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Degenerate gradient flows

ẋ(t) = −c(t)c(t)>x(t), x ∈ Rn, c : [0,+∞)→ Rn. (DGF)

These systems appear in algorithms for, e.g.,

1. Gradient descent with incomplete knowledge of the gradient

2. Identification and model reference adaptive control

3. Consensus in multi-agent systems

Objectives

(a) Guarantee convergence and stability of (DGF) at the origin

(b) extract information on the decay rate (in case of exponential

convergence).
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Motivation: Adaptive filters

Problem

z(t) = h>c(t) scalar output system, estimate parameter h ∈ Rn,

knowing input c : [0,+∞)→ Rn and output z : [0,+∞)→ R.

Let ĥ : [0,+∞)→ Rn estimate of h so that

d

dt
ĥ(t) = (z(t)− ẑ(t))c(t), ẑ(t) := ĥ(t)>c(t).

Error vector x(t) = h − ĥ(t) satisfies (DGF):

ẋ(t) = − (z(t)− ẑ(t)) c(t) = −
(
x(t)>c(t)

)
c(t)

Convergence to 0 of (DGF) ⇐⇒ Quality of the estimator ĥ

Obvious fact: c : [0,+∞)→ Rn must ”visit regularly” all directions!!

⇒ Need for such condition to have convergence.
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Persistent excitation

We say that c verifies the persistent excitation condition if

∃ a, b,T > 0, ∀t ≥ 0, a Idn ≤
∫ t+T

t

c(s)c(s)> ds ≤ b Idn . (PE)

Theorem (cf., Anderson, Narendra, et al. 80s)

Signal c verifies (PE) if and only if (DGF) is uniformly globally

exponentially stable at 0, i.e.,

∃ C , α > 0, ‖x(t)‖ ≤ Ce−α(t−s)‖x(s)‖, ∀t > s ≥ 0,

and C , α only depend on a, b,T .

• (PE) says that c “visits all directions of Rn during a time window”.

• Upper bound b is essential: (cf. Barabanov et al. 2005), if b = +∞
it can happen that

x(t) −→ x 6= 0 as t → +∞
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Decay rate

Under (PE), system ẋ = −cc>x is globally exponentially stable:

‖x(t)‖ ≤ Ce−αt‖x(0)‖, ∀t ≥ 0, (GES)

with C , α only depending on a, b,T .

Decay rate for a signal c verifying (DGF)

R(c) := sup{α > 0 | (GES) holds} = − lim sup
t→+∞

log ‖Φc(t, 0)‖
t

,

Φc(t, 0) = fundamental matrix of (DGF) from 0 to t.

Definition

The worst decay rate is

R(a, b,T , n) := inf{R(c) | c satisfies (PE) with parameters a, b,T}.

 Yields guaranteed convergence rate for ANY signal c verifying (DGF).
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Main result

Many lower bounds for R(a, b,T , n) exist in the literature, of the type:

Theorem (cf., Andersson and Krishnaprasad (2002))

There exists C1 > 0 such that

R(a, b,T , n) ≥ C1a

(1 + nb2)T
, ∀T > 0, a < b, n ∈ N.

Problem: Are these bounds optimal ?

Theorem (C.-Mason-Prandi)

There exists C0 > 0 such that

R(a, b,T , n) ≤ C0a

(1 + b2)T
, ∀T > 0, a < b, n ∈ N.

 We recover the result by Barabanov et al. (2005) if b = +∞.
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Application I: L2-gain for (DGF) systems with linear input

Consider the controlled (DGF) system:

ẋ(t) = −c(t)c(t)>x(t) + u(t), u ∈ L2([0,+∞),Rn).

Let γ(c) be the L2-gain of the input/output map u 7→ x :

γ(c) = sup
u∈L2\{0}

‖xu‖2

‖u‖2

Rantzer (1999) posed the problem of determining the worst L2 gain:

γ(a, b,T , n) = sup{γ(c) | c satisfies (PE) }.

Theorem (C.-Mason-Prandi)

There exists κ0, κ1 > 0 such that for all T > 0, a ≤ b, n ≥ 2, it holds

κ0
(1 + b2)T

a
≤ γ(a, b,T , n) ≤ κ1

(1 + nb2)T

a
.
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Sketch of the proof

Idea

Connect R(a, b,T , n) = inf R(c) with an optimal control problem.

Recall that

R(c) =

Polar coordinates: Letting x = rω for r > 0 and ω ∈ Sn−1, (DGF) reads{
ṙ = −(c>ω)2r ,

ω̇ = −c>ω
(
c − (c>ω)ω

)
, (Pol)

r0 = ‖x(0)‖, ω0 =
x(0)

‖x(0)‖
.

(Pol)

• (Pol) = Dynamics of ω independent of r .

• The dynamics of r yield:

− log
‖x(T )‖
‖x(0)‖

= − log
r(T )

r(0)
=

∫ T

0

(c>ω)2 ds =: JT (c , ω0).
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Sketch of the proof II

Optimal control problem:

µ(a, b,T , n) := min JT (c , ω0) = min

∫ T

0

(c>ω)2 ds

Here, c : [0,T ]→ Rn runs over all signals satisfying

a Idn ≤
∫ T

0

c(s)c(s)> ds ≤ b Idn,

and ω is a solution to (Pol) with ω(0) = ω0 ∈ Sn−1.

Steps:

1. Prove that

R(a, b,T , n) ≤ 2
µ(a/2, b/2,T , n)

T
 Show that µ(a/2, b/2,T , n) is realized by an optimal control

c? : [0,T ] → Rn, which extends to a 2T -periodic (PE) signal c? : R+ → Rn

2. Show that µ(a, b,T , n) ≤ µ(a, b,T , 2);

3. Precisely estimate µ(a, b,T , 2).

8



Sketch of the proof II

Optimal control problem:

µ(a, b,T , n) := min JT (c , ω0) = min

∫ T

0

(c>ω)2 ds

Here, c : [0,T ]→ Rn runs over all signals satisfying

a Idn ≤
∫ T

0

c(s)c(s)> ds ≤ b Idn,

and ω is a solution to (Pol) with ω(0) = ω0 ∈ Sn−1.

Steps:

1. Prove that

R(a, b,T , n) ≤ 2
µ(a/2, b/2,T , n)

T
 Show that µ(a/2, b/2,T , n) is realized by an optimal control

c? : [0,T ] → Rn, which extends to a 2T -periodic (PE) signal c? : R+ → Rn

2. Show that µ(a, b,T , n) ≤ µ(a, b,T , 2);

3. Precisely estimate µ(a, b,T , 2).

8



Sketch of the proof II

Optimal control problem:

µ(a, b,T , n) := min JT (c , ω0) = min

∫ T

0

(c>ω)2 ds

Here, c : [0,T ]→ Rn runs over all signals satisfying

a Idn ≤
∫ T

0

c(s)c(s)> ds ≤ b Idn,

and ω is a solution to (Pol) with ω(0) = ω0 ∈ Sn−1.

Steps:

1. Prove that

R(a, b,T , n) ≤ 2
µ(a/2, b/2,T , n)

T
 Show that µ(a/2, b/2,T , n) is realized by an optimal control

c? : [0,T ] → Rn, which extends to a 2T -periodic (PE) signal c? : R+ → Rn

2. Show that µ(a, b,T , n) ≤ µ(a, b,T , 2);

3. Precisely estimate µ(a, b,T , 2).

8



Sketch of the proof II

Optimal control problem:

µ(a, b,T , n) := min JT (c , ω0) = min

∫ T

0

(c>ω)2 ds

Here, c : [0,T ]→ Rn runs over all signals satisfying

a Idn ≤
∫ T

0

c(s)c(s)> ds ≤ b Idn,

and ω is a solution to (Pol) with ω(0) = ω0 ∈ Sn−1.

Steps:

1. Prove that

R(a, b,T , n) ≤ 2
µ(a/2, b/2,T , n)

T
 Show that µ(a/2, b/2,T , n) is realized by an optimal control

c? : [0,T ] → Rn, which extends to a 2T -periodic (PE) signal c? : R+ → Rn

2. Show that µ(a, b,T , n) ≤ µ(a, b,T , 2);

3. Precisely estimate µ(a, b,T , 2).

8



Sketch of the proof II

Optimal control problem:

µ(a, b,T , n) := min JT (c , ω0) = min

∫ T

0

(c>ω)2 ds

Here, c : [0,T ]→ Rn runs over all signals satisfying

a Idn ≤
∫ T

0

c(s)c(s)> ds ≤ b Idn,

and ω is a solution to (Pol) with ω(0) = ω0 ∈ Sn−1.

Steps:

1. Prove that

R(a, b,T , n) ≤ 2
µ(a/2, b/2,T , n)

T
 Show that µ(a/2, b/2,T , n) is realized by an optimal control

c? : [0,T ] → Rn, which extends to a 2T -periodic (PE) signal c? : R+ → Rn

2. Show that µ(a, b,T , n) ≤ µ(a, b,T , 2); PMP

3. Precisely estimate µ(a, b,T , 2).

8



More general systems

We obtain the same result for the worst rate of decay for the more

general system

ẋ(t) = −S(t)x(t)

were S(t) ∈ Rn×n is such that S(t) ≥ 0 and for a, b,T > 0

a Idn ≤
∫ t+T

t

S(s) ds ≤ b Idn

 The family of signals S is obtained as the convexification of the family

cc> where c : [0,T ]→ Rn satisfies (PE)

 the worst rate of decay is realized by (DGF), e.g., S = cc>
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Perspectives

Open question

For a, b,T fixed, what dependence on the dimension?

C1

n
≤ lim

b→∞
R(a, b,T , n)

(1 + b2)T

a
≤ C0.

• The technique used in the proof yields also the lower bound

R(a, b,T , n) ≥ µ(a, b,T , n)

T
.

• At the moment we cannot directly access µ(a, b,T , n) for n 6= 2.
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