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Workshop “Mathematics for Quantum Technologies”
Nice

04/03/2022



Closed quantum control systems

i
dψ

dt
(t) = H(u(t))ψ(t), ψ ∈ H, ‖ψ‖ = 1,

with H(u) selfadjoint on the Hilbert space H for every u ∈ U.
In particular, the flow Φu(t, s) associated with any control u(·) is
unitary.
We mostly assume that the system is control affine (or bilinear),
i.e.,

H(u) = H0 +
m∑
j=1

ujHj , u = (u1, . . . , um) ∈ U ⊂ Rm.

Examples:
spin in an electromagnetic field ψ(t) ∈ C2, m = 2,

H0 =

(
E 0
0 −E

)
, H1 =

(
0 1
1 0

)
, H2 =

(
0 i
−i 0

)
rotating linear molecule
ψ(t) ∈ L2(S1,C), m = 2, H0 = −∂2θ , H1 = cos θ, H2 = sin θ



Slow-varying controls: adiabatic evolution

If the Hamiltonian [0, 1] 3 τ 7→ H(τ) smoothly depends on τ and
(λ(τ), φ(τ)) is an eigenpair of H(τ) with λ(τ) separated from the
rest of the spectrum of H(τ), then the solution ψε of

i
dψε
dt

(t) = H(εt)ψε(t)

with ψε(0) = φ(0) satisfies

‖ψε(1/ε)− e iθεφ(1)‖ < Cε

for some C > 0 independent on ε and some θε ∈ R.

This gives a constructive motion planning method (Guérin, Jauslin,
Yatsenko, Vitanov, Gauthier, Leghtas, Sarlette, Rouchon. . . ):

regular control laws
trajectory tracking features (up to phases)
works both in finite and infinite dimension
robust motion planning



Eigenvalue crossing

Finer versions of the adiabatic theorem −→ extension to case
λj(τ̄) = λj+1(τ̄) at some τ where the intersection is transversal
(e.g., [Teufel, 2003])1

φj(0)→ e iθφj+1(1)

Adiabatic evolution through transversal intersections thus allows to
“climb” energy levels
1(λj)

N
j=1 nondecreasing sequence of eigenvalues of H repeated according to

multiplicities. (φ1, . . . , φN) orthonormal basis of associated eigenvectors



The mechanism of climbing

Climbing happens because smooth 1D variations of H lead to
smoothly varying eigenpairs even through intersections
(Kato–Rellich theorem)

‖ψε(1/ε)− e iθεφj+1(1)‖ < C
√
ε, ψε(0) = φj(0)

Climbing can be repeated in
a general control scheme



Conical intersections: transversal in all directions

An intersection λj(u) = λj+1(u) is conical if it has multiplicity 2
and there exists c > 0 such that for any v ∈ Sm−1

d

dt

∣∣∣∣
t=0+

λj+1(u + tv)− λj(u + tv)  c .

For Hamiltonians with real matrix elements and m = 2
intersections are generically conical (the same for self-adjoint
Hamiltonians and m = 3): open, dense, and full-measure set of
triples (H0,H1,H2) for dimH <∞



Spectral conical connectedness and eigenvector
controllabillity

The spectrum of H(·) is conically connected if m = 2 and
there exist a conical intersection between each pair of
subsequent eigenvalues
intersection points are distinct and isolated in the plane
(u1, u2)

Proposition

If the spectrum of H(·) is conically connected then

φj(u0) −→ e iθφk(u1)

by adiabatic control



Spreading population occupations is possible by breaking
the path [Boscain, Chittaro, Mason, S, TAC, 2012]

φj → e iθ1p1φj + e iθ2p2φj+1

p1 = | cos (θ(α−)− θ(α+)) | p2 = | sin (θ(α−)− θ(α+)) |
where θ(α) is the solution to(

cosα, sinα
)
M
(

cos 2θ(α)
sin 2θ(α)

)
= 0

and by definition

M =

(
〈φ0j ,H1φ0j+1〉 1

2

(
〈φ0j+1,H1φ0j+1〉 − 〈φ0j ,H1φ0j 〉

)
〈φ0j ,H2φ0j+1〉 1

2

(
〈φ0j+1,H2φ0j+1〉 − 〈φ0j ,H2φ0j 〉

) )
(nonsingular if and only if the intersection is conical)



A broken path



Spectral connectedness by conical intersections implies
exact controllability

Let H = CN .

Theorem (Boscain, Gauthier, Rossi, S., CMP, 2015)

If the spectrum of H(·) is conically connected, then
Lie{iH(u) | u ∈ R2} ⊂ u(N) contains su(N). In particular every
logical gate can be obtained by choosing a suitable control.

by measuring the spectrum of H(·) one can “read” Lie
algebraic properties
spirit of the proof:

conical connectedness + analyticity =⇒ at almost every ū the
spectrum is rationally independent and there is no invariant
linear subspace
a Vandermonde argument on matrices written in the eigenbasis
of H(ū) allows to conclude



Ensemble controllability

iψ̇(t) = Hα(u(t))ψ(t)

α time-independent parameter, u control, each Hα(u) self-adjoint.
(λαj (u))Nj=1 nondecreasing sequence of eigenvalues of Hα(u)
repeated according to multiplicities.
(φα1 (u), . . . , φαN(u)) orthonormal basis of associated eigenvectors

Definition

The system is ensemble approximately controllable between
eigenstates if for every ε > 0, j , k ∈ {1, . . . ,N} and u0, u1 ∈ U
such that λαj (u0) and λαk (u1) are simple for every α, there exists
u : [0,T ]→ U such that for every α the solution with initial
condition ψα(0) = φαj (u0) satisfies ‖ψα(T )− e iθφαk (u1)‖ < ε.

Typical case: u = 0 represents free Hamiltonian and one seeks to
steer φαj (0) towards φαk (0)



Ensemble eigenvalue crossing

γj = {u ∈ U | ∃α ∈ [α0, α1] such that λαj (u) = λαj+1(u)}
Assumption Aj . The set U \ (γj−1 ∪ γj ∪ γj+1) is pathwise
connected and there exist connected component γ̂j of γj and
βj : [α0, α1]→ U smooth embedding such that

γ̂j = βj([α0, α1]) ⊂ U \ (γj−1 ∪ γj+1)
For every α ∈ [α0, α1], λαj has a conical intersection at βj(α).



Adiabatic evolution through an ensemble eigenvalue
crossing

Lemma

Let (α, u) 7→ Hα(u) smooth and satisfying Aj . Take
u0, u1 ∈ U \ (γj−1 ∪ γj ∪ γj+1) and a u : [0, 1]→ U C3 satisfying
u(0) = u0, u(1) = u1, u̇(t) 6= 0 for every t ∈ [0, 1], u|[t0,t1]
reparameterization of βj for some 0 < t0 < t1 < 1,
u(t) /∈ γj−1 ∪ γj ∪ γj+1 for every t /∈ [t0, t1].
Then ∃C > 0 such that ∀α ∈ [α0, α1] and ∀ε > 0 the solution ψαε
of iψ̇αε = Hα(u(εt))ψαε with initial condition ψαε (0) = φαj (u0)
satisfies

‖ψαε (1/ε)− e iθφαj+1(u1)‖ < C
√
ε



Ensemble approximate controllability

Corollary (Augier, Boscain, S, SICON, 2018)

Let (α, u) 7→ Hα(u) be smooth and satisfy Aj for every
j = 1, . . . ,N − 1. Then the system is ensemble approximately
controllable between eigenstates.



Example: spin system

i
d

dt

(
ψα1
ψα2

)
=

(
E + α Ω(t)
Ω∗(t) −E − α

)(
ψα1
ψα2

)
.

We want to steer φα1 (0) = (1, 0) to φα2 (0) = (0, 1), ∀α ∈ [α0, α1]
The eigenvalues of the Hamiltonian are simple for every value of
α ∈ [α0, α1] and Ω ∈ C =⇒ time-dependent change of variables
(interaction picture)
Ω(t) = u1(t)e−i(2Et+∆(t)) and ψα(t) = U(t)Φα(t) with

U(t) =

(
e−iEt 0

0 e i(Et+∆(t))

)
.

Transformed equation:

i
d

dt

(
Φα
1

Φα
2

)
=

(
α u1(t)

u1(t) −α + u2(t)

)(
Φα
1

Φα
2

)
.

with u2(t) = d∆
dt (t)



Example: spin system

A1 is satisfied: the matrix Hα(u1, u2) =

(
α u1
u1 −α + u2

)
has

conical intersections on

γ1 = {(0, 2α) ∈ R2 | α ∈ [α0, α1]} = {0} × [2α0, 2α1]

The controls used to achieve the adiabatic transition can be taken
as in figure and apply to the original system since U(t) preserves
(up to phases) (1, 0) and (0, 1).

Ω(εt) = u1(εt)e−i(2Et+ 1
ε

∫ εt
0

u2(s)ds) t ∈
[

0,
1
2ε

]



Example: the STIRAP processes



STIRAP with parameters

i
d

dt

 ψ1
ψ2
ψ3

 =

 α1E1 β1u1 0
β1u1 α2E2 β2u2

0 β2u2 α3E3


 ψ1
ψ2
ψ3


Here α1, α2, α3, β1, β2 > 0 and α1E1 < α2E2 < α3E3

The same strategy is working for the whole family of systems

Often only some parameters are responsible for “perturbing”
eigenvalue intersections

This explains why the counterintuitive strategy is so robust



Adiabatic control with a single scalar control

In principle it does not work, since once we cross an eigenvalue
intersection, we should cross it in the opposite sense to get to the
initial value of u.
Creation of new control parameters by rotating wave
approximation: the trajectories of

iψ̇(t) =

(
E u(t)

u(t) −E

)
ψ(t)

with

u(t) = 2εtv(εt) cos(2Et + ∆(εt)), t ∈ [0,T/ε]

approximate, for ε→ 0, the rescaled solution (s = εt) of

i φ̇(s) =

(
−∆′(s)/2 v(s)

v(s) ∆′(s)/2

)
φ(s)

up to a change of rotating frame.
Issue for adiabatic control: double time scale



Adiabatic control with a single scalar control [Robin,
Augier, Boscain, S, JDE, to appear]

By combining rotating wave approximation and adiabatic control
we can induce ensemble eigenvector controllability for

iψ̇(t) =

(
αE βu(t)
βu(t) −αE

)
ψ(t)

with respect to (α, β) ∈ [α0, α1]× [β0, β1] with 0 < α0 < α1,
0 < β0 < β1 provided that

3α0 > α1.

Moreover (but less constructive): ensemble approximate
controllability between elements of C 0([α0, α1]× [β0, β1], S

3) and
also in terms of logical gates, extending previous results by
Li–Khaneja and Beauchard–Coron–Rouchon to the case u(t) ∈ R
(instead of C)


