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@ Introduction to stellarators
© Magnetic forces on a surface
© Coil Winding Surface optimization

@ Existence of surface optimizing some PDE shape functionals
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Nuclear Fusion : principle
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Controlled nuclear fusion : motivations

Serious candidate for power plants.

abundant reagents!

No direct emission of greenhouse gases
No highly radioactive wastes?!

No risk of runaway reaction

No military applications 2

1. mostly true. ..
2. for magnetic technologies
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Controlled nuclear fusion : magnetic confinement

Problem : Confine a 150 million Kelvin plasma.
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Problem : Confine a 150 million Kelvin plasma.
strategy : Plasma is made up of charged particles = react
with external magnetic field.
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Problem : Confine a 150 million Kelvin plasma.
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scheme of a Tokamak, right : simulation by Robin

Figure — Left :
Roussel (LJLL).
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Stellarator

Strategy : ensure confinement only with the external field.

F1GURE — Wendelstein 7-X, Max-Planck Institut fiir Plasmaphysik
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Stellarator

Magnetic -’
surfaces °

FIGURE — Poincaré map, from An introduction to symmetries in
stellarators, Imbert-Gérard et al.
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Design of a stellarator

© Find a good target magnetic field Bt inside the plasma.
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Design of a stellarator

@ Find a good target magnetic field Bt inside the plasma.
@ Use a Coil winding surface to find a surface current
distribution generating B3

F1GURE — Coil winding surface and plasma surface of NCSX.

3. P. Merkel (1986)
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Design of a stellarator

@ Find a good target magnetic field Bt inside the plasma.

@ Use a Coil winding surface to find a surface current
distribution generating B3

@ (approach the current density by discrete coils)

F1GURE — Coil winding surface and plasma surface of NCSX.

3. P. Merkel (1986)
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Modelisation

An optimization problem :

inf 2(f
JEL2(X(S)) X5 )
div j=0

Cost function :
%) = / BSU)(y) - Bry)Pdy

Biot—Savart law :

Wy & 5.BS(j)(y) = / jx) x L2

s \y—X’3
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An inverse problem

BS(-) is continuous L2(X(S)) — CK(P,RR3). In particular,

[2(%X(S)) — [*(P,R?)
J+— BS())

is compact.
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An inverse problem

BS(-) is continuous L2(X(S)) — C*(P,R3). In particular,

[2(%(S)) — L3(P,R?)
J+— BS())

is compact.

Solutions :
@ Solve on a finite dimensional space

@ Use a Tychonoff regularisation ®

il = / j2ds
S

4. P. Merkel (1986)
5. M. Landreman (2017)
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Lemme

For A > 0, the optimization problem

inf  xg() + Al
L inf XB0) + Ml
divj=0

admits a unique minimiser js given by

js = (A\ld+BS'BS)*BS' By
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Magnetic forces : motivations
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@ Magpnetic forces (d7-' = idl A é) increase quadratically.
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Magnetic forces : motivations

/@ 4

@ Building a stellarator is expensive. . .

@ compact stellarators require higher magnetic field

@ Higher magnetic fields call for higher currents

@ Magpnetic forces (d7-' = idl A é) increase quadratically.

—> We have to optimize the magnetic forces.
Problem : how to define the magnetic forces on a
current-sheet 7
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Statement of the problem

Let S be a surface and j € X(S) a vector field on S.
Biot-Savart

vy & S, BS(j)(y) = / Jx) x L2 a5 (x)

S ly — xJ3

1
A /2dX:OO siyeS
slx—yl
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Statement of the problem

Let S be a surface and j € X(S) a vector field on S.
Biot-Savart

vy & S, BS(j)(y) = / Jx) x L2 a5 (x)

S ly — xJ3

1
A /2dX:OO siyeS
slx—yl

There is a magnetic discontinuity on the surface given by

B}[-—B%—:nlg/\j.
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Toward a definition

B does not blow-up near S.

Average magnetic forces

We define
LU)Y) = 26 A [BG)y + n(y)) + BU)y — =n(y)])
1)) = lim L.()
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This definition raises several questions :

@ Under which assumptions on j can we ensure that L(j) is
well defined 7

@ Can we find an explicit expression of L(j) (i.e. without a
limit on €)?

@ Which functional space does L(j) belong to (for j in a
given functional space) ?
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A 3 scale problem

To compute L from L., we need 3 scales :
@ the discretisation-length of S : h,
@ the infinitesimal displacement ¢,

© the characteristic distance of variation of the magnetic
field, dg.

With :

o h<eas [s|y+en(y)— x|~2dS(x) blows up when
e —0.

@ ¢ < dp to approximate L.
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Theorem [R., Volpe, Nuclear Fusion, 2022]

Assume j € H', then L_(j) converge in LP(S,R?) for
1<p<oase—0.

Besides, L is a continuous (quadratic) H! — LP(S,R3) given

by
]y d|vX (mxj(y)) + i (y) - Vx]j(x)dx
/0 ‘ng»ﬂmw<
/[g(y) J0)) divi(me) + Vi) - j(x))] dx
sly |
/(_, —x ;’(;»n(x)dx
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ideas of the proof

UseA/\(B/\C):(A-C)B—(A-B)C

Note that ‘y X|3 = —Vxﬁ.

Do an integration by part on the tangential component of
the gradient.

Use some estimates when ¢ is small to eliminate the part

responsible for the magnetic discontinuity.

Tools : Hardy-Littlewood-Sobolev inequality and Sobolev

embeding on compact manifold.
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Optimization

We introduce the following costs :

@ X to ensure that we produce the magnetic field chosen :
b= [ (B0 n(x)x
P

@ A penalization term on j

Xf=/|j\2dx
S
% = /5 (VP + Vi P + [Vial?)

@ A penalizing term on the Laplace forces, for example LP(S,R3)

= L) = ( / |L(j)|§)1/p dx

Thus, we will minimize the new cost with relative weights A1, A2,y > 0.

X* = X5 + A + X, +xE
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Theorem [R., Volpe]

Suppose A1, Ap,v >0 and p < oo then

Jlgllz_ X5 + )\1XJ2 + )\2X2Vj +[LG) e

admits a minimizer.

We also introduce a cost to penalize only high values of the
forces : C. = [ f(|L(j)I)
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Case A1 Ao % X%
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poloidal angle

poloidal angle
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Normal Laplace forces [Pa]

Normal Laplace forces [Pa]
—
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CWS optimization

inf 2()) + M1
L inf XB0) + Al
divj=0

F1GURE — Coil winding surface and plasma surface of NCSX.
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CWS optimization

inf inf 2 (1) 4+ A2
SeoadeeLZ(x(s)) XB(—I) “JHL2
divj=0

F1GURE — Coil winding surface and plasma surface of NCSX.
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Previous works

First approach by Paul et al.(2018)
@ Finite dimensional approach (discretize then optimize)

@ Regularity of the surface is ensured by non intrinsic cost
(Fourier compression).
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Previous works

First approach by Paul et al.(2018)
@ Finite dimensional approach (discretize then optimize)

@ Regularity of the surface is ensured by non intrinsic cost
(Fourier compression).

Our contribution

@ Existence of a minimizer of the shape optimisation
problem,

@ Computation of the shape gradient in the set of
admissible shapes,

@ Numerics based on our approach.
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admissible shapes

Constraints on the set of admissible shapes S € O,4n, :
© S is an orientable surface homotopic to the usual torus
Q dist(S,P) >
© S is included inside a given compact set

O H*(S) < Am
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admissible shapes

Constraints on the set of admissible shapes S € O ym :
© S is a orientable surface homotopic to the usual torus
Q dist(S,P) >
© S is included inside a given compact set
O H*(S) < Am
© Lower bound on the reach of S
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Reach

V C R” closed, Sk(V) the set of points in R"” whose
orthogonal projection on V' is not unique.

Un(V) = {x]| d(x, V) < h}
Reach(V) = sup{h | Uy(V) N Sk(V) = 0}

U
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Theorem [Privat, R. , Sigalotti, JMPA, 2022]

The shape optimization problem

inf inf 2 LI
S€Ouam jeL2(2(5) XB 11172
div j=0

admits a minimizer.
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Shape gradient

o Let § € W?*(R3 R?) be a perturbations.
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Shape gradient

o Let § € W?*(R3 R?) be a perturbations.
@ ¢° = Ild 40 induces a diffeomorphism from S to 5°
@ We want to study lim._.o M
(*]

f)(:(f;,js) é? 69(? 62/5
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Shape gradient

o Let § € W?*(R3 R?) be a perturbations.
@ ¢° = Ild 40 induces a diffeomorphism from S to 5°
@ We want to study lim._.o M
°
I 0 (5,551 + 2 s g,
@ The differential of ©® = Id <6 provides a diffeomorphism
from X(S) to X(5°).
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Shape gradient

o Let § € W?*(R3 R?) be a perturbations.

@ ¢° = Ild 40 induces a diffeomorphism from S to 5°

@ We want to study lim._.o M

°

I 0 (5,551 + 2 s g,

@ The differential of ©® = Id <6 provides a diffeomorphism
from X(S) to X(5°).

o Nevertheless the range of .72 by ¢° does not coincide
with .#2
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Shape gradient

o Let § € W?*(R3 R?) be a perturbations.

@ ¢° = Ild 40 induces a diffeomorphism from S to 5°

@ We want to study lim._.o M

°

I 0 (5,551 + 2 s g,

@ The differential of ©® = Id <6 provides a diffeomorphism
from X(S) to X(5°).

o Nevertheless the range of .72 by ¢° does not coincide
with .#2

¢€:t?5—>3;55

1
X —> Id+eDO)X o o~ °
[J(ps, p5)e®] o 90‘8( )
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Shape gradient

For every § € W2>°(R3,R3), we get

(dC(S),0) = /5 0. (X1 — divs(X2);.) diis

where
X; = —2Zp(BSs js — Br,Js)
Xo = —2Zp(BSs js — Br)jd +2)\jsjd — Mjs[*( —vvT),

where i € {1,2,3}, (X2);. is the i-line of X3 and v is the unit
normal outward vector on S = 9V.
And

Zo(k) = /P K(-1y) x k(y) dup(y)

)
2ok )0 = [0 (2525) (ko) <) det). vxes,

Ix —yP3
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Perspectives

@ Optimisation on specific set of surfaces and optimization
of Stellacode®

@ Magnetic forces and shape optimization together

@ Optimization of the plasma

6. https://rrobin.pages.math.cnrs.fr/stellacode/
37 /54


https://rrobin.pages.math.cnrs.fr/stellacode/

Existence
©000000000000000

A shape functional

For Q regular enough,

F(Q) = / 7% v90(x). Bon(x)) ().

@ Vsq is the normal outward vector,

@ Byq(x) is either a geometric quantity (mean curvature,
Gauss curvature . ..) or the solution of a PDE defined on
Q or 09.
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A shape functional

For Q regular enough,

F(Q) = / 7% v90(x). Bon(x)) ().

@ Vsq is the normal outward vector,

@ Byq(x) is either a geometric quantity (mean curvature,
Gauss curvature . ..) or the solution of a PDE defined on
Q or 09.

Existence of minimizers
Can we find 2* € O,qmm such that

F@) = inf F(Q)?

38/54



Existence
0®00000000000000

Uniform ball property
Q € Ougm if an only if Q C D compact, Vx € 012, dd, € R"”

|dx||lre = 1, B (x — rody) € Q and B, (x + rody) C R"\Q.

B B

Figure taken from Dalphin.
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Existing results

Theorem (Guo-Yang, 2013)

Let j be a continuous function from R x S9! to R, then the following
optimization problem

inf /89](X7V(X))dﬂaf2(x)

QG Oadm

admits a minimiser.

N

Theorem (Dalphin, 2018)

Let j be a continuous function from R x S~ x R and convex with
respect to the last variable, then the following optimization problem

Lt /@ ix,(x), o)) don ()

admits a minimiser.

N
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Let h € (D), g € H*(D), and define uq as the solution of
{ Aug =h inQ,

ug=g in 0.

Theorem (Dalphin, 2020)

Let j be a continuous function from R? x S971 x R x R¢,
then the following optimization problem

nf /a _ix.#(4). (). V() dtan()

admits a minimiser.
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The direct method of calculus of variations

© Define a (sequential) topology on O,ym.
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The direct method of calculus of variations

© Define a (sequential) topology on O,ym.
© Take a minimizing sequence and use a compactness result
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The direct method of calculus of variations

© Define a (sequential) topology on O,ym.
© Take a minimizing sequence and use a compactness result

© Prove the lower-semicontinuity of the functional
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Signed distance

Distances functions

da(x) = inf Ix ~ |

ba(x) = da(x) — dra\a(x)

4

Some properties

@ For x € 092, Vbq(x) is the unit outward normal vector,
e For x € 9Q, Tr(V2bq(x)) is the mean curvature,

@ etc.

A
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Uniform reach property

Definition

Reach(Q2) = sup{h > 0 | dq is differentiable in U,(Q2) \ Q}.

Assume Reach(02) = ry > 0, we have

o if HI(0Q) =0, then 0Q is a €1 hypersurface of R? and
satisfies the uniform ball property.

@ For h< ry, Vbq is ——Llpschltz continuous on the
tubular nelghborhood Uh(E?Q)

@ The restriction of Vbg to 0N is %—Lipschitz continuous.
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A new framework

R-convergence in O,4m

Given (Q,)nen € O, we say that (€,),en R-converges to

adm?

Qo € Osgm and we write , LN Q. if

in €(D),
an = bQoo in %1’“(U,(8Qoo))7 Vr < o, Ya € [0, 1),
weakly-star in W2°°(U,(0Q)), Vr < ro.

4

Q.am is sequentially compact for the R-convergence.
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Tubular neighboorhood

For 0 < h < ry, consider

TaQ : (—h, h) x 0 — Uh(aQ)
(t,x) +— x4 tVbq(x).

Since Tygq is Lipschitz continuous, it is differentiable at almost every
(to, x0), with

d(thO) TQQ(S,}/) =y+ SVbQ(Xo) + t'()dXOVbQ(y)7 V(s,y) cR x TXOaQ.

For every € > 0, there exists h > 0 such that for all Q € O 4m,

1 —¢e < det(dy,x) Ton) < 1+¢, fora.e (to,x) € (—h,h) x 0Q.
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IFQ, & Qo then
Q@ H91(09Q,) converges toward H91(0Q,) as n — +o0.
Q@ #H9(RQ,) converges toward H () as n — +oc.

© If all the 0L, belong to the same homotopic class, then
0, also belongs such a class.

Corollary

{Q € Ougm | a < Hdil(GQ) < b, 982 is homotopic to 0}

is sequentially compact
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Let j be a continuous function from R? x S9! x R and convex with
respect to the last variable.

F(Q) = /a 5.0, Hoa(x))don(s)

Theorem

F is a lower-semicontinuous shape functional for the R-convergence, i.e.,
for every sequence (2,)nen € O, that R-converges toward Q, one
has

liminf F(Q,) > F(Qx).

n——+oo

As a consequence, the shape optimization problem

Qelrggtdm F(Q)

has a solution.
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F(2) :/B b, (), Hos, (po(y)dion, ()

1

=5 (pn(y), Vba,(pPn(y)), Hog,(Pn(y))) det(dr—1, Tn) dy.
2h Juy(o2,) "V

2h
1
2h ] Uy(890)\ Up— ¢ (0900 )

F(Qn) =~ / J(on(y), Vba, (pa(y)), Hos, (pn(y))) det(dTa) dy
JUp—¢(0900)

J(pn(y), Vba,(pn(y)), Haq, (pn(y))) det(dT,) dy.
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Definition

Let f € €°(D). We consider vyq the solution of the equation

ANoqavoa(x) = f(x) in 0Q,

50/ 54
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Definition

Let f € €°(D). We consider vyq the solution of the equation
ANoqavoa(x) = f(x) in 0Q,
Voq Is the unique minimiser of

1
Erq Hj(@Q) Su— 5 |VaQu(X)|2dan —/ f(x)u(x)dusq
a0 Pre) 2

Lemma [Privat, R., Sigalotti, 2022]

For any Q € Oagm, Eq. (2) admits one and only one minimiser.

50 /54
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F(Q) = /6 ¢, 3). von(x). Voo (20) lon ().

where j : RY x S971 x R x RY — R is assumed to be
continuous.

Theorem [Privat, R., Sigalotti, 2022]
The shape functional F is lower-semicontinuous for the

R-convergence, i.e., for every sequence (£2,)nen € (’)Ejm that
R-converges toward .., one has

liminf F(Q,) > F(Qu)- (3)

n——+00

As a consequence, the shape optimization problem

has a solution. 51,54
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@ Transport vyq, to 0€., thanks to the orthogonal
projector on OS2,

@ The sequence obtained is bounded H}(0Q,,), extract and
called v* € H(09Q..) the limit.

© Check that v* = vyq__.
© Passing to the limit is similar to the previous case.

52/54
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In a nutshell

Hypersurfaces with a uniform Reach condition enjoy nice
properties :

@ Sequential compactness for the R-convergence.

@ Many functionals involving geometric or PDE related cost
are lower-semicontinuous for the R-convergence.

@ Proofs are (relatively) straightforward.
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Cohomology and divergence free vector fields on

the torus

Hodge decomposition

On a closed Riemannian manifold M

13(M) = B, & B} & 75,

where
@ B, is the L2-closure of {da | a € QP~1(M)}
@ By is the [-closure of {d*3 | 3 € QP*1(M)}

@ 7, is the set {w € QP(M) | Apw = 0} of harmonic p-forms with
Ay the Hodge Laplacian

1/2



In vacuo Maxwell equations on a toroidal 3D

domain

Let P a be toroidal domain. Let I be a toroidal loop inside P and denote
by I, the electric current-flux across any surface enclosed by I (also equal
to the circulation of B along I').

Let B € C*°(P,R3) such that divB = 0 and curl B =0 in P.

Let g be the normal magnetic field on OP. Then g and I, determine
completely the magnetic field B in P. Besides, there exists a constant
C > 0 such that for every other magnetic field B with the same total
poloidal currents, |B — :§|H1/2(P’R3) < Clg — &l i2(a9p) where g is the

normal component of B|ap.

Idea : consider the cochain complex

grad
E—

¢>°(P) ¢(P,R3) —Ls g0 (p, R3) —s @oo(p).

2/2



	Introduction to stellarators
	Magnetic forces on a surface
	Coil Winding Surface optimization
	Existence of surface optimizing some PDE shape functionals
	references
	Annexe

