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Degenerate gradient flows

x(t) = —c(t)c(t)"x(t), x€eR", c:[0,400) = R". (DGF)
These systems appear in algorithms for, e.g.,

1. Gradient descent with incomplete knowledge of the gradient
2. ldentification and model reference adaptive control

3. Consensus in multi-agent systems

Objectives

(a) Guarantee convergence and stability of (DGF) at the origin
(b) extract information on the decay rate (in case of exponential
convergence).



Motivation: Adaptive filters

Problem

z(t) = h' c(t) scalar output system, estimate parameter h € R”,
knowing input c : [0, +00) — R" and output z : [0, +00) — R.
Let A : [0,+00) — R" estimate of h so that
d .
h
dt
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Motivation: Adaptive filters

Problem

z(t) = h' c(t) scalar output system, estimate parameter h € R”,
knowing input c : [0, +00) — R" and output z : [0, +00) — R.

Let A : [0,+00) — R" estimate of h so that
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Convergence to 0 of (DGF) < Quality of the estimator h

Obvious fact: ¢ : [0, +00) — R” must "visit regularly” all directions!!
= Need for such condition to have convergence.



Persistent excitation

We say that c verifies the persistent excitation condition if

t+T
Ja,b, T >0, Vt>O0, ald, < / c(s)c(s)" ds < bld,. (PE)
Jt

Theorem (cf., Anderson, Narendra, et al. 80s)

Signal c verifies (PE) if and only if (DGF) is uniformly globally
exponentially stable at 0, i.e.,

3C,a>0, [x(t)] < CeI|x(s)l, Vt>s>0,

and C,« only depend on a, b, T.



Persistent excitation

We say that c verifies the persistent excitation condition if

t+T
Ja,b, T >0, Vt>0, ald, < / c(s)c(s)" ds < bld, .
Jt

Theorem (cf., Anderson, Narendra, et al. 80s)

Signal c verifies (PE) if and only if (DGF) is uniformly globally
exponentially stable at 0, i.e.,

3C,a>0, |x(b)| < Ce *t9|x(s)|, Vt>s>0,
and C,« only depend on a, b, T.

e (PE) says that ¢ “visits all directions of R" during a time window" .
e Upper bound b is essential: (cf. Barabanov et al. 2005), if b = 400
it can happen that

x(t) —X#0 ast— 400



Under (PE), system x = —cc

x is globally exponentially stable:
Ix(6)] < Ce™*||x(0)[I, Vvt =0, (GES)
with C, « only depending on a, b, T.

Decay rate for a signal ¢ verifying (DGF)

| b (t,
R(c) :=sup{a > 0| (GES) holds} = —lim sup M,

t——+oo t
®(t,0) = fundamental matrix of (DGF) from 0 to t.
Definition

The worst decay rate is

R(a, b, T, n) :=inf{R(c) | c satisfies (PE) with parameters a, b, T }.

~> Yields guaranteed convergence rate for ANY signal ¢ verifying (DGF).



Main result

Many lower bounds for R(a, b, T, n) exist in the literature, of the type:
Theorem (cf., Andersson and Krishnaprasad (2002))
There exists C; > 0 such that

Cla

R(a,b, T,n) > ———
(a7 Y 7n)— (1+nb2)7—7

VT >0,a< b, neN.

Problem: Are these bounds optimal ?
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Theorem (C.-Mason-Prandi)
There exists Co > 0 such that

Coa

P
R(a7 b7 Ta n) — (1+b2)7—’

VT >0,a< b, neN.

~> We recover the result by Barabanov et al. (2005) if b = +oo.



Application I: [*-gain for (DGF) systems with linear input

Consider the controlled (DGF) system:
x(t) = —c(t)c(t) "x(t) + u(t), u € L*([0, +00), R™).

Let y(c) be the L2-gain of the input/output map u + x:

[ ll2

verr\foy |lull2

V(c) =

Rantzer (1999) posed the problem of determining the worst L2 gain:
v(a, b, T, n) = sup{7(c) | ¢ satisfies (PE) }.



Application I: [*-gain for (DGF) systems with linear input

Consider the controlled (DGF) system:
x(t) = —c(t)e(t) " x(t) + u(t), u € L3([0,+00),R").

Let y(c) be the L2-gain of the input/output map u + x:

[ ll2
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V(c) =

Rantzer (1999) posed the problem of determining the worst L2 gain:
~v(a, b, T, n) = sup{v(c) | c satisfies (PE) }.

Theorem (C.-Mason-Prandi)
There exists kg, k1 > 0 such that for all T >0, a < b, n > 2, it holds
(1+p)T
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Sketch of the proof

Idea

Connect R(a, b, T, n) = inf R(c) with an optimal control problem.
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Sketch of the proof

Idea

Connect R(a, b, T, n) = inf R(c) with an optimal control problem.

Recall that

t—+4oo

1
R(¢) = liminf : inf {Jr(c.wf'o) wo € 31”}
Polar coordinates: Letting x = rw for r > 0 and w € S"~!, (DGF) reads

Foo=—(cTw)?r, B B
{w =—c'w(c—(cTw)w), (Pol) o= [x(O)l w0 = [x(O)II

e (Pol) = Dynamics of w independent of r.
e The dynamics of r yield:

DI AT
EOIISEO

-
— log = / (c"w)?ds =: Jr(c,wp).
0



Sketch of the proof Il

Optimal control problem:
w(a, b, T, n) :=min Jr(c,wp) = min /T(c—rw)2 ds
Jo
Here, ¢ : [0, T] — R” runs over all signals satisfying
ald, < /OT C(s)c(s)T ds < bld,,

and w is a solution to (Pol) with w(0) = wy € S"~1.
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~» Show that u(a/2,b/2, T, n) is realized by an optimal control
¢« : [0, T] = R", which extends to a 2T-periodic (PE) signal ¢, : R — R”
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More general systems

We obtain the same result for the worst rate of decay for the more
general system

x(t) = =S(t)x(t)

were S(t) € R"*" is such that S(t) > 0 and for a,b, T > 0

T
ald, < / S(s)ds < bld,
t

~» The family of signals S is obtained as the convexification of the family
cc” where c : [0, T] — R" satisfies (PE)

~~ the worst rate of decay is realized by (DGF), e.g., S = cc'



Open question
For a, b, T fixed, what dependence on the dimension?
(1+b3)T

G < lim R(a,b, T,n)
n b—o0

< G.

e The technique used in the proof yields also the lower bound
b, T
R(a, b, T,n) > LT”)

e At the moment we cannot directly access u(a, b, T, n) for n # 2.

10



Thank you for your attention!

\ Y. Chitour, P. Mason, D. Prandi
Worst Exponential Decay Rate for Degenerate Gradient flows
subject to persistent excitation

SIAM Journal on Control and Optimization, 2021, Vol. 59, No. 4 :
pp. 3040-3067
arXiv:2006.02935


https://arxiv.org/abs/2006.02935

