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Motivation

Sturm-Liouville (Schrödinger) operators. Consider the 1D linear differential
operator

T :=
p
∑

k=0
ak(x)Dk , D :=−i d

dx

with domain Hp(0,1) (+ boundary conditions).

We are interested in the particular case of order p = 2 associated with a
potential V ,

T =− d2

dx2 +V

with Dirichlet or periodic boundary conditions on [0,1].



Motivation

Determinant. For smooth V , let λ1,λ2, . . . be the eigenvalues of T ,

−u′′(x)+V (x)u(x) = λu(x), x ∈ (0,1),

+ boundary conditions

and define for Re(s) > 1/2

ζT (s) := ∑
λj>0

1
λ s

j
·

ζT has a meromorphic extension to the complex plane, regular at s = 0. After
Ray-Singer’1971, define the determinant of T according to

detT := exp(−ζ
′
T (0)).

Remarks. (i) Equal to the product of eigenvalues when finitely many of them.
(ii) Regularises the divergent infinite product.



Motivation

Theorem. (Levit-Smilansky’1977, Burghelea-Friedlander-Kappeler’1995) For a
smooth potential V , for Dirichlet boundary conditions detT = 2y(1) where y is
the solution of

−y ′′(x)+V (x)y(x) = 0, x ∈ (0,1),

y(0) = 0, y ′(0) = 1.

Variational problem. Extremise the determinant wrt. the potential under
various constraints (positivity, bounds...)

Remark. Contrary to other spectral problems (extremization of first or second
eigenvalue, e.g.—see Harrell’1984), the problem is global (involves the whole
spectrum).



Motivation

Extension to L1 potentials.

Lemma. The endpoint mapping V 7→ y(1) is well-defined and Lipschitz on
bounded subsets of L1(0,1).

Proof. For x := (y ,y ′), write

x ′ = C(V )x , x(0) = (0,1),

C(V ) :=
[

0 1
V 0

]
,

and use Gronwall to prove that

|x(1)− z(1)| ≤ e2(1+ρ)‖V −W ‖1

where x is associated with V ∈ L1 (resp. z with W ), and ‖V ‖1, ‖W ‖1 ≤ ρ.

The determinant, that coincides with the endpoint mapping on smooth
functions, has a unique continuous extension to L1 (thus equal to the endpoint
mapping).



Motivation

Theorem. For Dirichlet boundary conditions, existence and uniqueness of
maximisers hold under Lq constraints, for all q in [1,∞].

In particular, (i) for q = ∞ the maximising potential is constant; (ii) for q = 1,
there exists δ (A) ∈ (0,1) (analytically depending on A > 0) such that the
unique maximising potential is A/δ (A) times the characteristic function of the
interval of length δ (A) centered at 1/2.

� Aldana, C.; Caillau, J.-B.; Freitas, P. Maximal determinants of Schrödinger
operators on bounded intervals. J. Ec. polytech. Math. 7 (2020), 803–829.

Open questions. (i) Minimisation for Dirichlet BC (ongoing work)
(ii) Extremisation for periodic boundary conditions (change of geometry)



Main result

Theorem. For periodic boundary conditions, existence and uniqueness of
maximisers and minimisers hold under L∞ constraints.

Outline.
� Determinant on the circle (after Burghelea-Friedlander-Kappeler’91)
� Maximisation, minimisation



Determinant on the circle

Theorem. (Burghelea-Friedlander-Kappeler’1991) For periodic boundary
conditions,

detT =−det(I2−X(1))

where X(1) is the monodromy of the system

X ′(x) =
[

0 1
V (x) 0

]
X(x), X(0) = I2.

The state X lives in the Lie group SL(2,R) so

detT =−(1− trX(1)+detX(1)) = trX(1)−2.

As a result we have a bilinear optimal control problem on SL(2,R):

trX(1)→max or min, |V | ≤ A a.e. on [0,1].



Maximisation

The trace of the monodromy is equal to z(1)+y ′(1) where

−z ′′+V (x)z = 0, z(0) = 1, z ′(0) = 0,

−y ′′+V (x)y = 0, y(0) = 0, y ′(0) = 1.

Proposition. Let V1 and V2 be two potentials in L1
loc(R+), V1 ≥ |V2| a.e., and

let y1 and y2 satisfy
−y ′′i +Vi (x)yi = 0, i = 1,2.

If y1(0)≥ |y2(0)| and y ′1(0)≥ |y ′2(0)|, then y1(x)≥ |y2(x)| and y ′1(x)≥ |y ′2(x)|
for all x ≥ 0.



Maximisation

Proof. (i) First assume V1 and V2 constant, V1 ≡ A and V2 ≡ B with A and B
two reals such that A≥ |B|. One has

y1(x) = y1(0)cosh(αx)+xy ′1(0)sinhc(αx)

where α =
√

A, and where we denote sinhc(x) = sinh(x)/x if x 6= 0,
sinhc(0) = 1. If B is nonnegative, let β :=

√
B ≤ α; one has

|y2(x)| = |y2(0)cosh(βx)+xy ′2(0)sinhc(βx)|
≤ |y2(0)|cosh(βx)+x |y ′2(0)|sinhc(βx)
≤ y1(0)cosh(αx)+xy ′1(0)sinhc(αx) = y1(x)

for x ≥ 0 since both cosh and sinhc are nondecreasing functions on R+ (and
β ≤ α). Similarly, for x ≥ 0,

|y ′2(x)| = |βy2(0)sinh(βx)+y ′2(0)cosh(βx)|
≤ αy1(0)sinh(αx)+y ′1(0)cosh(αx) = y ′1(x).

Same argument for negative B.



Maximisation

Proof (continued). (ii) Take now some positive x , and assume V1 and V2 are
piecewise constant on [0,x ]; there exists a common subdivision
0 = x0 < x1 < ... < xN = x , N ≥ 1, such that on every [xi ,xi+1[ both V1 and V2
are constant, with V1 ≥ |V2|. A simple recurrence using step (i) allows to
conclude that y1(x)≥ |y2(x)| and y ′1(x)≥ |y ′2(x)|.

(iii) Pass to the limit for general locally integrable potentials using the fact
that, for all x > 0, the mapping V 7→ (y(x),y ′(x)) (where y is the solution of
−y ′′+Vy = 0, y(0) = y0, y ′(0) = y ′0) is continuous from L1(0,x) to R2. �

Corollary. For V in L∞(0,1), let y and z denote the solutions of

−y ′′+V (x)y = 0, y(0) = 0, y ′(0) = 1,

−z ′′+V (x)z = 0, z(0) = 1, z ′(0) = 0.

Then, for any positive bound A, the constant potential V ≡ A is the unique
function maximising both y(1), y ′(1), z(1) and z ′(1) over essentially bounded
potentials such that ‖V ‖∞ ≤ A.

Theorem. The unique maximiser of the determinant on the circle is the
constant potential V ≡ A.



Minimisation
Let us now minimise trX(1) under the constraints

X ′(x) = F0X(x)+VF1X(x), |V (x)| ≤ A,

X(0) = I2,

with linear vector fields

F0 =
[

0 1
0 0

]
, F1 =

[
0 0
1 0

]
.

As for maximisation, existence holds (Filippov). Pontrjagin Maximum Principle
ensures that any minimising potential V is associated with some
P : [0,1]→M(2,R), P(x) ∈ TX(x)SL(2,R), such that

P ′(x) =−∇X H(X(x),P(x),V (x)), P(1) =−I2,

where the Hamiltonian in Mayer form is

H(X ,P,V ) = H0(X ,P)+VH1(X ,P), Hi (X ,P) = (P|Fi X), i = 0,1,

and the maximisation condition holds a.e.:

H(X(x),P(x),V (x)) = max
|W |≤A

H(X(x),P(x),W ).



Minimisation

Lemma. Minimising potentials are bang-bang.

Sketch of proof. If H1 vanishes at some x , since

Ḣ1(x) = H01(x) = (P(x)|[F0,F1]X(x)),

either Ḣ1(x) is not zero or also vanishes. In the second case, since
Ḧ1 = H001 +VH101 a.e., one actually has Ḧ1(x) = H001(x). Provided H 6= 0,
H101(x) 6= 0 and one has an isolated zero. (Ad hoc discussion when H = 0.)

Remark. The problem is well-posed for controls in L∞(S1). In particular,
switchings come in pair.

Theorem. For any ess. bound A, there is a unique minimising potential in
L(S1): (i) for A≤ π2, the minimising potential is constant, V ≡−A
(ii) for A > π2, the minising potential has exactly two switchings, and V ≡ A
on a part of S1 whose length depends analytically on A.



Conclusion and ongoing work

� Complete solution on the circle in L∞

� Compare with minimisers for Dirichlet boundary conditions (ongoing, Lq

constraints with q ∈ [1,∞])
� Matrix potential on the circle (dimension N ≥ 1)
� Open questions: are optimal potentials symmetric, or even diagonal?

T = IN
d2

dx2 +V (x), V (x) ∈MN(R), x ∈ S1
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