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Rémi Robin

McTAO seminar, October 27th 2022

Joint work with Yannick Privat, Mario Sigalotti and Francesco

Volpe

1 / 54



Stellarator Laplace CWS optimization Existence references

1 Introduction to stellarators

2 Magnetic forces on a surface

3 Coil Winding Surface optimization

4 Existence of surface optimizing some PDE shape functionals

2 / 54



Stellarator Laplace CWS optimization Existence references

Nuclear Fusion : principle

Figures from Wikipedia
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Controlled nuclear fusion : motivations

Serious candidate for power plants.

Avantages

abundant reagents 1

No direct emission of greenhouse gases

No highly radioactive wastes 1

No risk of runaway reaction

No military applications 2

1. mostly true. . .
2. for magnetic technologies
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Controlled nuclear fusion : magnetic confinement

Problem : Confine a 150 million Kelvin plasma.

strategy : Plasma is made up of charged particles =⇒ react
with external magnetic field.
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Figure – Left : scheme of a Tokamak, right : simulation by Robin

Roussel (LJLL).
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Stellarator

Strategy : ensure confinement only with the external field.

Figure – Wendelstein 7-X, Max-Planck Institut für Plasmaphysik
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Stellarator

Figure – Poincaré map, from An introduction to symmetries in
stellarators, Imbert-Gérard et al.
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Design of a stellarator

1 Find a good target magnetic field BT inside the plasma.

2 (approach the current density by discrete coils)

Figure – Coil winding surface and plasma surface of NCSX.
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Design of a stellarator

1 Find a good target magnetic field BT inside the plasma.
2 Use a Coil winding surface to find a surface current

distribution generating BT
3

3 (approach the current density by discrete coils)

Figure – Coil winding surface and plasma surface of NCSX.

3. P. Merkel (1986)
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Modelisation

An optimization problem :

inf
j∈L2(X(S))

div j=0

χ2
B(j)

Cost function :

χ2
B(j) =

ˆ
P

|BS(j)(y)− BT (y)|2dy

Biot–Savart law :

∀y 6∈ S ,BS(j)(y) =

ˆ
S

j(x)× y − x

|y − x |3
dx
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An inverse problem

BS(·) is continuous L2(X(S))→ C k(P ,R3). In particular,

L2(X(S))→ L2(P ,R3)

j 7→ BS(j)

is compact.
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An inverse problem

BS(·) is continuous L2(X(S))→ C k(P ,R3). In particular,

L2(X(S))→ L2(P ,R3)

j 7→ BS(j)

is compact.

Solutions :

Solve on a finite dimensional space 4

Use a Tychonoff regularisation 5

‖j‖2
L2 =

ˆ
S

|j |2dS

4. P. Merkel (1986)
5. M. Landreman (2017)
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Lemme

For λ > 0, the optimization problem

inf
j∈L2(X(S))

div j=0

χ2
B(j) + λ‖j‖2

L2

admits a unique minimiser jS given by

jS = (λ Id + BS† BS)−1 BS† BT
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Magnetic forces : motivations

Building a stellarator is expensive. . .

compact stellarators require higher magnetic field

Higher magnetic fields call for higher currents

Magnetic forces ( ~dF = i ~dl ∧ ~B) increase quadratically.

=⇒ We have to optimize the magnetic forces.
Problem : how to define the magnetic forces on a
current-sheet ?
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Statement of the problem

Let S be a surface and j ∈ X(S) a vector field on S .
Biot–Savart

∀y 6∈ S , BS(j)(y) =

ˆ
S

j(x)× y − x

|y − x |3
dS(x)

"
ˆ
S

1

|x − y |2
dx =∞ si y ∈ S

There is a magnetic discontinuity on the surface given by

B1
T − B2

T = n12 ∧ j .
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Toward a definition

B does not blow-up near S .

Average magnetic forces

We define

Lε(j)(y) =
1

2
(j ∧

[
B(j)(y + εn(y)) + B(j)(y − εn(y))

]
)

L(j) = lim
ε→0

Lε(j)
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This definition raises several questions :

1 Under which assumptions on j can we ensure that L(j) is
well defined ?

2 Can we find an explicit expression of L(j) (i.e. without a
limit on ε) ?

3 Which functional space does L(j) belong to (for j in a
given functional space) ?
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A 3 scale problem

To compute L from Lε, we need 3 scales :

1 the discretisation-length of S : h,

2 the infinitesimal displacement ε,

3 the characteristic distance of variation of the magnetic
field, dB .

With :

h� ε as
´
S
|y + εn(y)− x |−2dS(x) blows up when

ε→ 0.

ε� dB to approximate L.
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Theorem [R., Volpe, Nuclear Fusion, 2022]

Assume j ∈ H1, then Lε(j) converge in Lp(S ,R3) for
1 ≤ p <∞ as ε→ 0.

Besides, L is a continuous (quadratic) H1 → Lp(S ,R3) given
by

L(j)(y) =−
ˆ
S

1

|y − x |
[

divx(πx j(y)) + πx j(y) · ∇x

]
j(x)dx

+

ˆ
S
〈j(y) · n(x)〉〈y − x · n(x)〉

|y − x |3
j(x)dx

+

ˆ
S

1

|y − x |
[
〈j(y) · j(x)〉 divx(πx) +∇x〈j(y) · j(x)〉

]
dx

−
ˆ
S
〈j(y) · j(x)〉〈y − x · n(x)〉

|y − x |3
n(x)dx
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Some ideas of the proof

Use A ∧ (B ∧ C ) = (A · C )B − (A · B)C

Note that y−x
|y−x |3 = −∇x

1
|y−x | .

Do an integration by part on the tangential component of
the gradient.

Use some estimates when ε is small to eliminate the part
responsible for the magnetic discontinuity.

Tools : Hardy-Littlewood-Sobolev inequality and Sobolev
embeding on compact manifold.
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Optimization

We introduce the following costs :

χB to ensure that we produce the magnetic field chosen :

χ2
B =

ˆ
∂P

〈B(x) · n(x)〉2dx

A penalization term on j

χ2
j =

ˆ
S

|j |2dx

χ2
∇j =

ˆ
S

(|∇jx |2 + |∇jy |2 + |∇jz |2)dx

A penalizing term on the Laplace forces, for example Lp(S ,R3)

χ2
F = |L(j)|Lp =

(ˆ
S

|L(j)|p2
)1/p

dx

Thus, we will minimize the new cost with relative weights λ1, λ2, γ ≥ 0.

χ2 = χ2
B + λ1χ

2
j + λ2χ

2
∇j + γχ2

F
22 / 54
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Theorem [R., Volpe]

Suppose λ1, λ2, γ > 0 and p <∞ then

inf
j∈E

χ2
B + λ1χ

2
j + λ2χ

2
∇j + γ|L(j)|Lp

admits a minimizer.

We also introduce a cost to penalize only high values of the
forces : Ce =

´
S
fe(|L(j)|)
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Case λ1 λ2 γ χ2
F

(T2 m2/A2) (T2 m4/A2) (T2/Pa2)

1 1.5 · 10−16 0 0 0

2 0 0 10−17 |L(j)|2
L2(S,R3)

3 0 0 10−16 Ce

4 10−19 10−19 10−16 Ce

(1)
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CWS optimization

inf
S∈Oadm

inf
j∈L2(X(S))

div j=0

χ2
B(j) + λ‖j‖2

L2

Figure – Coil winding surface and plasma surface of NCSX.
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Previous works

First approach by Paul et al.(2018)

Finite dimensional approach (discretize then optimize)

Regularity of the surface is ensured by non intrinsic cost
(Fourier compression).

Our contribution

Existence of a minimizer of the shape optimisation
problem,

Computation of the shape gradient in the set of
admissible shapes,

Numerics based on our approach.
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admissible shapes

Constraints on the set of admissible shapes S ∈ Oadm :

1 S is an orientable surface homotopic to the usual torus

2 dist(S ,P) ≥ δ

3 S is included inside a given compact set

4 H2(S) ≤ AM
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admissible shapes

Constraints on the set of admissible shapes S ∈ Oadm :

1 S is a orientable surface homotopic to the usual torus

2 dist(S ,P) ≥ δ

3 S is included inside a given compact set

4 H2(S) ≤ AM

5 Lower bound on the reach of S
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Reach

V ⊂ Rn closed, Sk(V ) the set of points in Rn whose
orthogonal projection on V is not unique.

Uh(V ) = {x | d(x ,V ) < h}

Reach(V ) = sup{h | Uh(V ) ∩ Sk(V ) = ∅}
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Reach

Theorem [Privat, R. , Sigalotti, JMPA, 2022]

The shape optimization problem

inf
S∈Oadm

inf
j∈L2(X(S))

div j=0

χ2
B + λ‖j‖2

L2

admits a minimizer.
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Shape gradient

Let θ ∈ W 2,∞(R3,R3) be a perturbations.

ϕε = Id +εθ induces a diffeomorphism from S to Sε

We want to study limε→0
C(Sε)−C(S)

ε

∂C̃ (S , jS)

∂S
=
∂C̃

∂S
(S , jS) +

∂C̃

∂j

∂jS
∂S

(S , jS).

The differential of ϕε = Id +εθ provides a diffeomorphism
from X(S) to X(Sε).
Nevertheless the range of F 0

S by ϕε does not coincide
with F 0

Sε .

Φε : FS −→ FSε

X 7−→ 1

[J(µS , µεS)ϕε] ◦ ϕ−ε
(Id +εDθ)X ◦ ϕ−ε

34 / 54
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Shape gradient

For every θ ∈W 2,∞(R3,R3), we get

〈dC (S), θ〉 =

ˆ
S
θ · (X1 − divS(X2)i :) dµS

where

X1 = −2ẐP(BSS jS − BT , jS)

X2 = −2ZP(BSS jS − BT )jTS + 2λjS j
T
S − λ|jS |2(I3 − ννT ),

where i ∈ {1, 2, 3}, (X2)i : is the i-line of X2 and ν is the unit
normal outward vector on S = ∂V .
And

ZP(k) =

ˆ
P
K (·, y)× k(y) dµP(y)

ẐP(k , j)(x) =

ˆ
P
Dx

(
x − y

|x − y |3

)T (
k(y)× j(x)

)
dµP(y), ∀x ∈ S .
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Perspectives

Optimisation on specific set of surfaces and optimization
of Stellacode 6

Magnetic forces and shape optimization together

Optimization of the plasma

6. https://rrobin.pages.math.cnrs.fr/stellacode/
37 / 54
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A shape functional

For Ω regular enough,

F (Ω) =

ˆ
∂Ω

j(x , ν∂Ω(x),B∂Ω(x)) dµ∂Ω(x),

ν∂Ω is the normal outward vector,

B∂Ω(x) is either a geometric quantity (mean curvature,
Gauss curvature . . .) or the solution of a PDE defined on
Ω or ∂Ω.

Existence of minimizers

Can we find Ω∗ ∈ Oadm such that

F (Ω∗) = inf
Ω∈Oadm

F (Ω)?

38 / 54
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Uniform ball property

Ω ∈ Oadm if an only if Ω ⊂ D compact, ∀x ∈ ∂Ω, ∃dx ∈ Rn

‖dx‖Rd = 1, Br0(x − r0dx) ⊂ Ω and Br0(x + r0dx) ⊂ Rn\Ω.

Figure taken from Dalphin.
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Existing results

Theorem (Guo-Yang, 2013)

Let j be a continuous function from Rd × Sd−1 to R, then the following
optimization problem

inf
Ω∈Oadm

ˆ
∂Ω

j(x , ν(x))dµ∂Ω(x)

admits a minimiser.

Theorem (Dalphin, 2018)

Let j be a continuous function from Rd × Sd−1 × R and convex with
respect to the last variable, then the following optimization problem

inf
Ω∈Oadm

ˆ
∂Ω

j(x , ν(x),H∂Ω(x))dµ∂Ω(x)

admits a minimiser.
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Let h ∈ L2(D), g ∈ H2(D), and define uΩ as the solution of{
∆uΩ = h in Ω,
uΩ = g in ∂Ω.

Theorem (Dalphin, 2020)

Let j be a continuous function from Rd × Sd−1 × R× Rd ,
then the following optimization problem

inf
Ω∈Oadm

ˆ
∂Ω

j(x , ν(x), uΩ(x),∇uΩ(x)) dµ∂Ω(x)

admits a minimiser.
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The direct method of calculus of variations

1 Define a (sequential) topology on Oadm.

2 Take a minimizing sequence and use a compactness result

3 Prove the lower-semicontinuity of the functional
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Signed distance

Distances functions

dΩ(x) = inf
y∈Ω
‖x − y‖

bΩ(x) = dΩ(x)− dRd\Ω(x)

Some properties

For x ∈ ∂Ω, ∇bΩ(x) is the unit outward normal vector,

For x ∈ ∂Ω, Tr(∇2bΩ(x)) is the mean curvature,

etc.
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Uniform reach property

Definition

Reach(Ω) = sup{h > 0 | dΩ is differentiable in Uh(Ω) \ Ω}.

Assume Reach(∂Ω) = r0 > 0, we have

if Hd(∂Ω) = 0, then ∂Ω is a C 1,1 hypersurface of Rd and
satisfies the uniform ball property.

For h < r0, ∇bΩ is 2
r0−h -Lipschitz continuous on the

tubular neighborhood Uh(∂Ω).

The restriction of ∇bΩ to ∂Ω is 1
r0

-Lipschitz continuous.
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A new framework

R-convergence in Oadm

Given (Ωn)n∈N ∈ ON
adm, we say that (Ωn)n∈N R-converges to

Ω∞ ∈ Oadm and we write Ωn
R−→ Ω∞ if

bΩn → bΩ∞


in C (D),

in C 1,α(Ur (∂Ω∞)), ∀r < r0, ∀α ∈ [0, 1),

weakly-star in W 2,∞(Ur (∂Ω∞)), ∀r < r0.

Theorem

Oadm is sequentially compact for the R-convergence.
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Tubular neighboorhood

For 0 < h < r0, consider

T∂Ω : (−h, h)× ∂Ω → Uh(∂Ω)
(t, x) 7→ x + t∇bΩ(x).

Since T∂Ω is Lipschitz continuous, it is differentiable at almost every
(t0, x0), with

d(t0,x0)T∂Ω(s, y) = y + s∇bΩ(x0) + t0dx0∇bΩ(y), ∀(s, y) ∈ R× Tx0∂Ω.

Lemma

For every ε > 0, there exists h > 0 such that for all Ω ∈ Oadm,

1− ε ≤ det(d(t0,x0)T∂Ω) ≤ 1 + ε, for a.e. (t0, x0) ∈ (−h, h)× ∂Ω.
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Lemma

If Ωn
R−→ Ω∞ then

1 Hd−1(∂Ωn) converges toward Hd−1(∂Ω∞) as n→ +∞.

2 Hd(Ωn) converges toward Hd(Ω∞) as n→ +∞.

3 If all the ∂Ωn belong to the same homotopic class, then
∂Ω∞ also belongs such a class.

Corollary

{Ω ∈ Oadm | a ≤ Hd−1(∂Ω) ≤ b, ∂Ω is homotopic to ∂Ω0}

is sequentially compact
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Let j be a continuous function from Rd × Sd−1 × R and convex with
respect to the last variable.

F (Ω) =

ˆ
∂Ω

j(x , ν(x),H∂Ω(x))dµ∂Ω(x)

Theorem

F is a lower-semicontinuous shape functional for the R-convergence, i.e.,
for every sequence (Ωn)n∈N ∈ ON

adm that R-converges toward Ω∞, one
has

lim inf
n→+∞

F (Ωn) ≥ F (Ω∞).

As a consequence, the shape optimization problem

inf
Ω∈Oadm

F (Ω)

has a solution.
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F (Ωn) =

ˆ
∂Ωn

j(x ,∇bΩn (x),H∂Ωn (pn(y)))dµ∂Ωn (x)

=
1

2h

ˆ
Uh(∂Ωn)

j(pn(y),∇bΩn (pn(y)),H∂Ωn (pn(y))) det(d
T−1
n (y)

Tn) dy .

F (Ωn) =
1

2h

ˆ
Uh−t (∂Ω∞)

j(pn(y),∇bΩn (pn(y)),H∂Ωn (pn(y))) det(dTn) dy

+
1

2h

ˆ
Uh(∂Ωn)\Uh−t (∂Ω∞)

j(pn(y),∇bΩn (pn(y)),H∂Ωn (pn(y))) det(dTn) dy .
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Definition

Let f ∈ C 0(D). We consider v∂Ω the solution of the equation

∆∂Ωv∂Ω(x) = f (x) in ∂Ω,

v∂Ω is the unique minimiser of

E∂Ω : H1
∗ (∂Ω) 3 u 7→ 1

2

ˆ
∂Ω

|∇∂Ωu(x)|2dµ∂Ω −
ˆ
∂Ω

f (x)u(x)dµ∂Ω

(2)

Lemma [Privat, R., Sigalotti, 2022]

For any Ω ∈ Oadm, Eq. (2) admits one and only one minimiser.
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F (Ω) =

ˆ
∂Ω

j(x , ν(x), v∂Ω(x),∇∂Ωv∂Ω(x)) dµ∂Ω(x),

where j : Rd × Sd−1 × R× Rd → R is assumed to be
continuous.

Theorem [Privat, R., Sigalotti, 2022]

The shape functional F is lower-semicontinuous for the
R-convergence, i.e., for every sequence (Ωn)n∈N ∈ ON

adm that
R-converges toward Ω∞, one has

lim inf
n→+∞

F (Ωn) ≥ F (Ω∞). (3)

As a consequence, the shape optimization problem

inf
Ω∈Oadm

F (Ω)

has a solution. 51 / 54
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1 Transport v∂Ωn to ∂Ω∞ thanks to the orthogonal
projector on ∂Ωn

2 The sequence obtained is bounded H1
∗ (∂Ω∞), extract and

called v ∗ ∈ H1
∗ (∂Ω∞) the limit.

3 Check that v ∗ = v∂Ω∞ .

4 Passing to the limit is similar to the previous case.
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In a nutshell

Hypersurfaces with a uniform Reach condition enjoy nice
properties :

Sequential compactness for the R-convergence.

Many functionals involving geometric or PDE related cost
are lower-semicontinuous for the R-convergence.

Proofs are (relatively) straightforward.
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Cohomology and divergence free vector fields on

the torus

Hodge decomposition

On a closed Riemannian manifold M

L2
p(M) = Bp ⊕ B∗p ⊕Hp,

where

Bp is the L2-closure of {dα | α ∈ Ωp−1(M)}

B∗p is the L2-closure of {d∗β | β ∈ Ωp+1(M)}

Hp is the set {ω ∈ Ωp(M) | ∆Hω = 0} of harmonic p-forms with
∆H the Hodge Laplacian
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In vacuo Maxwell equations on a toroidal 3D

domain

Let P a be toroidal domain. Let Γ be a toroidal loop inside P and denote
by Ip the electric current-flux across any surface enclosed by Γ (also equal
to the circulation of B along Γ).

Lemma

Let B ∈ C∞(P,R3) such that divB = 0 and curlB = 0 in P.
Let g be the normal magnetic field on ∂P. Then g and Ip determine
completely the magnetic field B in P. Besides, there exists a constant
C > 0 such that for every other magnetic field B̃ with the same total
poloidal currents, |B − B̃|H1/2(P,R3) ≤ C |g − g̃ |L2(∂P) where g̃ is the

normal component of B̃|∂P .

Idea : consider the cochain complex

C∞(P)
grad // C∞(P,R3)

curl // C∞(P,R3)
div // C∞(P).
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