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Outline of the talk

• The considered class of systems

• Interest of this class for anti-lock braking systems design

• Available stability results

• Pros and cons of current results

• Some perspectives



Part I – In which systems are we interested ?



The class of systems

We are interested in systems of the form

ẋ = f(x) + g(x)u, y = h(x),

where x(t) ∈ R
n and y(t) ∈ R is the measurement. And, among them, we consi-

der those that can be transformed, via z = ϕ(x), into

dz

dt
= s(y)

(
Az + d(y)

)
+ b(y)u, y = Cz,

where the pair (A,C) is observable and the vector fields b and d depend on the

output only. The function s(·) is assumed to be strictly increasing.

We consider the observer

dẑ

dt
= s(y)

(
Aẑ + d(y) +K(s(y))(y − Cẑ)

)
+ b(y)u,

where the gain K(·) depends on the system’s output only.



The regular case is a classical result...

The observation error e = z − ẑ has the following dynamics

de

dt
= s(y)(A−K(s(y))C)e.

When s > 0 (regular case), stability can be analyzed in a new time-scale

τ(t) =

∫ t

0

s(y(ν))dν.

If s does not converge to zero, the error dynamics

de

dτ
= (A−KC)e

is asymptotically stable provided that A−KC is Hurwitza.

aKrener & Respondek (1985), Guay (2002), and Respondek, Pogromsky & Nijmeijer (2004).



The singular case asks for extra work...

In the singular case, when the function s(y(t)) changes its sign, we can still consi-

der a new time-scale

τ(t) =

∫ t

0

|s(y(ν))|dν,

and to choose the observer gains depending on the output’s sign to obtain

de

dτ
=




(A−K+C)e if : s(y(τ)) > 0

(−A+K−C)e if : s(y(τ)) < 0,

which defines as a switched system

de

dτ
= Aσ(τ)e.



Part II – Why are these systems interesting ?



An example coming from the ABS literature

The wheel speed ω has the following dynamics

I
dω

dt
= −RFx − γbPb,

where I is the wheel’s inertia, R its radius, Fx the longitudinal tyre force, Pb the

brake pressure, and γb the brake efficiency.

The tyre force Fx is a nonlinear function

Fx(λ) = µ(λ)Fz

of the wheel slip

λ =
Rω − vx

vx
, Fx

ω Tw

where Fz is the vertical load, vx the vehicle speed, and µ(λ) the tyre characteristic.



Burckhardt’s tyre model

The tyre characteristic is describeda by a function

µ(λ) = c1(1− e−c2λ)− c3λ,

where the constants c1, c2, and c3 depend on the road conditions.
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Wheel acceleration and XBS dynamics

The wheel-acceleration dynamics can be writtena

dz1
dt

=
−a

vx(t)
z1z2 + bu

dz2
dt

= (cz2 + z3)
z1

vx(t)
and y = z1,

dz3
dt

= 0

where a, b, and c are known constants, vx the longitudinal speed, and u the time-

derivative of the brake pressure.

The only measurable variable is z1 = Rω̇ − ax, the wheel acceleration off-

set. The unmeasurable state z2 = µ′(λ) is the extended braking stiffness. The

constant z3 is unknown and depends on the parameters of Burckhardt’s model.
aHoang, T. B. et al. (2014). Extended braking stiffness estimation based on a switched observer, with an

application to wheel-acceleration control. IEEE Trans. on Control Systems Technology, 22(6), 2384-2392.



The proposed observer

Our approach leads to the following observer :

dẑ1
dt

=
−a

vx
z1ẑ2 + bu+

k1(z1)

vx
z1(z1 − ẑ1)

dẑ2
dt

= (cẑ2 + ẑ3)
z1
vx

+
k2(z1)

vx
z1(z1 − ẑ1)

dẑ3
dt

=
k3(z1)

vx
z1(z1 − ẑ1).

The observer gains ki(z1), for 1 ≤ i ≤ 3, are

ki(z1) =




k+i if z1 > 0

k−i if z1 < 0.



TU-Delft’s tyre setupa

aH. Pacejka. Tyre and Vehicle Dynamics. Butterworth-Heinemann, 2005.



Wheel acceleration & brake pressure
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Extended braking stiffness & wheel slip
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Part III – What can we prove for these system ?



The class of systems

We are interested in systems of the form

ẋ = f(x) + g(x)u, y = h(x),

where x(t) ∈ R
n and y(t) ∈ R is the measurement, and both f and g are smooth.

We look for those that can be transformed into

dz

dt
= s(y)

(
Az + d(y)

)
+ b(y)u, y = Cz, (1)

where the pair (A,C) is observable and the vector fields b and d depend on the

output only. The function s(·) is assumed to be strictly increasing.

We consider the observer

dẑ

dt
= s(y)

(
Aẑ + d(y) +K(s(y))(y − Cẑ)

)
+ b(y)u, (2)

where the gain K(·) depends on the system’s output only.



Ingredients of the stability proof

In the singular case, when the function s(y(t)) changes its sign, we must deal

with three difficulties.

(1) When s(y(t)) < 0, the time-scale is inverted :

The error must diverge in the new time-scale τ in order to converge in t.

(2) The instants ti at which s(y(ti)) = 0 should not accumulate :

This can be avoided by imposing a dwell-time condition.

(3) The system is not uniformly observable. We must exclude the controls

that generate indistinguishable states. We must also guarantee the time-scale

change is well-posed, i.e., that τ ∈ K∞ :

This can be ensured by imposing a persistency of excitation condition.



The first ingredient : The time scale

The key step is to consider a new time-scale

τ(t) =

∫ t

0

|s(y(ν))|dν,

and to choose the observer gains depending on the output’s sign

K(s(y(τ))) =




K+ if : s(y(τ)) > 0

K− if : s(y(τ)) < 0.
(3)

This gives
de

dτ
=




(A−K+C)e if : s(y(τ)) > 0

(−A+K−C)e if : s(y(τ)) < 0,

which gives as a switched system

de

dτ
= Aσ(τ)e. (4)



Uniform exponential stability & dwell-time

The origin of a switched system is said to be uniformly exponentially stable if there

exists constants a0 > 0 and λ0 > 0 such that, for each τ ≥ 0, we have

‖e(τ)‖ ≤ a0 exp(−λ0τ)‖e(0)‖.

Here, the word uniform refers to the fact that a0 and λ0 do not depend on the

switching signala.

The observer’s switching signal σ(·) admits a dwell-timeb if ∃τD > 0 such that any

two consecutive discontinuities of σ are separated by no less than τD .

aD. Angeli. A note on stability of arbitrarily switched homogeneous systems. Nonlinear Control Abs-

tracts, 1(13), 1999.
bHespanha, J. P. (2004). Uniform stability of switched linear systems : extensions of LaSalle’s invariance

principle. IEEE Transactions on Automatic Control, 49(4), 470-482.



Why asking for dwell-time ?

The following switched system is a two-dimensional example of the error dynamics

we can have for our system :

de(s)

ds
=





A1e(s) =


−k+1 −a

−k+2 c


 e(s) lorsque z1 > 0

A2e(s) =


k−1 a

k−2 −c


 e(s) lorsque z1 < 0.

The non-existence of a of strict common Lyapunov function for this system results

from the classification of Balde, Boscain and Mason (2009).



Classification of planar switched systems

Consider a planar switched system

dx(s)

ds
= Aσx(s), (5)

where σ : [0,∞) → P , with P := {1, 2} denotes a signal that selects, at each

instant, a matrix in {A1, A2}. Here Ai ∈ R
2×2.

Balde, Boscain and Mason introduced the invariant :

Γ(A,B) =
1

2
(tr(A)tr(B)− tr(AB)) ,

as well as an other invariant R, more complicated to compute (see their papera).

aBalde, M., Boscain, U., and Mason, P. (2009). A note on stability conditions for planar switched sys-

tems. International Journal of Control, 82(10), 1882-1888.



The Theorem of Balde, Boscain, and Mason (2009)

For planar switched systems, we have four possible cases :

(i) If Γ(A1, A2) < −
√
detA1 detA2 then there exits an initial condition and a

switching signal that generates and unbounded trajectory.

(ii) If Γ(A1, A2) = −
√
detA1 detA2 then the origin of the system is UGS but

not UGES.

(iii) If Γ(A1, A2) > −
√
detA1 detA2 and tr(A1A2) > −2

√
detA1 detA2

then the system admits a (quadratic) strict common Lyapunov function (it is thus

UGES).

(iv) If Γ(A1, A2) > −
√
detA1 detA2 and tr(A1A2) ≤ −2

√
detA1 detA2

then the origin is UGES if R < 1, UGS if R = 1, and admits an initial condition and

a switching signal that generates and unbounded trajectory if R > 1.



Hespanha’s Theorem (2004)

Assume that there exist a finite family {Pp : p ∈ P} of symmetric positive definite

matrices such that, for each(x, σ) ∈ S ,

xT (t)Pσ(t)x(t) ≤ xT (t)Pσ(t−)x(t), ∀t ≥ 0,

et

AT
p Pp + PpAp ≤ −CT

p Cp, ∀p ∈ P ,

for an appropriate family of matrices {Cp : p ∈ P} such that all CT
p Cp are sym-

metric and positive. Then, the origin of the switched system ẋ(t) = Aσ(t)x(t),

with σ ∈ S , is stable.

If, additionally, each pair (Ap, Cp) is observable (∀p ∈ P ) : (i) When S ⊂
Sweak−dwell it is asymptotically stable ; (ii) When there exist τD > 0 et T < ∞
such that S ⊂ Sp−dwell[τD, T ] it is (uniformly) exponentially stable.



The second ingredient : A combined Lyapunov equation

Theorem 1 Consider an observable pair (A,C). Define Q = CTC . For any given

pair of gains K+ and K−, define

A+ = A−K+C and A− = −A+K−C.

If K+ is such that A+ is Hurwitz, then there exists a unique K− such that the two

following Lyapunov equations

AT
+P + PA+ = −Q and AT

−
P + PA− = −Q

admit a common solution P that is symmetric and positive definite.

Moreover, if (A,C) is in observer normal form, then the components k−i of K− are

expressed in terms of the components k+i of K+ by

k−i = (−1)ik+i +
(
1− (−1)i

)
ai,

where the constants ai are the coefficients of the characteristic polynomial of A.



Observer normal form

Recall that for any observable pair (A,C), there exist linear coordinates in which

A =




a1 1 0 . . . 0
... 0 1

. . .
...

...
...

. . .
. . . 0

... 0 . . . 0 1

an 0 . . . . . . 0




and

C =
(
1 0 . . . 0

)
.

In these coordinates, the system is in observer normal form.



The third ingredient : Technical assumptions (Option I)

Assumption 1 The function s and the output trajectories, y(t, t0, z0), satisfy the

following conditions :

( persistency of excitation ) there exist µ0 > 0 and T0 > 0 such that, for all

(t0, z0) ∈ R× R
n,

∫ t+T0

t

s(y(s, t0, z0))
2ds ≥ µ0, ∀ t ≥ t0; (6)

( dwell-time ) there exists TD > 0 such that, for any (t0, z0) ∈ R × R
n and

any two instants tk 6= tl satisfying s(y(tk, t0, z0)) = s(y(tl, t0, z0)) = 0,

∣∣tk − tl
∣∣ ≥ TD. (7)



Stability of the observer error dynamics

Theorem 2 Consider system (1), with (A,C) observable and under Assumption 1.

Consider also the observer given by (2) and (3), with K+ such that A − K+C is

Hurwitz.

Then, there exists K− such that, for the estimation error dynamics (4), the origin is

globally asymptotically stable, uniformly in the output trajectories.

Furthermore, for a pair (A,C) in observable companion form, the elements of K−

may be taken according to

k−i = (−1)ik+i +
(
1− (−1)i

)
ai.



The third ingredient : Technical assumptions (Option II)

Fix two compact sets Ω0 and Ω, with non-empty interiors, such that 0 ∈ Ω0 and

Ω0 ⊂ Ω. Fix ǫ > 0. Construct the compact set Σ = Ω ∩ {z ∈ R
n : |Cz| ≤ ǫ}.

Define a0, d0, and s0 as the maxima of the functions |CAz|, |Cd(y)|, and |s(y)|,
respectively, onΣ. Define b0 as the minimum ofCb(y) onΣ. Introduce the constantα =

s0(a0 + d0)/b0. And, finally, fix β > α.

We say that a controller is admissible if it generates a control signal u(·) that satis-

fies together with its state trajectory x(·) the following properties :

(i) The control signalu(t) is a piecewise continuous function of time such that |u(t)| <
β, for t ≥ 0 ;

(ii) On any given time interval [a, b] such that the output satisfies |y(t)| < ǫ, for

t ∈ [a, b], the sign of u(t) is constant and |u(t)| > α.

(iii) If z(0) ∈ Ω0 then z(t) ∈ Ω, for each t ≥ 0.



Stability of the observer error dynamics

Theorem 3 Consider system

ż = s(y)
(
Az + d(y)

)
+ b(y)u, y = Cz,

and assume that the function Cb(y) does not vanish at y = 0 and that the controller

used to govern the system is admissible. If z0 ∈ Ω0, then the switching signals

ρ(t) and σ(τ) generated by the controller admit a strictly positive dwell-time in the

original and in the new time-scale, respectively.

If, additionally, the pair (A,C) is observable and the gain matrices K+ and K−

satisfy the conditions of Theorem 1, then the origin of the observer’s error dynamics

de

dτ
=




(A−K+C)e if : s(y(τ)) > 0

(−A+K−C)e if : s(y(τ)) < 0

is uniformly exponentially stable in the new time-scale and asymptotically stable

in the original time-scale.



Part IV – Conclusion & Pespectives



Some final thoughts

• We proposed an observer for a class of non-uniformly observable systems ;

• We gave technical conditions that guarantee its convergence ;

• It can be used to monitor the wheel dynamics around and ABS limit cycle ;

• It cannot be used to stabilize the wheel slip around its optimal set-point ;

• In low dimension, we have an adaptive version of this observer...
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