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Motivation
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Typical control and estimation problem
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Typical control and estimation problem
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Typical guiding and estimation scheme
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Desired solution

8/63



Localisation and guidance by terrain-aided navigation

Figure: Example of a UAV localised by terrain-aided navigation
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Localisation and guidance by terrain-aided navigation

Figure: Representation of terrain-aided navigation
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Localisation and guidance by terrain-aided navigation

Figure: Trajectory where the UAV goes straight to the target over a flat
area

⇒ guiding and estimation must be coupled: dual effect.
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Localisation and guidance by terrain-aided navigation

Figure: Compromise between going toward the target and getting
information
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Two main approaches

An analytical approach in a deterministic framework (analytical
terrain maps)

A non-analytical approach in a discrete-time stochastic
framework (arbitrary terrain maps)
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Analytical approach of TAN

1 Modelling

2 Estimation

3 Output-feedback control
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Plan

1 Modelling

2 Estimation

3 Output-feedback control
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System’s dynamics

The system is a mass point in 3D controlled in acceleration with a
speed and a height measurement leading to:

a state of dimension 6
observations of dimension 4

The only information on the position X =

»

–

x1
x2
x3

fi

fl comes from the

height measurement:

Y = x3 − hm(x1, x2)

where hm is the terrain map.
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Terrain modelling

Several terrain profiles, hm, are considered:
Quadratic functions
Cubic functions or higher order polynomials
Gaussian functions or sum of Gaussian functions
Spatial sine waves
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Terrain modelling: examples

(a) Real terrain (b) Quadratic
approximation

(c) Cubic approximation

Figure: Small scale real map with approximations

(a) Real terrain (b) Fourier approximation

Figure: Large scale real map with an approximation
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Plan

1 Modelling

2 Estimation

3 Output-feedback control
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Locally weak observability conditions

The local weak observability conditions (Lie derivatives) can be
interpreted depending on their order as follows:

Order 0: linked to the absolute altitude x3

Order 1: colinear to the horizontal speed Vhor

Order 2: colinear to the horizontal acceleration Uhor

⇒ Local inversion of the observations possible if Vhor and Uhor are
not colinear

⇒ First occurrence of the dual effect in our model

What about explicit reconstruction of the state ?
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Observer design by I&I: general principle

1 By defining the unmeasured state η and the measured state y :

9η = f1(η, y , u)

9y = f2(η, y , u)

2 Define a nonlinear estimation error:

e := β(ξ, y , t)− ϕ(η, y , t)

3 Choose β, ϕ and ξ such that:

M = {(η, y , ξ, t) ∈ Rn × Rp × Rq × R : β(ξ, y , t) = ϕ(η, y , t)}

is Invariant and Globally Attractive
4 Define the estimator η̂ = ϕL(β(ξ, y , t)) and make sure that

∥η̂ − η∥ tends to 0.
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Observer design by I&I: general principle

In the following two method are considered, with η = X :
A direct one: e := ξ + ψ(Y )− X

An indirect one: e := ξ − ϕ(X ) with ϕ : R3 −→ Rq and q > 3
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Observer design by I&I: direct method

For hm Gaussian or quadratic:

9e = −κVhorV
T
hore

Proposition: convergence of e under PE
If there exist T > 0 and µ > 0, such that for any t ≥ t0:

1
T

ˆ∫ t+T

t
Vhor (τ)V

T
hor (τ)dτ

˙

⪰ µI2

then e converges exponentially to 0.

Proof using a new time-dependent strict Lyapunov function (in
collaboration with Ioannis Sarras)

⇒ condition on Vhor and implicitly on Uhor

23/63



Observer design by I&I: direct method

For hm Gaussian or quadratic:

9e = −κVhorV
T
hore

Proposition: convergence of e under PE
If there exist T > 0 and µ > 0, such that for any t ≥ t0:

1
T

ˆ∫ t+T

t
Vhor (τ)V

T
hor (τ)dτ

˙

⪰ µI2

then e converges exponentially to 0.

Proof using a new time-dependent strict Lyapunov function (in
collaboration with Ioannis Sarras)

⇒ condition on Vhor and implicitly on Uhor

23/63



Observer design by I&I: direct method

For hm Gaussian or quadratic:

9e = −κVhorV
T
hore

Proposition: convergence of e under PE
If there exist T > 0 and µ > 0, such that for any t ≥ t0:

1
T

ˆ∫ t+T

t
Vhor (τ)V

T
hor (τ)dτ

˙

⪰ µI2

then e converges exponentially to 0.

Proof using a new time-dependent strict Lyapunov function (in
collaboration with Ioannis Sarras)

⇒ condition on Vhor and implicitly on Uhor
23/63



Observer design by I&I: indirect method

For hm sinusoidal or cubic, one gets a LTV system in
χ = ϕ(X ) s.t.

9χ = A(V )χ+ BV

9V = U

A Kalman observer + a persistence condition lead to vanishing

error

⇒ the persistence conditions are a second occurrence of dual effect

24/63



Observer design by I&I: indirect method

For hm sinusoidal or cubic, one gets a LTV system in
χ = ϕ(X ) s.t.

9χ = A(V )χ+ BV

9V = U

A Kalman observer + a persistence condition lead to vanishing

error
⇒ the persistence conditions are a second occurrence of dual effect

24/63



Plan

1 Modelling

2 Estimation

3 Output-feedback control

25/63



Output feedback Control

We consider the horizontal output-feedback system in the
augmented state position/speed/error.

The objective is to choose Uhor to ensure the convergence of the
full system:

9Xhor = Vhor

9Vhor = Uhor

9e = −κVhorV
T
hore
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δ-persistence of Vhor

Figure: Principle of the δ-persistence
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Output feedback Control: δ-persistence control law

Uhor is chosen s.t.

Uhor = −Kx η̂ − KvVhor + α

ˆ∥∥∥∥„

η̂
Vhor

ȷ∥∥∥∥˙

ϕper (t),

where
Kx and Kv are gains to tune.
ϕper is a persistent signal.
α is increasing.
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Results

Figure: Example of trajectory of the output-feedback system and of the
estimation errors
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Conclusion on the analytical part

Informative Observability conditions
Several Observers and and a controller for simple maps hm

Potential extensions to arbitrary maps through approximations
⇒ Methods limited to simple maps and not very robust but in a
simple framework

⇒ Solution to deal with arbitrary maps: use a more flexible
framework
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Stochastic approach of TAN for arbitrary maps

4 Formalism

5 Coupled modelling of estimation and control

6 Suboptimal estimation

7 Dual control

8 Dual Particle Fisher control

31/63



State of the art

If the system is linear Gaussian: separation principle

In a nonlinear case, the separation principle does not hold and
is often applied anyway leading to passively learning
controllers
A natural remedy is impose the dual effect property in the
controller: actively learning controllers/ dual controllers

In the literature:
Some dual controllers lack of formal justification
No dual controllers using Particle Filters
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Plan

4 Formalism

5 Coupled modelling of estimation and control

6 Suboptimal estimation
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Partially Observable Markov Decision Process (POMDP)

A POMDP is composed of:
A discrete-time stochastic dynamical system:

Xk+1 = f (Xk ,Uk , ξk) X0 ∼ p0

where:
Xk is a state variable
Uk is a control variable
ξk is a noise on the dynamics

An observation equation:

Yk = h(Xk , ηk)

where:
Yk is an observation
ηk a noise on the observations
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Partially Observable Markov Decision Process (POMDP)

Available information Ik defined by:

I0 = Y0 Ik+1 = (Ik ,Uk ,Yk+1)

The filtering distribution, µk = pXk |Ik , following:

µk+1 = F pµk ,Yk+1,Ukq

The two main issues are:
Finding an estimator xXk = πe(Ik) or πe(µk)

Finding a control Uk = πc(Ik) or πc(µk)

both as a function of Ik or µk

35/63



Partially Observable Markov Decision Process (POMDP)

Available information Ik defined by:

I0 = Y0 Ik+1 = (Ik ,Uk ,Yk+1)

The filtering distribution, µk = pXk |Ik , following:

µk+1 = F pµk ,Yk+1,Ukq

The two main issues are:
Finding an estimator xXk = πe(Ik) or πe(µk)

Finding a control Uk = πc(Ik) or πc(µk)

both as a function of Ik or µk

35/63



Partially Observable Markov Decision Process (POMDP)

Available information Ik defined by:

I0 = Y0 Ik+1 = (Ik ,Uk ,Yk+1)

The filtering distribution, µk = pXk |Ik , following:

µk+1 = F pµk ,Yk+1,Ukq

The two main issues are:
Finding an estimator xXk = πe(Ik) or πe(µk)

Finding a control Uk = πc(Ik) or πc(µk)

both as a function of Ik or µk

35/63



Plan

4 Formalism

5 Coupled modelling of estimation and control

6 Suboptimal estimation

7 Dual control

8 Dual Particle Fisher control

36/63



Optimal Estimation

For some measure of the estimation error g e :

(PE ) : min
πe

E
”

g e(Xk , pXk)|Ik
ı

s.t. pXk = πe(Ik).

If g e(x , x̂) = ∥x̂ − x∥2 (Mean Square Error), then:

pX ∗
k = E [Xk |Ik ] = ⟨µk , Id⟩

which is hard to compute directly.
⇒ One is rather looking for µk
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Stochastic Optimal Control with perfect state information

An instantaneous cost g c

A stochastic optimal control problem:

(PC ) : min
π0

E

„

+∞∑
k=0

g c(Xk ,Uk , ξk)|X0

ȷ

s.t. Xk+1 = f (Xk ,Uk , ξk)
Uk = π0(Xk)

Dynamic Programming Principle: V value function

V (x) = min
u∈U

E rg c(Xk , u) + V (Xk+1)|Xk = xs

s.t. Xk+1 = f (Xk , u, ξk).
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Stochastic Optimal Control with imperfect state information

An instantaneous cost g c

A stochastic optimal control problem:

(PC ) : min
π0

E

„

+∞∑
k=0

g c(Xk ,Uk , ξk)|I0
ȷ

s.t. Xk+1 = f (Xk ,Uk , ξk)
Yk = h(Xk , ηk)

Ik+1 = (Ik ,Uk ,Yk+1)
Uk = π0(Ik)

A reformulation using µk leads to

V (µ) = min
π0

E

„

+∞∑
k=0

g̃ c(µk ,Uk)|µ0 = µ

ȷ

s.t. µk+1 = F pµk ,Yk+1,Ukq ,
Uk = π0(µk).

⇒ π∗0 has the implicit dual effect property.
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A Coupled Stochastic Optimisation problem

(PCE ) : min
πc

0,π
e
0

E

„

+∞∑
k=0

g c(Xk ,Uk , ξk) + g e(Xk , pXk)|Ĩ0
ȷ

s.t. Xk+1 = f (Xk ,Uk , ξk)
Yk = h(Xk , ηk)

Ĩk+1 = (Ĩk ,Uk , pXk ,Yk+1)

Uk = πc0(Ĩk)
pXk = πe0(Ĩk)

On the space of probability measures:

rV (µ) = min
πc

0,π
e
0

E

„

+∞∑
k=0

g̃ c(µk ,Uk) + g̃ e(µk , pXk)|µ0 = µ

ȷ

s.t. µk+1 = F pµk ,Yk+1,Ukq

Uk = πc0(µk)
pXk = πe0(µk)
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Decomposition in two steps

As F does not depend on pXk , two steps naturally appear:
An inner optimal estimation problem:

g̃ e
∗ (µk) = min

x̂∈Rnx
g̃ e(µk , x̂) = min

x̂∈Rnx
E [g e(Xk , x̂)|Ik ]

An outer stochastic control problem with an additional
estimation-based cost:

rV (µ) = min
πc

0

E

„

+∞∑
k=0

g̃ c(µk ,Uk) + g̃ e
∗ (µk)|µ0 = µ

ȷ

s.t. µk+1 = F pµk ,Yk+1,Ukq

Uk = πc0(µk)

A hierarchy and not a separation !
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How to solve these steps in theory and in practice

Inner optimal estimation step ⇒ Particle filtering

Outer optimal control step ⇒ Dual Stochastic MPC

42/63
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Classical nonlinear filtering methods

Methods for estimating µk :
Set-membership estimation: good only for bounded
uncertainties and very pessimistic
Kalman filtering: low cost but good only for unimodal
uncertainties
Particle filtering: rather high cost but good for multimodal
uncertainties
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A particle filter is an Monte Carlo approximation of µk defined by:

µNk =
N∑
i=1

ωi
kδx ik

where
`

ωi
k

˘

i=1..N are weights and
`

x ik
˘

i=1..N are interacting random
variables in Rnx .

The empirical mean reads:

pXN
k =

N∑
i=1

ωi
kx

i
k = ⟨µNk , Id⟩

and is used to approach pXk .

45/63



A particle filter is an Monte Carlo approximation of µk defined by:

µNk =
N∑
i=1

ωi
kδx ik

where
`

ωi
k

˘

i=1..N are weights and
`

x ik
˘

i=1..N are interacting random
variables in Rnx .
The empirical mean reads:

pXN
k =

N∑
i=1

ωi
kx

i
k = ⟨µNk , Id⟩

and is used to approach pXk .
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Inner near-optimal estimation

Consider MSE minimisation and set:

econdk,∗ = E
”

∥Xk − pX ∗
k ∥

2
|Ik

ı

= g̃ e
∗ (µk)

econdk,N = E
”

∥Xk − pXN
k ∥

2
|Ik

ı

Considering the particle filter from [Hu et al]:

Theorem
For any ϵ > 0 and ∀k ≥ 0, there exists Ck > 0 s.t:

0 ≤ econdk,N − econdk,∗ ≤ ϵecondk,∗ +

ˆ

1 +
1
ϵ

˙

Ck

n∑
j=1

∥ϕj∥2
k,2

N

for N sufficiently large.

Proof based on "weak" error bounds for unbounded functions
⇒ pXN

k is near optimal for N sufficiently large.
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Outer minimisation and Explicit dual control

The optimal estimation error g e
∗ ≃ an information measure

rV (µ) = min
πc

0

E

„

+∞∑
k=0

g̃ c(µk ,Uk) + g̃ e
∗ (µk)|µ0 = µ

ȷ

s.t. µk+1 = F pµk ,Yk+1,Ukq

Uk = πc0(µk)

In practice it is replaced by an empirical approximation g info leading
to:

rVEX (µ) = min
πc

0

E

„

+∞∑
k=0

g̃ c(µk ,Uk) + g̃ info(µk)|µ0 = µ

ȷ

s.t. µk+1 = F pµk ,Yk+1,Ukq

Uk = πc0(µk)

⇒ We recover an Explicit Dual control problem.
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Explicit dual MPC

Solving a modified Open-Loop problem instead

V T
EX (µ) = min

u0,...,uT−1∈U
E

„

T−1∑
k=0

g̃ ex
k (µk|0, uk) + g̃ ex

F (µT |0)|µ0 = µ

ȷ

s.t. µk+1|0 = G
`

µk|0, uk
˘

where g̃ ex
k = g̃k + g̃ info

k and g̃ info
k = ⟨µk , g info

k ⟩

⇒ u∗0 exhibits explicit dual effect.

2 remaining issues in order to design an output-feedback law:
Choice of the explicit dual problem

How to deal with the guiding goal ?
How to impose the explicit dual effect ?

Numerical resolution
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Localisation and guidance by terrain-aided navigation

Figure: Trajectory where the UAV goes straight to the target over a flat
area

51/63



Localisation and guidance by terrain-aided navigation

Figure: Compromise between going toward the target and getting
information
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Localisation and guidance by terrain-aided navigation

Figure: Trajectory where the UAV is stuck over a rough area

⇒ idea: prioritise the guiding objective with a stabilising constraint.
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How to deal with the guiding goal ?

With a stabilising cost:

gi = g stab
i + g eco

i

With a stabilising constraint,:

gi = g eco
i

a negative drift condition on u0
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How to impose dual effect ?

Ji : Fisher Information Matrix

With a stabilising cost:

gi = g stab
i + g eco

i + g info
i (Ji )

⇒ very flexible but hard to tune
With a stabilising constraint:

gi = g eco
i + g info

i (Ji ),

a negative drift condition on u0.

⇒ easier to tune but requires the knowledge of a drift
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Monte Carlo approximation

The practical resolution is done by combining a Monte Carlo
approximation and a particle filter:

(PN
C ) : min

u0···uT−1

Ns∑
i=1

ωi
ℓ

ˆ

T−1∑
k=0

gk
`

X i
k , uk , ξ

i
k

˘

+ gT
`

X i
T

˘

˙

s.t. X i
k+1 = f (X i

k , uk , ξ
i
k)

uk ∈ U
X i

0 = x iℓ,

where x iℓ comes from a particle filter
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Application in terrain-aided navigation

state representation: 3 positions (x , y , z) , 3 speeds
(vx , vy , vz) and 3 accelerations (ux , uy , uz)

dynamical system:

fk(Xk ,Uk , ξk) = AXk + BUk + ξk

∥Uk∥ ≤ Umax

where A and B from a double integrator with damping on the
speed, and ξk a white Gaussian noise
observation equation:

hk(Xk , ξk) = zk − hm(xk , yk) + ηk

where hm is a map of the height of the ground and ηk a
white Gaussian noise
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Numerical simulations

(a) Trajectory from a passive
controller over a flat area

(b) Trajectory from active controller
avoiding a flat area

58/63



Comparison of the two controllers

(a) Trajectory with a constant weight (b) Trajectory with a slowly decreasing
weight

Figure: Realisation of a trajectory of the true state and the particles
resulting from the Penalising Fisher controller on an artificial map with
several tuning
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Comparison of the two controllers

(a) Trajectory with a large weight on
the FIM and rapidly converging

(b) Trajectory with a large weight on
the FIM and slowly converging

Figure: Realisation of a trajectory of the true state and the particles
resulting from the Lyapunov Fisher controller on an artificial map with
with different tuning
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Conclusion

In the analytic framework, we have:
Studied observability and extracted conditions on the
horizontal speed and acceleration
Designed nonlinear observers using I&I for several terrain maps
that converge under PE of the horizontal speed
Designed a δ-persistent controller for output-feedback control

In the non-analytic framework, we have:
Proposed a joint modelling of optimal control and estimation
which can be split sequentially into:

an optimal estimation step
an estimation-based stochastic optimal control step

Showed that the Inner Estimation step can be solved by a PF
The Outer Control problem can be relaxed into a Dual Explicit
control one
Proposed two Explicit Dual MPC schemes based on a PF and
applied them to TAN for arbitrary maps
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Future research axes

In the analytic framework:
Design an observer for 3-Spline maps and deal with real maps
Improve the convergence result of the output-feedback system

In the non-analytic framework
Show near optimality of the particle filter for a general cost g e .
Look for better approximation of g e

∗ than the FIM.
Show the formal closed-loop convergence of the dual MPC
schemes
Speed up the numerical resolution with a decomposition
method
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Thank you for your attention !
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