^2(j) + \lambda \|j\|_{L^2}^2$$

admits a unique minimiser j_S given by

$$j_{\mathcal{S}} = (\lambda \operatorname{\mathsf{Id}} + \operatorname{\mathsf{BS}}^\dagger \operatorname{\mathsf{BS}})^{-1} \operatorname{\mathsf{BS}}^\dagger B_{\mathcal{T}}$$

click here

 Stellarator
 Laplace
 CWS optimization
 Existence
 refere

 00000000000
 00000000000
 000000000000
 0

Magnetic forces : motivations

• Building a stellarator is expensive. . .

 Stellarator
 Laplace
 CWS optimization
 Existence
 references

 ••••••••••••••••••••••
 ••••••••••••••
 ••••••••••••
 •••••••••••••••

 Magnetic forces : motivations

- Building a stellarator is expensive...
- compact stellarators require higher magnetic field

 Stellarator
 Laplace
 CWS optimization
 Existence
 references

 000000000000
 00000000000
 000000000000
 0000000000000
 0

 Magnetic forces : motivations
 0

- Building a stellarator is expensive. . .
- compact stellarators require higher magnetic field
- Higher magnetic fields call for higher currents

- Building a stellarator is expensive. . .
- compact stellarators require higher magnetic field
- Higher magnetic fields call for higher currents
- Magnetic forces $(\vec{dF} = i\vec{dI} \wedge \vec{B})$ increase quadratically.

 Stellarator
 Laplace
 CWS optimization
 Existence
 references

 ••••••••••••••
 ••••••••
 ••••••
 •••••
 ••••
 ••••
 ••••

 Magnetic
 forces
 motivations
 Existence
 references

- Building a stellarator is expensive. . .
- compact stellarators require higher magnetic field
- Higher magnetic fields call for higher currents
- Magnetic forces $(\vec{dF} = i\vec{dI} \wedge \vec{B})$ increase quadratically.

 \implies We have to optimize the magnetic forces. Problem : how to define the magnetic forces on a current-sheet ?
 Stellarator
 Laplace
 CWS optimization
 Existence
 references

 00000000000
 00000000000
 00000000000
 0

Statement of the problem

Let S be a surface and $j \in \mathfrak{X}(S)$ a vector field on S. Biot-Savart

$$orall y
ot\in S, \ \mathsf{BS}(j)(y) = \int_S j(x) imes rac{y-x}{|y-x|^3} dS(x)$$

$$\int_{S} \frac{1}{|x-y|^2} dx = \infty \qquad \text{si } y \in S$$

 Stellarator
 Laplace
 CWS optimization
 Existence
 references

 00000000000
 00000000000
 00000000000
 0
 0

Statement of the problem

Let S be a surface and $j \in \mathfrak{X}(S)$ a vector field on S. Biot-Savart

$$\forall y \notin S, BS(j)(y) = \int_{S} j(x) \times \frac{y-x}{|y-x|^3} dS(x)$$

$$\int_{S} \frac{1}{|x-y|^2} dx = \infty$$
 si $y \in S$

There is a magnetic discontinuity on the surface given by

$$B_T^1 - B_T^2 = n_{12} \wedge j.$$

B does not blow-up near S.

Average magnetic forces

We define

$$L_{\varepsilon}(j)(y) = \frac{1}{2}(j \wedge [B(j)(y + \varepsilon n(y)) + B(j)(y - \varepsilon n(y))])$$
$$L(j) = \lim_{\varepsilon \to 0} L_{\varepsilon}(j)$$

Stellarator	Laplace	CWS optimization	Existence	references
00000000000	000●0000000		000000000000000	0

This definition raises several questions :

- Under which assumptions on j can we ensure that L(j) is well defined ?
- Output Can we find an explicit expression of L(j) (i.e. without a limit on ε)?
- Which functional space does L(j) belong to (for j in a given functional space)?

To compute *L* from L_{ε} , we need 3 scales :

- **1** the discretisation-length of S : h,
- **2** the infinitesimal displacement ε ,
- Solution of the magnetic field, d_B.

With :

- $h \ll \varepsilon$ as $\int_{S} |y + \varepsilon n(y) x|^{-2} dS(x)$ blows up when $\varepsilon \to 0$.
- $\varepsilon \ll d_B$ to approximate *L*.

Laplace 000000000000 CWS optimization

Theorem [R., Volpe, Nuclear Fusion, 2022]

Assume $j \in H^1$, then $L_{\varepsilon}(j)$ converge in $L^p(S, \mathbb{R}^3)$ for $1 \le p < \infty$ as $\varepsilon \to 0$.

Besides, L is a continuous (quadratic) $H^1 o L^p(S, \mathbb{R}^3)$ given by

$$\begin{split} L(j)(y) &= -\int_{\mathcal{S}} \frac{1}{|y-x|} \Big[\operatorname{div}_{x}(\pi_{x}j(y)) + \pi_{x}j(y) \cdot \nabla_{x} \Big] j(x) dx \\ &+ \int_{\mathcal{S}} \langle j(y) \cdot n(x) \rangle \frac{\langle y-x \cdot n(x) \rangle}{|y-x|^{3}} j(x) dx \\ &+ \int_{\mathcal{S}} \frac{1}{|y-x|} \Big[\langle j(y) \cdot j(x) \rangle \operatorname{div}_{x}(\pi_{x}) + \nabla_{x} \langle j(y) \cdot j(x) \rangle \Big] dx \\ &- \int_{\mathcal{S}} \langle j(y) \cdot j(x) \rangle \frac{\langle y-x \cdot n(x) \rangle}{|y-x|^{3}} n(x) dx \end{split}$$

Some ideas of the proof

• Use
$$A \wedge (B \wedge C) = (A \cdot C)B - (A \cdot B)C$$

• Note that
$$\frac{y-x}{|y-x|^3} = -\nabla_x \frac{1}{|y-x|}$$
.

- Do an integration by part on the tangential component of the gradient.
- Use some estimates when ε is small to eliminate the part responsible for the magnetic discontinuity.
- Tools : Hardy-Littlewood-Sobolev inequality and Sobolev embeding on compact manifold.

We introduce the following costs :

• χ_B to ensure that we produce the magnetic field chosen :

$$\chi_B^2 = \int_{\partial P} \langle B(x) \cdot n(x) \rangle^2 dx$$

• A penalization term on *j*

$$\chi_j^2 = \int_S |j|^2 dx$$

$$\chi_{\nabla j}^2 = \int_S (|\nabla j_x|^2 + |\nabla j_y|^2 + |\nabla j_z|^2) dx$$

• A penalizing term on the Laplace forces, for example $L^p(S, \mathbb{R}^3)$

$$\chi_F^2 = |L(j)|_{L^p} = \left(\int_S |L(j)|_2^p\right)^{1/p} dx$$

Thus, we will minimize the new cost with relative weights $\lambda_1, \lambda_2, \gamma \geq 0$.

$$\chi^2 = \chi_B^2 + \lambda_1 \chi_j^2 + \lambda_2 \chi_{\nabla j}^2 + \gamma \chi_F^2$$

We also introduce a cost to penalize only high values of the forces : $C_e = \int_S f_e(|L(j)|)$

Stellarator 000000000000	Laplace 0000000000	CWS 0000	optimization	Existence 00000000000	00000	references O
	Case Case (T ² m	$\lambda_1 = \lambda_2$ μ^2/A^2 (T ² m ²	γ^{γ} (T ² /Pa ²)	χ^2_F		
	2	0 0	10 ⁻¹⁷	$ L(j) ^2_{L^2(S,\mathbb{R}^3)}$		(1)
	3 4 10	$0 0 0 -19 10^{-19}$	10^{-10} 10^{-10}	C _e C _e		
	Rem Am	27 4000 A.nl 40 40 40 40 40 40 40 40 40 40	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	27 10 10 10 10 10 10 10 10 10 10	24 8 7 6 5 4 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	form Laplace forces (he)	27 10 10 10 10 10 10 10 10 10 10	37 317 417 417 417 417 417 417 417 417 417 4	27 107 107 107 107 107 107 107 10	1-7 -12 -08 -06 -04 -02	
	n/6 n/3 n/2 2n/3 Toroctal angle	n/6 n/3 n/2 2n/ Toroidal angle	0 06 03 02 20 Teoldal angle	3 n/6 n/3 n/2 2n/3 Toroidal angle	ш	

Stellarator	Laplace	CWS optimization	Existence	reference
	00000000000			

 Stellarator
 Laplace
 CWS optimization
 Existence
 references

 OCONSCIONSO
 OCONSCIONSO
 OCONSCIONSO
 OCONSCIONSO
 OC

 $\inf_{\substack{j \in L^2(\mathfrak{X}(S)) \\ \text{div} \, j = 0}} \chi_B^2(j) + \lambda \|j\|_{L^2}^2$

FIGURE – Coil winding surface and plasma surface of NCSX.

$$\inf_{\substack{\boldsymbol{S} \in \mathcal{O}_{adm} \\ div \, j=0}} \inf_{\substack{j \in L^2(\mathfrak{X}(\boldsymbol{S})) \\ div \, j=0}} \chi_B^2(j) + \lambda \|j\|_{L^2}^2$$

FIGURE – Coil winding surface and plasma surface of NCSX.

Stellarator	Laplace	CWS optimization	Existence	references
00000000000	00000000000		000000000000000	O
Previous w	vorks			

First approach by Paul et al.(2018)

- Finite dimensional approach (discretize then optimize)
- Regularity of the surface is ensured by non intrinsic cost (Fourier compression).

Stellarator	Laplace	CWS optimization	Existence	references
00000000000	00000000000		000000000000000	O
Previous w	vorks			

First approach by Paul et al.(2018)

- Finite dimensional approach (discretize then optimize)
- Regularity of the surface is ensured by non intrinsic cost (Fourier compression).

Our contribution

- Existence of a minimizer of the shape optimisation problem,
- Computation of the shape gradient in the set of admissible shapes,
- Numerics based on our approach.

 Stellarator
 Laplace
 CWS optimization
 Existence
 references

 00000000000
 0000000000
 0000000000
 0
 0

admissible shapes

Constraints on the set of admissible shapes $S \in \mathcal{O}_{\mathsf{adm}}$:

 ${\small \textcircled{0}} \hspace{0.1 cm} {\sf S} \hspace{0.1 cm} {\sf is an orientable surface homotopic to the usual torus}$

$$ist(S, P) \geq \delta$$

 \bigcirc S is included inside a given compact set

click here

Stellarator Laplace CWS optimization Existence references 00000000000

admissible shapes

Constraints on the set of admissible shapes $S \in \mathcal{O}_{\mathsf{adm}}$:

- S is a orientable surface homotopic to the usual torus
- 2 dist $(S, P) > \delta$
- S is included inside a given compact set

•
$$\mathcal{H}^2(S) \leq A_M$$

Lower bound on the reach of S

Stellarator	Laplace	CWS optimization	Existence	references
00000000000	00000000000		0000000000000000	O
Reach				

 $V \subset \mathbb{R}^n$ closed, Sk(V) the set of points in \mathbb{R}^n whose orthogonal projection on V is not unique.

$$U_h(V) = \{x \mid d(x, V) < h\}$$

Reach(V) = sup{h | $U_h(V) \cap Sk(V) = \emptyset$ }

Stellarator	Laplace	CWS optimization	Existence	references
00000000000	00000000000		000000000000000	0
Reach				

Theorem [Privat, R., Sigalotti, JMPA, 2022]

The shape optimization problem

$$\inf_{\substack{\mathcal{S} \in \mathcal{O}_{\mathrm{adm}}}} \inf_{\substack{j \in L^2(\mathfrak{X}(\mathcal{S})) \\ \mathrm{div}\, j = 0}} \chi_B^2 + \lambda \| j \|_{L^2}^2$$

admits a minimizer.

CL	10 A			
Stellarator	Laplace	CWS optimization	Existence	references
00000000000	000000000000		00000000000000000000000000000000000	O

Shape gradient

• Let $\theta \in W^{2,\infty}(\mathbb{R}^3, \mathbb{R}^3)$ be a perturbations.

Stellarator	Laplace	CWS optimization	Existence	references
000000000000	000000000000		0000000000000000	O
Shape or	adient			

- Let $\theta \in W^{2,\infty}(\mathbb{R}^3,\mathbb{R}^3)$ be a perturbations.
- $\varphi^{\varepsilon} = \operatorname{Id} + \varepsilon \theta$ induces a diffeomorphism from S to S^{ε}

Stellarator	Laplace	CWS optimization	Existence	references
00000000000	00000000000		000000000000000	O
Shape grad	lient			

- Let $\theta \in W^{2,\infty}(\mathbb{R}^3,\mathbb{R}^3)$ be a perturbations.
- $\varphi^{\varepsilon} = \operatorname{Id} + \varepsilon \theta$ induces a diffeomorphism from S to S^{ε}
- We want to study $\lim_{\epsilon \to 0} \frac{C(S^{\epsilon}) \dot{C}(S)}{\epsilon}$

Stellarator	Laplace	CWS optimization	Existence	references
00000000000	000000000000		0000000000000000	O
Shape gra	dient			

- Let $heta \in W^{2,\infty}(\mathbb{R}^3,\mathbb{R}^3)$ be a perturbations.
- $\varphi^{\varepsilon} = \operatorname{Id} + \varepsilon \theta$ induces a diffeomorphism from S to S^{ε}
- We want to study $\lim_{\epsilon \to 0} \frac{C(S^{\epsilon}) \dot{C}(S)}{\varepsilon}$

٢

$$\frac{\partial \tilde{C}(S, j_S)}{\partial S} = \frac{\partial \tilde{C}}{\partial S}(S, j_S) + \frac{\partial \tilde{C}}{\partial j} \frac{\partial j_S}{\partial S}(S, j_S).$$

 Stellarator
 Laplace
 CWS optimization
 Existence
 references

 Shape gradient
 Shape gradient
 Shape gradient
 Shape gradient

- Let $heta \in W^{2,\infty}(\mathbb{R}^3,\mathbb{R}^3)$ be a perturbations.
- $\varphi^{\varepsilon} = \mathsf{Id} + \varepsilon \theta$ induces a diffeomorphism from S to S^{ε}
- We want to study $\lim_{\epsilon \to 0} \frac{C(S^{\varepsilon}) \dot{C}(S)}{\varepsilon}$

۲

$$\frac{\partial \tilde{C}(S, j_S)}{\partial S} = \frac{\partial \tilde{C}}{\partial S}(S, j_S) + \frac{\partial \tilde{C}}{\partial j} \frac{\partial j_S}{\partial S}(S, j_S).$$

The differential of φ^ε = Id +εθ provides a diffeomorphism from 𝔅(S) to 𝔅(S^ε).

- Let $heta \in W^{2,\infty}(\mathbb{R}^3,\mathbb{R}^3)$ be a perturbations.
- $\varphi^{\varepsilon} = \mathsf{Id} + \varepsilon \theta$ induces a diffeomorphism from S to S^{ε}
- We want to study $\lim_{\epsilon \to 0} \frac{C(S^{\varepsilon}) \dot{C}(S)}{\varepsilon}$

۲

$$\frac{\partial \tilde{C}(S, j_S)}{\partial S} = \frac{\partial \tilde{C}}{\partial S}(S, j_S) + \frac{\partial \tilde{C}}{\partial j} \frac{\partial j_S}{\partial S}(S, j_S).$$

- The differential of φ^ε = Id +εθ provides a diffeomorphism from 𝔅(S) to 𝔅(S^ε).
- Nevertheless the range of \mathscr{F}^0_S by φ^ε does not coincide with $\mathscr{F}^0_{S^\varepsilon}.$

Stellarator Laplace CWS optimization Existence references 000000000000

Shape gradient

- Let $\theta \in W^{2,\infty}(\mathbb{R}^3,\mathbb{R}^3)$ be a perturbations.
- $\varphi^{\varepsilon} = \mathsf{Id} + \varepsilon \theta$ induces a diffeomorphism from S to S^{ε}
- We want to study $\lim_{\epsilon \to 0} \frac{C(S^{\epsilon}) \dot{C}(S)}{c}$

$$\frac{\partial \tilde{C}(S, j_S)}{\partial S} = \frac{\partial \tilde{C}}{\partial S}(S, j_S) + \frac{\partial \tilde{C}}{\partial j} \frac{\partial j_S}{\partial S}(S, j_S).$$

- The differential of $\varphi^{\varepsilon} = \operatorname{Id} + \varepsilon \theta$ provides a diffeomorphism from $\mathfrak{X}(S)$ to $\mathfrak{X}(S^{\varepsilon})$.
- Nevertheless the range of $\mathscr{F}^0_{\mathsf{S}}$ by φ^{ε} does not coincide with $\mathscr{F}^0_{\mathfrak{s}_{\varepsilon}}$.

$$\Phi^{arepsilon} : \mathscr{F}_{S} \longrightarrow \mathscr{F}_{S^{arepsilon}}$$
 $X \longmapsto rac{1}{[J(\mu_{S}, \mu^{arepsilon}_{S})\varphi^{arepsilon}] \circ \varphi^{-arepsilon}} (\mathsf{Id} + arepsilon D heta) X \circ \varphi^{-arepsilon}$

CWS optimization 000000000000

Shape gradient

For every $heta\in W^{2,\infty}(\mathbb{R}^3,\mathbb{R}^3)$, we get

$$\langle dC(S), \theta \rangle = \int_{S} \theta \cdot (X_1 - \operatorname{div}_{S}(X_2)_{i:}) d\mu_{S}$$

where

n А

$$\begin{split} X_1 &= -2\widehat{Z}_P(\mathsf{BS}_S j_S - B_T, j_S) \\ X_2 &= -2Z_P(\mathsf{BS}_S j_S - B_T)j_S^T + 2\lambda j_S j_S^T - \lambda |j_S|^2 (I_3 - \nu \nu^T), \\ \text{where } i \in \{1, 2, 3\}, \, (X_2)_{i:} \text{ is the } i\text{-line of } X_2 \text{ and } \nu \text{ is the unit } \\ \text{normal outward vector on } S &= \partial V. \\ \text{And} \end{split}$$

$$Z_P(k) = \int_P K(\cdot, y) \times k(y) d\mu_P(y)$$
$$\widehat{Z}_P(k, j)(x) = \int_P D_x \left(\frac{x - y}{|x - y|^3}\right)^T (k(y) \times j(x)) d\mu_P(y), \quad \forall x \in S.$$

35 / 54

Click here

Stellarator	Laplace	CWS optimization	Existence	references
00000000000	00000000000	000000000●	000000000000000	0
Perspective	es			

- Optimisation on specific set of surfaces and optimization of Stellacode⁶
- Magnetic forces and shape optimization together
- Optimization of the plasma

^{6.} https://rrobin.pages.math.cnrs.fr/stellacode/

Stellarator	Laplace	CWS optimization	Existence	references
00000000000	00000000000		•00000000000000	0
A shape fu	Inctional			

For Ω regular enough,

$$F(\Omega) = \int_{\partial\Omega} j(x, \nu_{\partial\Omega}(x), B_{\partial\Omega}(x)) \, d\mu_{\partial\Omega}(x),$$

- $\nu_{\partial\Omega}$ is the normal outward vector,
- $B_{\partial\Omega}(x)$ is either a geometric quantity (mean curvature, Gauss curvature . . .) or the solution of a PDE defined on Ω or $\partial\Omega$.

Stellarator	Laplace	CWS optimization	Existence	references
00000000000	00000000000		•00000000000000	0
A shape fu	Inctional			

For Ω regular enough,

$$F(\Omega) = \int_{\partial\Omega} j(x, \nu_{\partial\Omega}(x), B_{\partial\Omega}(x)) \, d\mu_{\partial\Omega}(x),$$

- $\nu_{\partial\Omega}$ is the normal outward vector,
- B_{∂Ω}(x) is either a geometric quantity (mean curvature, Gauss curvature . . .) or the solution of a PDE defined on Ω or ∂Ω.

Existence of minimizers

Can we find $\Omega^* \in \mathcal{O}_{\mathsf{adm}}$ such that

$$F(\Omega^*) = \inf_{\Omega \in \mathcal{O}_{adm}} F(\Omega)?$$

Figure taken from Dalphin.

 \mathbf{B}

Existing results

Theorem (Guo-Yang, 2013)

Let j be a continuous function from $\mathbb{R}^d\times \mathcal{S}^{d-1}$ to $\mathbb{R},$ then the following optimization problem

$$\inf_{\Omega\in\mathcal{O}_{adm}}\int_{\partial\Omega}j(x,\nu(x))d\mu_{\partial\Omega}(x)$$

admits a minimiser.

Theorem (Dalphin, 2018)

Let j be a continuous function from $\mathbb{R}^d \times S^{d-1} \times \mathbb{R}$ and convex with respect to the last variable, then the following optimization problem

$$\inf_{\Omega\in\mathcal{O}_{adm}}\int_{\partial\Omega}j(x,\nu(x),\mathcal{H}_{\partial\Omega}(x))d\mu_{\partial\Omega}(x)$$

admits a minimiser.

Let $h \in L^2(D)$, $g \in H^2(D)$, and define u_Ω as the solution of

$$\left\{ egin{array}{ll} \Delta u_\Omega = h & ext{in } \Omega, \ u_\Omega = g & ext{in } \partial \Omega. \end{array}
ight.$$

Theorem (Dalphin, 2020)

Let j be a continuous function from $\mathbb{R}^d \times S^{d-1} \times \mathbb{R} \times \mathbb{R}^d$, then the following optimization problem

$$\inf_{\Omega\in\mathcal{O}_{adm}}\int_{\partial\Omega}j(x,\nu(x),u_{\Omega}(x),\nabla u_{\Omega}(x))\,d\mu_{\partial\Omega}(x)$$

admits a minimiser.

 Stellarator
 Laplace
 CWS optimization
 Existence
 references

 The direct method of calculus of variations

• Define a (sequential) topology on \mathcal{O}_{adm} .

 Stellarator
 Laplace
 CWS optimization
 Existence
 references

 The direct method of calculus of variations

- - Define a (sequential) topology on \mathcal{O}_{adm} .
 - 2 Take a minimizing sequence and use a compactness result

The direct method of calculus of variations

- Define a (sequential) topology on \mathcal{O}_{adm} .
- I Take a minimizing sequence and use a compactness result
- I Prove the lower-semicontinuity of the functional

Distances functions

$$d_{\Omega}(x) = \inf_{y \in \Omega} \|x - y\|$$

$$b_\Omega(x) = d_\Omega(x) - d_{\mathbb{R}^d \setminus \Omega}(x)$$

Some properties

• For $x \in \partial \Omega$, $\nabla b_{\Omega}(x)$ is the unit outward normal vector,

• For $x \in \partial \Omega$, $Tr(\nabla^2 b_\Omega(x))$ is the mean curvature,

• etc.

Stellarator 00000000000 Laplace 0000000000000 CWS optimization

 references 0

Uniform reach property

Definition

 $\operatorname{Reach}(\Omega) = \sup\{h > 0 \mid d_{\Omega} \text{ is differentiable in } U_h(\Omega) \setminus \Omega\}.$

Assume $\text{Reach}(\partial \Omega) = r_0 > 0$, we have

- if $\mathcal{H}^d(\partial \Omega) = 0$, then $\partial \Omega$ is a $\mathscr{C}^{1,1}$ hypersurface of \mathbb{R}^d and satisfies the uniform ball property.
- For $h < r_0$, ∇b_{Ω} is $\frac{2}{r_0 h}$ -Lipschitz continuous on the tubular neighborhood $U_h(\partial \Omega)$.
- The restriction of ∇b_{Ω} to $\partial \Omega$ is $\frac{1}{r_0}$ -Lipschitz continuous.

A new framework

R-convergence in \mathcal{O}_{adm}

Given $(\Omega_n)_{n\in\mathbb{N}} \in \mathcal{O}_{adm}^{\mathbb{N}}$, we say that $(\Omega_n)_{n\in\mathbb{N}}$ *R*-converges to $\Omega_{\infty} \in \mathcal{O}_{adm}$ and we write $\Omega_n \xrightarrow{R} \Omega_{\infty}$ if

$$b_{\Omega_n} o b_{\Omega_\infty} \quad \begin{cases} \text{in } \mathscr{C}(\overline{D}), \\ \text{in } \mathscr{C}^{1,lpha}(U_r(\partial\Omega_\infty)), \, orall r < r_0, \, orall lpha \in [0,1), \\ ext{weakly-star in } W^{2,\infty}(U_r(\partial\Omega_\infty)), \, orall r < r_0. \end{cases}$$

Theorem

 \mathcal{O}_{adm} is sequentially compact for the R-convergence.

Stellarator	Laplace	CWS optimization	Existence	references
00000000000	00000000000		000000000000000	O
Tubular ne	ighboorhoo	d		

For $0 < h < r_0$, consider

$$egin{array}{rll} T_{\partial\Omega}:&(-h,h) imes\partial\Omega&
ightarrow&U_h(\partial\Omega)\ &(t,x)&\mapsto&x+t
abla b_\Omega(x). \end{array}$$

Since $T_{\partial\Omega}$ is Lipschitz continuous, it is differentiable at almost every (t_0, x_0) , with

$$d_{(t_0,x_0)}T_{\partial\Omega}(s,y)=y+s\nabla b_\Omega(x_0)+t_0d_{x_0}\nabla b_\Omega(y),\qquad \forall (s,y)\in\mathbb{R}\times T_{x_0}\partial\Omega.$$

Lemma

For every $\varepsilon > 0$, there exists h > 0 such that for all $\Omega \in \mathcal{O}_{adm}$,

$$1-\varepsilon \leq \det(d_{(t_0,x_0)}T_{\partial\Omega}) \leq 1+\varepsilon, \quad \textit{for a.e.} \ (t_0,x_0) \in (-h,h) \times \partial\Omega.$$

Stellarator L	aplace	CWS optimization	Existence	references
	00000000000		000000000000000	

Lemma

If
$$\Omega_n \xrightarrow{R} \Omega_\infty$$
 then

• $\mathcal{H}^{d-1}(\partial \Omega_n)$ converges toward $\mathcal{H}^{d-1}(\partial \Omega_\infty)$ as $n \to +\infty$.

- 2 $\mathcal{H}^{d}(\Omega_{n})$ converges toward $\mathcal{H}^{d}(\Omega_{\infty})$ as $n \to +\infty$.
- If all the $\partial \Omega_n$ belong to the same homotopic class, then $\partial \Omega_\infty$ also belongs such a class.

Corollary

 $\{\Omega \in \mathcal{O}_{\mathsf{adm}} \mid a \leq \mathcal{H}^{d-1}(\partial \Omega) \leq b, \ \partial \Omega \text{ is homotopic to } \partial \Omega_0\}$

is sequentially compact

 Stellarator
 Laplace
 CWS optimization
 Existence
 references

 00000000000
 0000000000
 0000000000
 0000000000
 0

Let j be a continuous function from $\mathbb{R}^d \times S^{d-1} \times \mathbb{R}$ and convex with respect to the last variable.

$$F(\Omega) = \int_{\partial\Omega} j(x, \nu(x), H_{\partial\Omega}(x)) d\mu_{\partial\Omega}(x)$$

Theorem

F is a lower-semicontinuous shape functional for the *R*-convergence, i.e., for every sequence $(\Omega_n)_{n\in\mathbb{N}} \in \mathcal{O}_{adm}^{\mathbb{N}}$ that *R*-converges toward Ω_{∞} , one has

 $\liminf_{n\to+\infty}F(\Omega_n)\geq F(\Omega_\infty).$

As a consequence, the shape optimization problem

$$\inf_{\Omega\in\mathcal{O}_{\mathsf{adm}}}F(\Omega)$$

has a solution.

Stellarator	Laplace	CWS optimization	Existence	references
			0000000000000000	

$$\begin{split} F(\Omega_n) &= \int_{\partial \Omega_n} j(x, \nabla b_{\Omega_n}(x), H_{\partial \Omega_n}(p_n(y))) d\mu_{\partial \Omega_n}(x) \\ &= \frac{1}{2h} \int_{U_h(\partial \Omega_n)} j(p_n(y), \nabla b_{\Omega_n}(p_n(y)), H_{\partial \Omega_n}(p_n(y))) \det(d_{T_n^{-1}(y)}T_n) \, dy. \end{split}$$

$$\begin{split} F(\Omega_n) = & \frac{1}{2h} \int_{U_{h-t}(\partial\Omega_{\infty})} j(p_n(y), \nabla b_{\Omega_n}(p_n(y)), H_{\partial\Omega_n}(p_n(y))) \, \det(dT_n) \, dy \\ &+ \frac{1}{2h} \int_{U_h(\partial\Omega_n) \setminus U_{h-t}(\partial\Omega_{\infty})} j(p_n(y), \nabla b_{\Omega_n}(p_n(y)), H_{\partial\Omega_n}(p_n(y))) \, \det(dT_n) \, dy. \end{split}$$

Stellarator	Laplace	CWS optimization	Existence	references
00000000000	00000000000		00000000000000000000000000000000000	O
Definition				

Let $f \in \mathscr{C}^0(D)$. We consider $v_{\partial\Omega}$ the solution of the equation

 $\Delta_{\partial\Omega} v_{\partial\Omega}(x) = f(x) \quad \text{ in } \partial\Omega,$
Stellarator	Laplace	CWS optimization	Existence	references
00000000000	00000000000		00000000000000000000000000000000000	0
Definition				

Let $f \in \mathscr{C}^0(D)$. We consider $v_{\partial\Omega}$ the solution of the equation

$$\Delta_{\partial\Omega} v_{\partial\Omega}(x) = f(x) \quad \text{ in } \partial\Omega,$$

 $v_{\partial\Omega}$ is the unique minimiser of

$$\mathscr{E}_{\partial\Omega}: H^{1}_{*}(\partial\Omega) \ni u \mapsto \frac{1}{2} \int_{\partial\Omega} |\nabla_{\partial\Omega} u(x)|^{2} d\mu_{\partial\Omega} - \int_{\partial\Omega} f(x) u(x) d\mu_{\partial\Omega}$$
(2)

Lemma [Privat, R., Sigalotti, 2022]

For any $\Omega \in \mathcal{O}_{adm}$, Eq. (2) admits one and only one minimiser.

$$F(\Omega) = \int_{\partial\Omega} j(x,\nu(x),\nu_{\partial\Omega}(x),\nabla_{\partial\Omega}\nu_{\partial\Omega}(x)) \, d\mu_{\partial\Omega}(x),$$

where $j : \mathbb{R}^d \times S^{d-1} \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ is assumed to be continuous.

Theorem [Privat, R., Sigalotti, 2022]

The shape functional F is lower-semicontinuous for the R-convergence, i.e., for every sequence $(\Omega_n)_{n\in\mathbb{N}}\in\mathcal{O}_{adm}^{\mathbb{N}}$ that R-converges toward Ω_{∞} , one has

$$\liminf_{n \to +\infty} F(\Omega_n) \ge F(\Omega_\infty). \tag{3}$$

As a consequence, the shape optimization problem

$$\inf_{\Omega\in\mathcal{O}_{\mathsf{adm}}}F(\Omega)$$

has a solution.

Stellarator	Laplace	CWS optimization	Existence	references
00000000000	00000000000		00000000000000000000000000000000000	O

- Transport $v_{\partial\Omega_n}$ to $\partial\Omega_\infty$ thanks to the orthogonal projector on $\partial\Omega_n$
- The sequence obtained is bounded $H^1_*(\partial \Omega_\infty)$, extract and called v^{*} ∈ $H^1_*(\partial \Omega_\infty)$ the limit.
- 3 Check that $v^* = v_{\partial \Omega_{\infty}}$.
- Passing to the limit is similar to the previous case.

Stellarator	Laplace	CWS optimization	Existence	references
00000000000	000000000000		0000000000000000	O
In a nutsh	ell			

Hypersurfaces with a uniform Reach condition enjoy nice properties :

- Sequential compactness for the *R*-convergence.
- Many functionals involving geometric or PDE related cost are lower-semicontinuous for the *R*-convergence.
- Proofs are (relatively) straightforward.

- P. MERKEL. "Solution of stellarator boundary value problems with external currents". In : *Nuclear Fusion* 27.5 (1987), p. 867-871
- M. LANDREMAN. "An improved current potential method for fast computation of stellarator coil shapes". In : *Nuclear Fusion* 57.4 (2017)
- R. ROBIN et F. A. VOLPE. "Minimization of magnetic forces on stellarator coils". In : *Nuclear Fusion* 62.8 (2022), p. 086041
- Y. PRIVAT, R. ROBIN et M. SIGALOTTI. "Optimal shape of stellarators for magnetic confinement fusion". In : *Journal de Mathématiques Pures et Appliquées* 163 (2022), p. 231-264
- Y. PRIVAT, R. ROBIN et M. SIGALOTTI. Existence of surfaces optimizing geometric and PDE shape functionals under reach constraint. 2022. arXiv : 2206.04357 [math]

software : Stellacode
https://rrobin.pages.math.cnrs.fr/stellacode/

Cohomology and divergence free vector fields on the torus

Hodge decomposition

On a closed Riemannian manifold M

$$L^2_p(M) = B_p \oplus B_p^* \oplus \mathscr{H}_p,$$

where

- B_p is the L^2 -closure of $\{d\alpha \mid \alpha \in \Omega^{p-1}(M)\}$
- B_p^* is the L^2 -closure of $\{d^*\beta \mid \beta \in \Omega^{p+1}(M)\}$
- \mathscr{H}_p is the set $\{\omega \in \Omega^p(M) \mid \Delta_H \omega = 0\}$ of harmonic *p*-forms with Δ_H the Hodge Laplacian

In vacuo Maxwell equations on a toroidal 3D domain

Let *P* a be toroidal domain. Let Γ be a toroidal loop inside *P* and denote by I_p the electric current-flux across any surface enclosed by Γ (also equal to the circulation of *B* along Γ).

Lemma

Let $B \in C^{\infty}(P, \mathbb{R}^3)$ such that div B = 0 and curl B = 0 in P. Let g be the normal magnetic field on ∂P . Then g and I_p determine completely the magnetic field B in P. Besides, there exists a constant C > 0 such that for every other magnetic field \tilde{B} with the same total poloidal currents, $|B - \tilde{B}|_{H^{1/2}(P,\mathbb{R}^3)} \leq C|g - \tilde{g}|_{L^2(\partial P)}$ where \tilde{g} is the normal component of $\tilde{B}|_{\partial P}$.

Idea : consider the cochain complex

$$\mathscr{C}^{\infty}(P) \xrightarrow{\mathsf{grad}} \mathscr{C}^{\infty}(P, \mathbb{R}^3) \xrightarrow{\mathsf{curl}} \mathscr{C}^{\infty}(P, \mathbb{R}^3) \xrightarrow{\mathsf{div}} \mathscr{C}^{\infty}(P).$$