A singular observation problem and its applications in automotive control

William Pasillas-Lépine

Laboratoire des signaux et systèmes Université Paris-Saclay / CNRS / CentraleSupélec

Common work with : Missie Aguado Rojas, Trong-Bien Hoang, Antonio Loría, and Witold Respondek

Outline of the talk

- The considered class of systems
- Interest of this class for anti-lock braking systems design
- Available stability results
- Pros and cons of current results
- Some perspectives

Part I – In which systems are we interested?

The class of systems

We are interested in systems of the form

$$\dot{x} = f(x) + g(x)u, \quad y = h(x),$$

where $x(t) \in \mathbb{R}^n$ and $y(t) \in \mathbb{R}$ is the measurement. And, among them, we consider those that can be transformed, via $z = \varphi(x)$, into

$$\frac{dz}{dt} = s(y) \left(Az + d(y) \right) + b(y)u, \quad y = Cz,$$

where the pair (A, C) is **observable** and the vector fields b and d depend on the output only. The function $s(\cdot)$ is assumed to be **strictly increasing**.

We consider the observer

$$\frac{d\hat{z}}{dt} = s(y)\left(A\hat{z} + d(y) + K(s(y))(y - C\hat{z})\right) + b(y)u,$$

where the gain $K(\cdot)$ depends on the system's output only.

The regular case is a classical result...

The observation error $e = z - \hat{z}$ has the following dynamics

$$\frac{de}{dt} = s(y)(A - K(s(y))C)e.$$

When s > 0 (regular case), stability can be analyzed in a new time-scale

$$\tau(t) = \int_0^t s(y(\nu)) d\nu$$

If *s* does not converge to zero, the error dynamics

$$\frac{de}{d\tau} = (A - KC)e$$

is asymptotically stable provided that A - KC is Hurwitz^a.

^aKrener & Respondek (1985), Guay (2002), and Respondek, Pogromsky & Nijmeijer (2004).

The singular case asks for extra work...

In the singular case, when the function s(y(t)) changes its sign, we can still consider a new time-scale

$$\tau(t) = \int_0^t |s(y(\nu))| d\nu,$$

and to choose the **observer gains** depending on the output's sign to obtain

$$\frac{de}{d\tau} = \begin{cases} (A - K^+ C)e & \text{if} : s(y(\tau)) > 0\\ (-A + K^- C)e & \text{if} : s(y(\tau)) < 0, \end{cases}$$

which defines as a switched system

$$\frac{de}{d\tau} = A_{\sigma(\tau)}e.$$

Part II – Why are these systems interesting?

An example coming from the ABS literature

The wheel speed ω has the following dynamics

$$I\frac{d\omega}{dt} = -RF_x - \gamma_b P_b,$$

where I is the wheel's inertia, R its radius, F_x the longitudinal tyre force, P_b the brake pressure, and γ_b the brake efficiency.

The tyre force F_x is a nonlinear function

$$F_x(\lambda) = \mu(\lambda)F_z$$

of the wheel slip

$$\lambda = \frac{R\omega - v_x}{v_x},$$

where F_z is the vertical load, v_x the vehicle speed, and $\mu(\lambda)$ the tyre characteristic.

The **tyre characteristic** is described^a by a function

$$\mu(\lambda) = c_1(1 - e^{-c_2\lambda}) - c_3\lambda,$$

where the constants c_1 , c_2 , and c_3 depend on the road conditions.

^aBurckhardt, M. (1993). *Fahrwerktechnik : Radschlupf-Regelsysteme*. Vogel-Verlag.

The wheel-acceleration dynamics can be written^a

$$\frac{dz_1}{dt} = \frac{-a}{v_x(t)}z_1z_2 + bu$$
$$\frac{dz_2}{dt} = (cz_2 + z_3)\frac{z_1}{v_x(t)} \quad \text{and} \quad y = z_1,$$
$$\frac{dz_3}{dt} = 0$$

where a, b, and c are known constants, v_x the **longitudinal speed**, and u the timederivative of the **brake pressure**.

The only measurable variable is $z_1 = R\dot{\omega} - a_x$, the wheel acceleration offset. The unmeasurable state $z_2 = \mu'(\lambda)$ is the **extended braking stiffness**. The constant z_3 is *unknown* and depends on the parameters of Burckhardt's model.

^aHoang, T. B. *et al.* (2014). Extended braking stiffness estimation based on a switched observer, with an application to wheel-acceleration control. *IEEE Trans. on Control Systems Technology*, 22(6), 2384-2392.

The proposed observer

Our approach leads to the following **observer** :

$$\begin{aligned} \frac{d\widehat{z}_1}{dt} &= \frac{-a}{v_x} z_1 \widehat{z}_2 + bu + \frac{k_1(z_1)}{v_x} z_1(z_1 - \widehat{z}_1) \\ \frac{d\widehat{z}_2}{dt} &= (c\widehat{z}_2 + \widehat{z}_3) \frac{z_1}{v_x} + \frac{k_2(z_1)}{v_x} z_1(z_1 - \widehat{z}_1) \\ \frac{d\widehat{z}_3}{dt} &= \frac{k_3(z_1)}{v_x} z_1(z_1 - \widehat{z}_1). \end{aligned}$$

The observer gains $k_i(z_1)$, for $1 \le i \le 3$, are

$$k_i(z_1) = \begin{cases} k_i^+ & \text{if } z_1 > 0\\ k_i^- & \text{if } z_1 < 0. \end{cases}$$

TU-Delft's tyre setup^a

^aH. Pacejka. Tyre and Vehicle Dynamics. *Butterworth-Heinemann*, 2005.

Part III – What can we prove for these system?

The class of systems

We are interested in systems of the form

$$\dot{x} = f(x) + g(x)u, \quad y = h(x),$$

where $x(t) \in \mathbb{R}^n$ and $y(t) \in \mathbb{R}$ is the measurement, and both f and g are smooth.

We look for those that can be transformed into

$$\frac{dz}{dt} = s(y) \left(Az + d(y) \right) + b(y)u, \quad y = Cz, \tag{1}$$

where the pair (A, C) is observable and the vector fields b and d depend on the output only. The function $s(\cdot)$ is assumed to be strictly increasing.

We consider the observer

$$\frac{d\hat{z}}{dt} = s(y) \left(A\hat{z} + d(y) + K(s(y))(y - C\hat{z}) \right) + b(y)u,$$
(2)

where the gain $K(\cdot)$ depends on the system's output only.

Ingredients of the stability proof

In the singular case, when the function s(y(t)) changes its sign, we must deal with three difficulties.

(1) When s(y(t)) < 0, the time-scale is inverted :

The error must **diverge** in the new time-scale τ in order to *converge* in t.

(2) The instants t_i at which $s(y(t_i)) = 0$ should not *accumulate* :

This can be avoided by imposing a **dwell-time** condition.

(3) The system is not **uniformly observable**. We must exclude the controls that generate *indistinguishable* states. We must also guarantee the time-scale change is **well-posed**, *i.e.*, that $\tau \in \mathcal{K}_{\infty}$:

This can be ensured by imposing a **persistency of excitation** condition.

The first ingredient : The time scale

The key step is to consider a new time-scale

$$\tau(t) = \int_0^t |s(y(\nu))| d\nu,$$

and to choose the observer gains depending on the output's sign

$$K(s(y(\tau))) = \begin{cases} K^+ & \text{if} : s(y(\tau)) > 0\\ K^- & \text{if} : s(y(\tau)) < 0. \end{cases}$$
(3)

This gives

$$\frac{de}{d\tau} = \begin{cases} (A - K^+C)e & \text{if} : s(y(\tau)) > 0\\ (-A + K^-C)e & \text{if} : s(y(\tau)) < 0, \end{cases}$$

which gives as a switched system

$$\frac{de}{d\tau} = A_{\sigma(\tau)}e.$$
(4)

The origin of a switched system is said to be **uniformly exponentially stable** if there exists constants $a_0 > 0$ and $\lambda_0 > 0$ such that, for each $\tau \ge 0$, we have

$$||e(\tau)|| \le a_0 \exp(-\lambda_0 \tau) ||e(0)||.$$

Here, the word uniform refers to the fact that a_0 and λ_0 do not depend on the switching signal^a.

The observer's switching signal $\sigma(\cdot)$ admits a **dwell-time**^b if $\exists \tau_D > 0$ such that any two **consecutive discontinuities** of σ are separated by no less than τ_D .

^aD. Angeli. A note on stability of arbitrarily switched homogeneous systems. *Nonlinear Control Abstracts*, 1(13), 1999.

^bHespanha, J. P. (2004). Uniform stability of switched linear systems : extensions of LaSalle's invariance principle. *IEEE Transactions on Automatic Control*, 49(4), 470-482.

Why asking for dwell-time?

The following switched system is a **two-dimensional example** of the error dynamics we can have for our system :

$$\frac{de(s)}{ds} = \begin{cases} A_1 e(s) = \begin{pmatrix} -k_1^+ & -a \\ -k_2^+ & c \end{pmatrix} e(s) & \text{lorsque } z_1 > 0 \\ A_2 e(s) = \begin{pmatrix} k_1^- & a \\ k_2^- & -c \end{pmatrix} e(s) & \text{lorsque } z_1 < 0. \end{cases}$$

The non-existence of a of **strict** common Lyapunov function for this system results from the classification of Balde, Boscain and Mason (2009).

Classification of planar switched systems

Consider a planar switched system

$$\frac{dx(s)}{ds} = A_{\sigma}x(s),\tag{5}$$

where $\sigma : [0, \infty) \to \mathcal{P}$, with $\mathcal{P} := \{1, 2\}$ denotes a signal that selects, at each instant, a matrix in $\{A_1, A_2\}$. Here $A_i \in \mathbb{R}^{2 \times 2}$.

Balde, Boscain and Mason introduced the invariant :

$$\Gamma(A,B) = \frac{1}{2} \left(\operatorname{tr}(A) \operatorname{tr}(B) - \operatorname{tr}(AB) \right),$$

as well as an other invariant R, more complicated to compute (see their paper^a).

^aBalde, M., Boscain, U., and Mason, P. (2009). A note on stability conditions for planar switched systems. *International Journal of Control*, 82(10), 1882-1888.

The Theorem of Balde, Boscain, and Mason (2009)

For planar switched systems, we have four possible cases :

(i) If $\Gamma(A_1, A_2) < -\sqrt{\det A_1 \det A_2}$ then there exits an initial condition and a switching signal that generates and **unbounded trajectory**.

(ii) If $\Gamma(A_1, A_2) = -\sqrt{\det A_1 \det A_2}$ then the origin of the system is UGS but not UGES.

(iii) If $\Gamma(A_1, A_2) > -\sqrt{\det A_1 \det A_2}$ and $\operatorname{tr}(A_1A_2) > -2\sqrt{\det A_1 \det A_2}$ then the system admits a (quadratic) strict common Lyapunov function (it is thus UGES).

(iv) If $\Gamma(A_1, A_2) > -\sqrt{\det A_1 \det A_2}$ and $\operatorname{tr}(A_1A_2) \leq -2\sqrt{\det A_1 \det A_2}$ then the origin is UGES if R < 1, UGS if R = 1, and admits an initial condition and a switching signal that generates and unbounded trajectory if R > 1. Assume that there exist a finite family $\{P_p : p \in \mathcal{P}\}$ of symmetric positive definite matrices such that, for each $(x, \sigma) \in S$,

$$x^{T}(t)P_{\sigma(t)}x(t) \leq x^{T}(t)P_{\sigma(t^{-})}x(t), \quad \forall t \geq 0,$$

et

$$A_p^T P_p + P_p A_p \le -C_p^T C_p, \quad \forall p \in \mathcal{P},$$

for an appropriate family of matrices $\{C_p : p \in \mathcal{P}\}$ such that all $C_p^T C_p$ are symmetric and positive. Then, the origin of the switched system $\dot{x}(t) = A_{\sigma(t)}x(t)$, with $\sigma \in S$, is stable.

If, additionally, each pair (A_p, C_p) is observable $(\forall p \in \mathcal{P})$: (i) When $\mathcal{S} \subset \mathcal{S}_{weak-dwell}$ it is asymptotically stable; (ii) When there exist $\tau_D > 0$ et $T < \infty$ such that $\mathcal{S} \subset \mathcal{S}_{p-dwell}[\tau_D, T]$ it is (uniformly) exponentially stable.

The second ingredient : A combined Lyapunov equation

Theorem 1 Consider an observable pair (A, C). Define $Q = C^T C$. For any given pair of gains K^+ and K^- , define

$$A_{+} = A - K^{+}C$$
 and $A_{-} = -A + K^{-}C$.

If K^+ is such that A_+ is Hurwitz, then there exists a unique K^- such that the two following Lyapunov equations

$$A_{+}^{T}P + PA_{+} = -Q$$
 and $A_{-}^{T}P + PA_{-} = -Q$

admit a common solution P that is symmetric and positive definite.

Moreover, if (A, C) is in observer normal form, then the components k_i^- of K^- are expressed in terms of the components k_i^+ of K^+ by

$$k_i^{-} = (-1)^i k_i^{+} + \left(1 - (-1)^i\right) a_i,$$

where the constants a_i are the coefficients of the characteristic polynomial of A.

Observer normal form

Recall that for any observable pair $({\cal A},{\cal C}),$ there exist linear coordinates in which

$$A = \begin{pmatrix} a_1 & 1 & 0 & \dots & 0 \\ \vdots & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ \vdots & 0 & \dots & 0 & 1 \\ a_n & 0 & \dots & \dots & 0 \end{pmatrix}$$

and

$$C = \begin{pmatrix} 1 & 0 & \dots & 0 \end{pmatrix}.$$

In these coordinates, the system is in observer normal form.

Assumption 1 The function s and the output trajectories, $y(t, t_0, z_0)$, satisfy the following conditions :

(persistency of excitation) there exist $\mu_0 > 0$ and $T_0 > 0$ such that, for all $(t_0, z_0) \in \mathbb{R} \times \mathbb{R}^n$,

$$\int_{t}^{t+T_{0}} s(y(s, t_{0}, z_{0}))^{2} ds \ge \mu_{0}, \quad \forall t \ge t_{0};$$
(6)

(dwell-time) there exists $T_D > 0$ such that, for any $(t_0, z_0) \in \mathbb{R} \times \mathbb{R}^n$ and any two instants $t_k \neq t_l$ satisfying $s(y(t_k, t_0, z_0)) = s(y(t_l, t_0, z_0)) = 0$,

$$\left|t_k - t_l\right| \ge T_D. \tag{7}$$

Stability of the observer error dynamics

Theorem 2 Consider system (1), with (A, C) observable and under Assumption 1. Consider also the observer given by (2) and (3), with K_+ such that $A - K_+C$ is Hurwitz.

Then, there exists K_{-} such that, for the estimation error dynamics (4), the origin is globally asymptotically stable, uniformly in the output trajectories.

Furthermore, for a pair (A, C) in observable companion form, the elements of K_{-} may be taken according to

$$k_i^{-} = (-1)^i k_i^{+} + \left(1 - (-1)^i\right) a_i.$$

Fix two compact sets Ω_0 and Ω , with non-empty interiors, such that $0 \in \Omega_0$ and $\Omega_0 \subset \Omega$. Fix $\epsilon > 0$. Construct the compact set $\Sigma = \Omega \cap \{z \in \mathbb{R}^n : |Cz| \le \epsilon\}$.

Define a_0 , d_0 , and s_0 as the maxima of the functions |CAz|, |Cd(y)|, and |s(y)|, respectively, on Σ . Define b_0 as the minimum of Cb(y) on Σ . Introduce the constant $\alpha = s_0(a_0 + d_0)/b_0$. And, finally, fix $\beta > \alpha$.

We say that a controller is **admissible** if it generates a control signal $u(\cdot)$ that satisfies together with its state trajectory $x(\cdot)$ the following properties :

- (i) The control signal u(t) is a piecewise continuous function of time such that $|u(t)|<\beta,$ for $t\geq 0$;
- (ii) On any given time interval [a, b] such that the output satisfies $|y(t)| < \epsilon$, for $t \in [a, b]$, the sign of u(t) is constant and $|u(t)| > \alpha$.
- (iii) If $z(0) \in \Omega_0$ then $z(t) \in \Omega$, for each $t \ge 0$.

Theorem 3 Consider system

$$\dot{z} = s(y) \left(Az + d(y) \right) + b(y)u, \quad y = Cz,$$

and assume that the function Cb(y) does not vanish at y = 0 and that the controller used to govern the system is **admissible**. If $z_0 \in \Omega_0$, then the switching signals $\rho(t)$ and $\sigma(\tau)$ generated by the controller admit a strictly positive **dwell-time** in the original and in the new time-scale, respectively.

If, additionally, the pair (A, C) is observable and the gain matrices K^+ and K^- satisfy the conditions of Theorem 1, then the origin of the observer's error dynamics

$$\frac{de}{d\tau} = \begin{cases} (A - K^+C)e & \text{if } : s(y(\tau)) > 0\\ (-A + K^-C)e & \text{if } : s(y(\tau)) < 0 \end{cases}$$

is **uniformly exponentially stable** in the new time-scale and **asymptotically stable** in the original time-scale.

Part IV – Conclusion & Pespectives

Some final thoughts

- We proposed an observer for a class of non-uniformly observable systems;
- We gave technical conditions that guarantee its convergence;
- It can be used to monitor the wheel dynamics around and ABS limit cycle;
- It cannot be used to stabilize the wheel slip around its optimal set-point;
- In low dimension, we have an adaptive version of this observer...

- Aguado-Rojas, M., Hoang, T. B., Pasillas-Lepine, W., Loría, A., & Respondek, W. (2021). A switching observer for a class of non-uniformly observable systems via singular time-rescaling. *IEEE Transactions on Automatic Control*. 66(12), 6071-6076.
- [2] Aguado-Rojas, M., Pasillas-Lépine, W., & Loría, A. (2019). A hybrid controller for ABS based on extended-braking-stiffness estimation. *IFAC-PapersOnLine*, 52(5), 452-457.
- [3] Aguado-Rojas, M., Pasillas-Lépine, W., & Loría, A. (2019). Extended-brakingstiffness estimation under varying road-adherence conditions. *IEEE Transactions* on Control Systems Technology, 28(5), 1964-1971.
- [4] Aguado-Rojas, M., Pasillas-Lépine, W., Loría, A., & De Bernardinis, A. (2019). Acceleration estimation using imperfect incremental encoders in automotive applications. *IEEE Transactions on Control Systems Technology*, 28(3), 1058-1065.

- [5] Hoang, T. B., Pasillas-Lépine, W., De Bernardinis, A., & Netto, M. (2014). Extended braking stiffness estimation based on a switched observer, with an application to wheel-acceleration control. *IEEE Transactions on Control Systems Technology*, 22(6), 2384.-2392.
- [6] Hoang, T. B., Pasillas-Lépine, W., & Respondek, W. (2014). A switching observer for systems with linearizable error dynamics via singular time-scaling. Proceedings of *Mathematical theory of networks and systems*.
- [7] Pasillas-Lépine, W., Loría, A., & Gerard, M. (2012). Design and experimental validation of a nonlinear wheel slip control algorithm. *Automatica*, 48(8), 1852-1859.
- [8] Gerard, M., Pasillas-Lépine, W., De Vries, E., & Verhaegen, M. (2012). Improvements to a five-phase ABS algorithm for experimental validation. *Vehicle System Dynamics*, 50(10), 1585-1611.
- [9] Pasillas-Lépine, W. (2006). Hybrid modeling and limit cycle analysis for a class of five-phase anti-lock brake algorithms. *Vehicle System Dynamics*, 44(2), 173-188.