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Optimal control problem

Consider the following optimal control problem (OCP):

(
P[0,T ]

)
x ,z



v(T , x , z) := inf
u∈U

∫ T
0 f 0(y(t), u(t))dt

ẏ(t) = f (y(t), u(t)) ∀t ∈ [0,T ]

y(0) = x , y(T ) = z

(1)

where f is C 1 (Rn × Rm,Rn) and f 0 is C 1 (Rn × Rm,R).

Assume the existence of the optimal triple (ŷT (.), λ̂T (.), ûT (.))
coming from the extremal equations of the Pontryagin Maximum
Principle (PMP).
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Turnpike property
When T is large, (ŷT (.), λ̂T (.), ûT (.)) remains "close" to the
turnpike (ȳ , λ̄, ū) except around t = 0 and t = T .

Static (steady) optimization problem (SOP)
(ȳ , ū) = arg min

f (y ,u)=0
f 0(y , u) (2)

λ̄ is the associated Lagrange multiplier.
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1-D Example

min
u

(
(u − 1)2 + y2) , ẏ = y + 2u, s.t. y(0) = x , y(T ) = z (3)
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Bibliography

Turnpike property introduced in the 1920 & 1930s. Observed in
different types of (OCP) amongst which economical systems.

Optimal control problems over large time intervals, B. Anderson, P.
Kokotovic, 1987 → the turnpike phenomenon qualitatively
observed in the LQ case

Turnpike property in finite-dimensional nonlinear optimal control, E.
Trélat, E. Zuazua, 2014 → turnpike property locally characterized
through an exponential inequality.

Linear turnpike theorem, E. Trélat, 2020 → exponential inequality
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control problems, T. Faulwasser, M. Korda, N. Jones, D. Bonvin,
2021 → relation between the dissipativity and the measure turnpike
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"Intuition" of the value function expansion

v(T , x , z) ≈
T→+∞

Vs .T + Initial cost(x) + Final cost(z) (4)
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What has been done so far and our contribution

On the turnpike property and the long time behavior of the HJ
equation, C. Esteve, H. Kouhkouh, D. Pighin, E. Zuazua, June
2020 → asymptotic expansion of the value associated to the LTI
dynamics with running quadratic cost and terminal cost. The proof
relies on the exponential turnpike inequality.

We precise the expansion in the LQ case intrinsically that’s to say
without relying on the exponential turnpike inequality.

We generalize the result to the nonlinear case for a general cost,
relying on the strict dissipativity property, which is a priori, a
weaker assumption than the exponential turnpike.
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Main result:
Under appropriate assumptions?, we have the following expansion:

v(T , x , z) =
T→+∞

Vs .T + vf (x) + vb(z) + o(1) (5)

where Vs := f 0(ȳ , ū), w(y , u) := f 0(y , u)− f 0(ȳ , ū) and:

(P∞f )x

vf (x) := min
u(.)

∫ +∞

0
w(y(t), u(t))dt

ẏ(t) = f (y(t), u(t)), y(0) = x

(6)

(P∞b)z

vb(z) := min
u(.)

∫ +∞

0
w(y(t), u(t))dt

ẏ(t) = −f (y(t), u(t)), y(0) = z

(7)
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Strict dissipativity

The dissipativity concept was introduced by Willems in "Dissipative
Dynamical Systems -Part I and II", 1972

Definition:
The family of (OCP)

(
P[0,T ]

)
x ,z

indexed by T is strictly dissipative
at (ȳ , ū) with respect to the supply rate function w(.) if there
exists a bounded function S : Rn 7→ R and a class K function α(.)
s.t. for any admissible couple (y(.), u(.)) one has:

S(x) +

∫ T

0
w(y(t), u(t))dt > S(z) +

∫ T

0
α

(∥∥∥∥ y(t)− ȳ
u(t)− ū

∥∥∥∥) dt

(8)
for any T large enough.
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Physical interpretation & Example

Systems that check (8) are called (strict) dissipative systems.

They’re of particular interest in engeenering and physics.

The main idea behind this is that dissipative systems have certain
input-output properties related to the conservation, dissipation and
transport of energy.

Example in mechanics
Consider a 1-D mechanical system with a mass, a spring and a
damper. The equation of motion is:

mẍ + dẋ + kx = f (t) with x(0) = x0, ẋ(0) = ẋ0
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Example in mechanics

m is the mass, d the damper constant, k the stiffness of the spring
and f the force acting on the mass.

The energy of the system V (x , ẋ) := 1
2kx

2 + 1
2mẋ2 checks:

V (x(T ), ẋ(T ))︸ ︷︷ ︸
energy at time T

= V (x(0), ẋ(0))︸ ︷︷ ︸
initial energy

+

∫ T

0
f (t).ẋ(t)dt︸ ︷︷ ︸

externally supplied energy

−
∫ T

0
d .ẋ2(t)dt︸ ︷︷ ︸

dissipated energy

(9)
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Idea of the proof

From strict dissipativity assumption:

1
T

∫ T

0
α

(∥∥∥∥ ŷT (t)− ȳ
ûT (t)− ū

∥∥∥∥) dt 6
S(x)− S(z)

T

+
1
T

∫ T

0
w(ŷT (t), ŷT (t))dt

−→ 0 as T → +∞
(10)

∃t(T ) ∈ [0,T ] s.t.
(

ŷT (t(T ))
ûT (t(T ))

)
−→

(
ȳ
ū

)
(11)
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ū

)
(11)



Setting Turnpike Value function expansion Strict dissipativity Idea of the proof The LQ case Perspectives Annex

Idea of the proof

The optimal trajectory is a concatenation of three trajectories:

ŷT (t)︸ ︷︷ ︸
cost→v(T ,x ,z)−Vs .T

≈
T→+∞

ŷ∞f (t)︸ ︷︷ ︸
cost→vf (x)

+ ŷ∞b(T − t)︸ ︷︷ ︸
cost→vb(z)

+ ŷ3(t) + ŷ4(T − t)︸ ︷︷ ︸
cost→ε<<1

(12)
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Assumptions for the main result

(H1): C 1 regularity of the cost f 0 and the dynamics f .

(H2): Local controlabillity at (ȳ , ū) and reachability of the turnpike.

(H3): Uniqueness of the turnpike (ȳ , λ̄, ū).

(H4): Boundedness of the admissible trajectories and controls
uniformly with respect to T ("compact world")

(H5): Finiteness of the costs associated to (P∞f )x and (P∞b)z

(H6): Uniqueness of the optimal trajectories to
(
P[0,T ]

)
x ,z

, (P∞f )x

and (P∞b)z

(H7): Strict dissipativity property
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The Linear Quadratic case

Under the Kalman condition on (A,B):

v(T , x , z) =
T→+∞

Vs .T+F (x) + 〈λ̄, x − ȳ〉︸ ︷︷ ︸
vf (x)

+B(z) + 〈λ̄, ȳ − z〉︸ ︷︷ ︸
vb(z)

+o(1)

where:

(P lin
∞f )

F (x) := min
u1(.)

1
2

∫ +∞

0

(
‖u1(t)‖2 + ‖y1(t)‖2

)
dt

ẏ1 = Ay1 + Bu1, y1(0) = x − ȳ

(P lin
∞b)

B(z) := min
u2(.)

1
2

∫ +∞

0

(
‖u2(t)‖2 + ‖y2(t)‖2

)
dt

ẏ2 = −Ay2 − Bu2, y2(0) = z − ȳ
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Remarks & Perspectives

In practice, the strict dissipativity is the less intuitive assumption.

In the LQ case, it is automatically and globally verified. This is a
consequence of the quadratic nature of the Lagrangian associated
to the steady optimization problem.

In the general nonlinear case, the local strict dissipativity can be
seen as a consequence of some properties of the augmented
Lagrangian around the turnpike.

We continue our work in order to obtain convergence results at the
control & trajectory level.

To be followed...
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Thank you for your attention!
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Exponential turnpike inequality

Under appropriate assumptions, there exists C > 0, ν > 0 such
that if T > T0, then:

‖ŷT (t)− ȳ‖+‖λ̂T (t)− λ̄‖+‖ûT (t)− ū‖ 6 C
(
e−ν.t + e−ν.(T−t)

)
(13)

Turnpike property in finite-dimensional nonlinear optimal control, E.
Trélat, E. Zuazua, 2014

Linear turnpike theorem, E. Trélat, 2020


	Setting
	Turnpike
	Value function expansion
	Strict dissipativity
	Idea of the Proof
	LQ case
	Perspectives
	Annex

