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Modelling the human visual system

Visual data is first processed in the primary visual cortex (V1).

Q: How can we model cortical activity in V1? Can this inform us on aberrant

visual behavior (hallucinations, illusions, etc...) ?
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Geometric hallucinations



Introduction

Visual hallucination ⇆ perception of an image which does not exist.

We focus on geometric visual hallucinations or form constants (Klüver, 1967).

Artist’s depictions of geometric visual hallucinations. Reproducing from Oster (1970),

Siegel(1977), Patterson (1992), Clottes & Lewis-Williams (1998).
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Retinotopic structure of V1

Adapted from (Tootell et al, 1982)

The retinal visual field is mapped in a non-trivial way on the surface of V1.

Retino-cortical map (Schwartz 1977; Cowan 1977)

Using polar coordinates on the retinal plane, we have

R : R2 −→ R2

re iθ 7−→ (x1, x2) = (log r , θ). (1)
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Retinotopic structure of V1

Visual illustration of the retino-cortical map. Reproduced from Billock and Tsou (PNAS, 2007).
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Neuronal Activity in V1

Wilson-Cowan equation

The cortical activity a on the cortical surface evolves according to

∂

∂t
a(x , t) = −αa(x , t) + µ

∫
R2

ω(∥x − x ′∥)f (a(x ′, t))dx ′ + Iext(x , t). (WC)

• α, µ > 0

• f : R → R non-linear response function

• Iext cortical representation of visual stimulus

• ω interaction kernel (typicalli a DoG)

Low-pass filter + interaction

Remark

(WC) commutes with the natural action of E(2) := R2 ⋊O(2) when Iext ≡ 0.
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Spontaneous Patterns (SP) and Hallucinatory Patterns (HP)

Spontaneous patterns → a ∼ 0 and Iext = 0

• 0 is stationary state of (WC) when Iext = 0

• For µ > µc marginally stable stationary states appear (symmetry E(2))

µc µ

a

0

unstable

Spontaneous Patterns

stable

• SP: Paroxismic stationary states of cortical activity in V1 when Iext = 0;

k1

k3

k2

k2

k1

k2

k1

SP(x) =
N∑
j=1

cos(2πkj · x), kj = (cosϕj , sinϕj).

• HP: ”images” of SP by the inverse retino-cortical map

re iθ = (exp(x1), x2) 7



Spontaneous Patterns (SP) and Hallucinatory Patterns (HP)

SP in left and HP in the right. Ermentrout & Cowan (1979)
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“Mackay effects”, and Billock and Tsou psychophysical tests

→ Complex hallucinatory-like patterns can arise also in normal state

Figure 1: The MacKay effect: the presentation of the stimulus to the left (“MacKay

rays”) induces the perception of the image (Artist depiction by Isia Léviant) on the

right. Adapted from MacKay (Nature, 1957) and Zeki et al (Bio. Sci., 1993).

Figure 2: Artist’s depictions of some subjects report biasing stimuli and hallucinatory

percepts. Reproduced from Billock & Tsou (PNAS, 2007).
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Complex Patterns (CP) via controllability of (WC) equation

µ0 µc µ

a

a(Iext)

unstable

Complex Patterns ?

stable

Iext

Complex Patterns via controllability?

µc µ

a

0

unstable

Spontaneous Patterns

stable

Ermentrout & Cowan.


∂ta(x , t) + αa(ξ, t)− µ

∫
R2

ω(∥x − x ′∥)f (a(x ′, t))dx ′︸ ︷︷ ︸
non-local & nonlinear operator

= Iext(x , t)︸ ︷︷ ︸
Control term

,

a(x , 0) = a0(x).

(2)

Meaning of Controllability

Let µ < µc and T ≫ 1. Given two states a0 and a1, is there a control Iext

such that the solution a of the above Cauchy problem satisfies

a(·,T ) ≈ a1(·) ?
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SP can not induce CP in linear regime

It is established since Ermentrout and Cowan (1979) that

µc :=
α

f ′(0)max
r≥0

ω̂(r)

Theorem (Tamekue, Chitour, P)

Consider the linear equation∂ta(x , t) = −αa(x , t) + µ

∫
R2

ω(∥x − x ′∥)a(x ′, t)dx ′ + SP(x),

a(x , 0) = a0(x).

Let a0 ∈ L∞(R2) and Iext = SP. Then the unique solution of the above

equation satisfies

a(·, t) −−−→
t→∞

1

α

µc

µc − µ
SP(·), exponentially in L∞(R2),

provided that

µ < µ0 :=
α

f ′(0)∥ω∥L1(R2)

(≤ µc)

=⇒ There is no MacKay effect in the linear regime via SP 11



Complex Patterns in nonlinear regime

Theorem (T, Chitour, Prandi)

Consider the (WC) equation∂ta(x , t) = −αa(x , t) + µ

∫
R2

ω(∥x − x ′∥)f (a(x ′, t))dx ′ + Iext(x),

a(x , 0) = a0(x).

Let 1 ≤ p ≤ ∞, a0 ∈ Lp(R2) and Iext ∈ Lp(R2). If µ < µ0, then the solution

a(·, t) of (WC) converges exponentially to the stationary solution aIext (·) in
Lp(R2) when t −→ ∞.

We introduce for every 1 ≤ p ≤ ∞, the map

Ψ(Iext) =
µ

α

∫
R2

ω(∥x − y∥)f (Ψ(Iext)(y)) dy +
1

α
Iext .

We let PT (x) = cos(λx1) and PF (x) = cos(λx2), x = (x1, x2) ∈ R2 and λ > 0.

Theorem

Under the assumption µ < µ0/2, the zeros of PT (resp. PF ) coincide with

those of Ψ(PT ). (resp. Ψ(PF ))

=⇒ There is no MacKay effect in the non-linear regime via PT and PF 12



Mackay effects with “MacKay rays”

• Due to above Theorem, we have to take

Iext = SP + ε1Ωu, ε > 0

where Ω is a neighbourhood of the fovea and u is a control function;

• The goal is then to find a convenient control function u such that aIext will

be the superposition of patterns, say,

aIext = SP + εS̃Pj , ε > 0, i ̸= j .

→ We want to obtain a global complex patterns with a local control

13



Mackay effects with “MacKay rays”, numerical results

Up to now, only partial theoretical results in this direction. However, numerical

implementation yields the desired results.

Inputs in left and steady states in the right.
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Billock & Tsou psychophysical test, numerical results

Inputs in left and steady states in the right.
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Mesoscopic model of V1



Understanding the visual stream
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Understanding the visual stream

In 1981 Hubel and Wiesel won the Nobel Prize observing that:

Neurons in V1 are sensitive to both spatial locations AND local orientations

From stimulus to V1 Tree shrew orientation sensitivity
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Understanding the visual stream

In 1981 Hubel and Wiesel won the Nobel Prize observing that:

Neurons in V1 are sensitive to both spatial locations AND local orientations

From stimulus to V1 Hypercolumn structure

How to build up orientation-dependent models?

16



Modelling V1 architecture by functional lifting

Mathematical modelling:

• Neurons in V1 ↔ points in the Lie group SE(2) = R2 ⋊ S1;

• “Lift” of the 2D image to a 3D object via the operator1

L : L2(R2) → L2(SE(2))

1Mathematical framework: Petitot, ’94, Citti, Sarti, ’06, Duits, ’05, Boscain, Gauthier, P, ’13-’19.
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Modelling V1 architecture by functional lifting

Mathematical modelling:

• Neurons in V1 ↔ points in the Lie group SE(2) = R2 ⋊ S1;

• “Lift” of the 2D image to a 3D object via the operator1

L : L2(R2) → L2(SE(2))

No crossing! (Image from: Bekkers, Duits, Berendschot, ter Haar Romeny, ’14)

1Mathematical framework: Petitot, ’94, Citti, Sarti, ’06, Duits, ’05, Boscain, Gauthier, P, ’13-’19.
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Mathematical construction

Let (z , θ) ∈ SE(2) a neuron in V1.

For w ∈ R2 in the retinal plane, the receptive profile ψ(z,θ)(w),w ∈ R2

models the cortical activation of (z , θ) when a stimulus is applied in location w .

Gabor RP’s Daugman, ’85
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Cortical-inspired models

Cortical-inspired extension of WC to space of positions and orientations:

∂

∂t
U(x , θ, t) = −αU(x , θ, t)+µ

∫
SE(2)

ω(x , θ∥y , θ′)f
(
U(y , θ′, t)

)
dy dθ′+Iext(x , θ)

• Allowed to recover some missing geometric hallucitations2

• Could not reproduce satisfactorily some common visual illusions

Tilt illusion

Issue : WC does not admit a variational counterpart!

2Bressloff, Cowan, 2002
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A variational approach to cortical

activity



Variational VS. evolution approaches for efficient representation & coding

Efficient representation3: encoding visual information in the most efficient way

• Ecological viewpoint: optimisation problem 4 involving natural image statistics

& biological constraints → minimise redundancy of resources

min
u

E(u) (3)

• Neuro-physiology viewpoint: transmission, diffusion & interaction phenomena of

stimuli in the visual cortex 5 → stationary states{
∂u
∂t

= F (u)

u(0) = u0
(4)

Via gradient descent, it is always true that (3)⇒(4) with F = −δE.

However, there exist evolution processes not minimising any E

→ they are sub-optimal in reducing redundancy!

3Attneave, ’54, Barlow, ’61
4Olshausen, ’00, Atick, ’92
5Beurle, ’56, Wilson, Cowan, ’73
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A WC variant from imaging: Local Histogram Equalisation (LHE)

The following variation of WC has been proposed6 for contrast/colour

enhancement:

∂u(x , t)

∂t
= −αu(x , t) + µ

∫
R2

ω(x , y)f
(
u(x , t)− u(y , t)

)︸ ︷︷ ︸
ω(x,y)���XXXf (u(y,t))

dy + Iext

→ Non-linear behaviour on local contrast, NOT on local activation!

Theorem (Calatroni, Franceschi, P, et al. ’20)

LHE complies with a variational principle, WC doesn’t.

APPLICATION: understanding contrast perception phenomena

RECONSTRUCTION = PERCEPTION in this context!

6Bertalḿıo, Caselles, Provenzi, Rizzi, ’07, Pierre, Aujol, Bugeau, Steidl, Ta, ’17
21
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Variational LHE

LHE model proposed originally 7:

min
u

∥∥∥∥u −
1

2

∥∥∥∥2
2

+
λ

2
∥u − u0∥22 −

1

4M

∫
Q

∫
Q
ω(x , y)Σ

(
u(x)− u(y)

)
dx dy

• Gray World principle: models the ‘reference’ mean for u ∈ [0, 1]

• Fidelity: λ > 0, u0 is the given initial image

• Local contrast perception measure: inspired by the neurophysiology of the

Human Visual System

• Σ is an even convex primitive function of a non-linear (odd) sigmoid σ

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

y=x

σ(x) = min {1,max {αx,−1}}

|u(x , ·)− u(y , ·)| < 1
α
: contrast increasing

|u(x , ·)− u(y , ·)| ≥ 1
α
: saturation

7Bertalḿıo, Caselles, Provenzi, Rizzi, ’11
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Orientation-independent tested illusions

White Brightness Checkerboard Chevreul Chevreul canc.

Dungeon Grating Hong-Shevell Luminance

NOTE: hard to compare model performance quantitatively. Look at line profiles!
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Orientation-independent illusions: White illusion

0 100 200
0.1

0.5

0.9

Visual stimu lus LHE-2D WC-2D LHE-3D WC-3D

Predicted br ightness  2D models

0 100 200

Predicted br ightness  3D models

visual
stimulus

White illusion
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Orientation-independent illusions: Luminance illusion

0.2

0.5

0.8

Predicted br ightness  2D models Predicted br ightness  3D models

20 20 50 150 18050 150 180

visual
stimulus

Visual stimu lus LHE-2D WC-2D LHE-3D WC-3D

Luminance illusion
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Orientation-independent illusions: Chevreul

0.3

0.5

0.7

Visual stimu lus LHE-2D WC-2D LHE-3D WC-3D

100 16040 100 16040

visual
stimulus

Predicted br ightness  2D models Predicted br ightness  3D models

Chevreul illusion
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Orientation-independent illusions: Chevreul cancellation

Chevreul cancellation
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Replication results

Replication results with parameters used in the tests

Discussion

All models can replicate simple illusions, but LHE shows better efficient

representation than WC for orientation-dependent examples.
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Modelling the connectivity



Orientation-dependent illusion: Poggendorff illusion

Consider now orientation dependent phenomena.

Poggendorff illusion

29



Orientation-dependent illusion: Poggendorff illusion

Consider now orientation dependent phenomena.

Poggendorff illusion

The central surface induces a misaligned perception of the black line.8

8Day and Dickinson, ’76; Weintraub and Krantz, ’71, Westheimer ’08.
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Poggendorf illusion + grating

GOAL: reproducing the false perceived connection ( ̸= inpainting!)

Poggendorff illusion over grating background

Where do the black bottom lines connect?

Not very satisfying, we need a better model

30



Poggendorf illusion + grating

GOAL: reproducing the false perceived connection ( ̸= inpainting!)

LHE-2D WC-2D LHE-3D WC-3D

Zoom of the predicted completion for Poggendorff illusion

Not very satisfying, we need a better model
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Poggendorf illusion + grating

GOAL: reproducing the false perceived connection ( ̸= inpainting!)

LHE-3D result

Not very satisfying, we need a better model

30



Connectivity between neurons

Connections in V1 are of two types9:

• Intra-cortical (short range) between neurons sensitive to the same orientation

• Long range connectivity between neurons sensitive to different orientations

9Bosking et al. ’97
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Connectivity between neurons II

Modelled by the vector fields on SE(2):

Θ = ∂θ and X = cos θ∂x + sin θ∂y

Lie bracket generating family (span{Θ,X , [Θ,X ]} = R3).

Variational principle: Neural activity strive to minimize the associated energy

E(u) =

∫
SE(2)

|Xu|2 + |Θu|2 dp.

=⇒ neural activities are modelled via the kernel wτ of the sub-Riemannian heat

equation

∂τ f = (X 2 +Θ2)f .
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Poggendorff illusion revisited

Implementing this kernel in LHE allows to (almost) recover the Poggendorff illusion.
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Inpainting vs perceptual completion

Changing the size of the kernel wτ changes the strength of the interactions.

(a) τ = 0.5 (b) τ = 2.5

This allows to pass from an inpainting-like reconstruction to a perceptual completion :

34
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Conclusions & Outlook



Conclusions

Take-home messages

• Goal: unify vision models with image processing (somehow new. . . )

• Cortical-inspired architecture for WC and LHE models.

• Toolbox for replicating visual perception by neural dynamics (codes in

Julia, GitHub page: https://github.com/dprn/WCvsLHE)

• Better efficient representation of LHE for orientation-dependent illusions,

in agreement with theory.

35
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Outlook

Project JCJC AAP2020: RUBIN-VASE. Coordinator: Dario Prandi (L2S)

• Explain hallucinatory-like effects

MacKay effect and flickering wheeel illusion

• Predictive control of hallucinatory states

• LHE as the basis for a new framework for Intrinsically Non-Linear Receptive fields
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Thank you for your attention!

Questions?

dario.prandi@centralesupelec.fr https://dprn.github.io
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