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Typical control and estimation problem
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Typical guiding and estimation scheme
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Localisation and guidance by terrain-aided navigation

Figure: Example of a UAV localised by terrain-aided navigation
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Localisation and guidance by terrain-aided navigation
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Figure: Representation of terrain-aided navigation
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Localisation and guidance by terrain-aided navigation

44% N, 3% E

50

Figure: Trajectory where the UAV goes straight to the target over a flat
area

= guiding and estimation must be coupled: dual effect.
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Localisation and guidance by terrain-aided navigation

44% N, 3% E

Figure: Compromise between going toward the target and getting
information
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Two main approaches

@ An analytical approach in a deterministic framework (analytical
terrain maps)
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Two main approaches

@ An analytical approach in a deterministic framework (analytical
terrain maps)

@ A non-analytical approach in a discrete-time stochastic
framework (arbitrary terrain maps)
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Analytical approach of TAN

© Modelling

© Estimation

© Output-feedback control

14/63



o Modelling
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System'’s dynamics

The system is a mass point in 3D controlled in acceleration with a
speed and a height measurement leading to:
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System's dynamics
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The system is a mass point in 3D controlled in acceleration with a
speed and a height measurement leading to:

@ a state of dimension 6

@ observations of dimension 4
X1
The only information on the position X = | xo [ comes from the
X3
height measurement:

Y = x3 — hp(x1, x2)

where hy, is the terrain map.



Terrain modelling

Several terrain profiles, h,,, are considered:
@ Quadratic functions
@ Cubic functions or higher order polynomials
@ Gaussian functions or sum of Gaussian functions
°

Spatial sine waves
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Terrain modelling: examples
R ‘w
o i
(a) Real terrain (b) Quadratic ) Cubic approximation

approximation

Figure: Small scale real map with approximations

Hd-i.?i

(a) Real terrain (b) Fourier approximation

Figure: Large scale real map with an approximation
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9 Estimation
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Locally weak observability conditions

The local weak observability conditions (Lie derivatives) can be
interpreted depending on their order as follows:

@ Order 0: linked to the absolute altitude x3
@ Order 1: colinear to the horizontal speed Vi,

@ Order 2: colinear to the horizontal acceleration Upo,
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Locally weak observability conditions

The local weak observability conditions (Lie derivatives) can be
interpreted depending on their order as follows:

@ Order 0: linked to the absolute altitude x3
@ Order 1: colinear to the horizontal speed Vi,
@ Order 2: colinear to the horizontal acceleration Upo,

= Local inversion of the observations possible if V},, and Uy, are
not colinear

= First occurrence of the dual effect in our model

What about explicit reconstruction of the state ?
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Observer design by |&I: general principle

@ By defining the unmeasured state 7 and the measured state y:

77 = f1(777y, U)
y = f(n,y,u)
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Observer design by |&I: general principle

@ By defining the unmeasured state 7 and the measured state y:

77 = f1(777y, U)
y = fh(n,y,u)

© Define a nonlinear estimation error:
€= B(gv.y’ t) - ¢(77ay7 t)
© Choose 3, ¢ and & such that:

M={(n,y,§t) eER"XRP xRI xR : B(&,y,t) = p(n,y, t)}

is Invariant and Globally Attractive

© Define the estimator 7§ = ¢L(B(€, y, t)) and make sure that
|1 — n|| tends to 0.
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Observer design by |&I: general principle

In the following two method are considered, with n = X:
e Adirect one: e:=¢+yY(Y)—X
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Observer design by |&I: general principle

In the following two method are considered, with n = X:
e Adirectone: e: =&+ (Y)—X
@ An indirect one: e := ¢ — ¢(X) with ¢ : R3 — R9 and q > 3
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Observer design by 1&I: direct method

e For h, Gaussian or quadratic:

. T
e = —KVhor Vpor€
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Observer design by |&I: direct method

e For h, Gaussian or quadratic:

. T
e = —KVhor Vpor€

Proposition: convergence of e under PE
If there exist T > 0 and p > 0, such that for any t > ty:

1 t+T —
T (/ Vihor (T) Vho,(T)d7'> =k
t

then e converges exponentially to 0.

.

Proof using a new time-dependent strict Lyapunov function (in
collaboration with loannis Sarras)
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Observer design by |&I: direct method

e For h, Gaussian or quadratic:

. T
e = —KVhor Vpor€

Proposition: convergence of e under PE
If there exist T > 0 and p > 0, such that for any t > ty:

1 t+T —
T (/ Vihor (T) Vho,(T)d7'> =k
t

then e converges exponentially to 0.

.

Proof using a new time-dependent strict Lyapunov function (in
collaboration with loannis Sarras)

= condition on Vj,, and implicitly on Upo,
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Observer design by [&I: indirect method

@ For h,, sinusoidal or cubic, one gets a LTV system in
X = ¢(X) s.t.

x = A(V)x + BV
V=uU

A Kalman observer + a persistence condition lead to vanishing

error
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Observer design by [&I: indirect method

@ For h,, sinusoidal or cubic, one gets a LTV system in
X = ¢(X) s.t.

x = A(V)x + BV
V=uU

A Kalman observer + a persistence condition lead to vanishing

error
= the persistence conditions are a second occurrence of dual effect
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e Output-feedback control
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Output feedback Control

We consider the horizontal output-feedback system in the
augmented state position/speed/error.
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Output feedback Control

We consider the horizontal output-feedback system in the
augmented state position/speed/error.

The objective is to choose Upo,r to ensure the convergence of the

full system:
Xhor = Vhor
Vhor = Uhor
: T
e = —kVhor Vjo €
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d-persistence of Vi,
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Convergence of V;, Persistence of V;,

7

8 -persistence of V;,

Figure: Principle of the -persistence



Output feedback Control: §-persistence control law

Upor is chosen s.t.

Unhor = —Kxf) — Ky Vior + (H [Vn ]
hor

D Pper(t),

where
e K, and K, are gains to tune.
® ¢per is a persistent signal.

@ « is increasing.
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estimation error in horizontal position

20/63

horizontal trajectory

2500
-1000 500

—true trajectory

— estimated trajectory
target point

+  center of the gaussian

2000 2500

47 5

error(m)

— norm of the error

50 100 150
time (s)

)
200 250 30

Figure: Example of trajectory of the output-feedback system and of the

estimation errors



Conclusion on the analytical part

@ Informative Observability conditions
@ Several Observers and and a controller for simple maps h,
@ Potential extensions to arbitrary maps through approximations

= Methods limited to simple maps and not very robust but in a
simple framework
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Conclusion on the analytical part

@ Informative Observability conditions
@ Several Observers and and a controller for simple maps h,
@ Potential extensions to arbitrary maps through approximations

= Methods limited to simple maps and not very robust but in a
simple framework

= Solution to deal with arbitrary maps: use a more flexible
framework
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Stochastic approach of TAN for arbitrary maps

@ Formalism

© Coupled modelling of estimation and control
@ Suboptimal estimation

@ Dual control

© Dual Particle Fisher control
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State of the art

o If the system is linear Gaussian: separation principle
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State of the art

o If the system is linear Gaussian: separation principle

@ In a nonlinear case, the separation principle does not hold and
is often applied anyway leading to passively learning
controllers

@ A natural remedy is impose the dual effect property in the
controller: actively learning controllers/ dual controllers

In the literature:
@ Some dual controllers lack of formal justification

@ No dual controllers using Particle Filters
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e Formalism
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Partially Observable Markov Decision Process (POMDP)

A POMDP is composed of:

@ A discrete-time stochastic dynamical system:

X1 = F( Xk, Uk, &k) Xo ~ po

where:

e X is a state variable
e Uy is a control variable
e & is a noise on the dynamics
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Partially Observable Markov Decision Process (POMDP)

A POMDP is composed of:

@ A discrete-time stochastic dynamical system:

X1 = F( Xk, Uk, &k) Xo ~ po

where:

e X is a state variable
e Uy is a control variable
e & is a noise on the dynamics

@ An observation equation:

Yie = h(Xi, k)

where:

e Y is an observation
@ 7% a noise on the observations
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Partially Observable Markov Decision Process (POMDP)

e Available information I, defined by:

lo = Yo le+1 = (I, Uiy Yit1)
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Partially Observable Markov Decision Process (POMDP)

e Available information I, defined by:

lo = Yo le+1 = (I, Uiy Yit1)

o The filtering distribution, s = px,|y,, following:

pk+1 = F (pis Yr1, U)

The two main issues are:
o Finding an estimator Xj = 7€(I¢) or w&(puk)
e Finding a control Uy = w¢(/x) or (1)

both as a function of Iy or ux
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e Coupled modelling of estimation and control
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Optimal Estimation

For some measure of the estimation error g€:

(PE) : n;lrlen E [ge(Xk,)A(k)Hk]
s.t. )?k = 7Te(/k).
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Optimal Estimation

For some measure of the estimation error g€:

(PE) : rrTlan E [ge(Xk,)A(k)Hk]
s.t. )?k = 71'6(/[().

If g¢(x,%) = ||* — x||*> (Mean Square Error), then:
Xi = EXel I = (e 1)

which is hard to compute directly.
= One is rather looking for g
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Stochastic Optimal Control with perfect state information

@ An instantaneous cost g¢
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Stochastic Optimal Control with perfect state information

@ An instantaneous cost g¢

@ A stochastic optimal control problem:

+o0
(Pc) imin €| 3 (% Ui, €1
i k=0

s.t. Xk+1 = f(XIﬁUk?fk)
Uk = 7T0(Xk)

@ Dynamic Programming Principle: V value function

V(x) = min E [ (X, u) + V(Xi11) [ Xk = x]
sit. Xey1 = F( Xk, u, k).



Stochastic Optimal Control with imperfect state information

@ An instantaneous cost g€
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@ A stochastic optimal control problem:

(Pc):min E {:Z:gc(xk, Uk,fk)“o]

o

s.t. Xk+]_ = f(kaUkagk)

Yi = h(Xik,nx)
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Uk = ﬂ—O(Ik)

@ A reformulation using pux leads to
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Stochastic Optimal Control with imperfect state information

@ An instantaneous cost g€

@ A stochastic optimal control problem:

(Pc):min E {:Z:gc(xk, Uk,fk)“o]

o

s.t. Xk+]_ = f(kaUkagk)

Yi = h(Xik,nx)
lkv1 = (I, Uk, Yiq1)
Uk = Wo(/k)

@ A reformulation using pux leads to

—+oco
V(p) = min £ [g_:oé’c(uk, Ui) o = M]

s.t. Hk+1 = F (Mk; Yk+17 Uk) ;
Ue = mo(px)-

= 7 has the implicit dual effect property.



A Coupled Stochastic Optimisation problem

+00
(Pcg) : min E[ g€

(o} e
To>To

(Xk7Uka£k)+ge(Xk7)?k)|i’0:|
k=0
st Xegr = F( Xk, Uk, &)

Y = h(Xe, mk)

b1 = (e Ui, Xies Yier1)
Ue = m5(l)
X = w5(l)
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A Coupled Stochastic Optimisation problem

400 ~ .
(Pce): min E [Z 8 (X Uk, k) +ge(Xk7Xk)|/0}

To>To k=0
st. Xep1 = F( Xk, Uk, &)
Y = h(Xe, mk)
b1 = (e Ui, Xies Yier1)
Ue = m5(l)
X = w5(l)

On the space of probability measures:

~ 400 ~
V()= min E { & (k> Uk) + &°(hks Xic)| 1o = M]
0

grur k=

st. g1 = F (pwe, Yy, Uk)
Ue = m5(p)
X = m5(1)
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Decomposition in two steps

As F does not depend on Xy, two steps naturally appear:

@ An inner optimal estimation problem:
g7 () = min g°(uk, X) = min E[g®( Xy, X)| /]
XERN XERNMX

@ An outer stochastic control problem with an additional
estimation-based cost:

~ —+o0
V(1) = min E[ gcmk,ukngf(uk)rm:u]
0

o k=
st purr = F (i, Yy, Uk)
Ue = mg(p)
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Decomposition in two steps

As F does not depend on Xy, two steps naturally appear:

@ An inner optimal estimation problem:
g7 () = min g°(uk, X) = min E[g®( Xy, X)| /]
XERN XERNMX

@ An outer stochastic control problem with an additional
estimation-based cost:

~ —+o0
V(1) = min E[ gcmk,ukngf(uk)rm:u]
0

5 k=
st. gy = F (prs Y, Uk)
Ue = mg(p)

A hierarchy and not a separation
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How to solve these steps in theory and in practice

@ Inner optimal estimation step = Particle filtering

@ Outer optimal control step = Dual Stochastic MPC
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e Suboptimal estimation
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Classical nonlinear filtering methods

Methods for estimating jux:

@ Set-membership estimation: good only for bounded
uncertainties and very pessimistic

o Kalman filtering: low cost but good only for unimodal
uncertainties

o Particle filtering: rather high cost but good for multimodal
uncertainties
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A particle filter is an Monte Carlo approximation of p, defined by:

N
N _ i
Hi = E Wk(SxL
i=1

where (w!). . . are weights and (x/). . . are interacting random
kJi=1..N g k/i=1 g

variables in R™x,

N
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A particle filter is an Monte Carlo approximation of p, defined by:

N
N _ i
Hi = E Wk(SxL
i=1

where (w})._, , are weights and (x;),_, , are interacting random
variables in R™.

The empirical mean reads:

N

N
XY= wixi = (uf, Id)
i=1

and is used to approach X



Inner near-optimal estimation

Consider MSE minimisation and set:
cond w2 ~e
efr? = E [ IX — Xill Ihe | = &£ (o)

n An2
efn = E 1% — X1
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Consider MSE minimisation and set:
cond w2 ~e
efr? = E [ IX — Xill Ihe | = &£ (o)
~Ap 2
efn = E 1% — X1

Considering the particle filter from [Hu et al]:

For any € > 0 and Vk > 0, there exists C; > 0 s.t:

il 2
>~ 151l 2
j=1

0 < efNd — efond < eeond 4 (1 + —) Ci m
b 9 2 6

for N sufficiently large.

.

Proof based on "weak" error bounds for unbounded functions
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Consider MSE minimisation and set:
cond w2 ~e
efr? = E [ IX — Xill Ihe | = &£ (o)
~Ap 2
efn = E 1% — X1

Considering the particle filter from [Hu et al]:

For any € > 0 and Vk > 0, there exists C; > 0 s.t:

il 2
>~ 151l 2
j=1

0 < efNd — efond < eeond 4 (1 + —) Ci m
b 9 2 6

for N sufficiently large.

.

Proof based on "weak" error bounds for unbounded functions
= X} is near optimal for N sufficiently large.



e Dual control
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Outer minimisation and Explicit dual control

The optimal estimation error g€ ~ an information measure

~ “+o00
V() =min E [kzogcwk, V) + &5 (1) lo = #]
Tl'o —

st pkyr = F (pk, Y1, Uk)
Ue = mg(p)
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Outer minimisation and Explicit dual control

The optimal estimation error g€ ~ an information measure

Vo) = min | 5 8 Ue) + £ )lio = o

To k=0
st pkyr = F (pk, Y1, Uk)
Ue = 75(1k)

In practice it is replaced by an empirical approximation g™

leading
to:

—+00

Vex() = min [ 5% gue, U)+ £ )lio = ]
0 k=0
st pkrr = F (ke Yirt, Uk)
Ue = m5(p)

= We recover an Explicit Dual control problem.
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Explicit dual MPC

Solving a modified Open-Loop problem instead

T-1
VEG) =, min €| T 8o, ) + B Gerollio = s

ug,...,ur—1€U

st psto = G (pujos uk)

~ info ~info __ info

where g5 = gi + g,""° and g = (uk, g/""°)
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V()= min E| > E2(1kjor uk) + BF (o) |0 = 1
ug,...,ur—1€U k=0

st psto = G (pujos uk)

~ info ~info __ info
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= ug exhibits explicit dual effect.
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Explicit dual MPC

Solving a modified Open-Loop problem instead

T-1
V()= min  E [ S B (eior k) + B8 i) o = u]
ug,...,ur—1€U k=0
st ko = G (fkjo, Uk)
where g = g, + &/ and g = (uk, g[™)

= ug exhibits explicit dual effect.

2 remaining issues in order to design an output-feedback law:
@ Choice of the explicit dual problem

o How to deal with the guiding goal 7
e How to impose the explicit dual effect ?

@ Numerical resolution
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@ Dual Particle Fisher control
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Localisation and guidance by terrain-aided navigation

44% N, 3% E

50

Figure: Trajectory where the UAV goes straight to the target over a flat
area
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Localisation and guidance by terrain-aided navigation

44% N, 3% E

Figure: Compromise between going toward the target and getting
information
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Localisation and guidance by terrain-aided navigation

44% N, 3% E

Figure: Trajectory where the UAV is stuck over a rough area

= idea: prioritise the guiding objective with a stabilising constraint.
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How to deal with the guiding goal ?

@ With a stabilising cost:

g =g+ g7
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How to deal with the guiding goal 7

@ With a stabilising cost:

stab

gi=g " +g"”
@ With a stabilising constraint,:

g =g
a negative drift condition on wuy
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How to impose dual effect ?

Ji: Fisher Information Matrix
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How to impose dual effect ?

Ji: Fisher Information Matrix

e With a stabilising cost:
gi= g’_stab +gieco +g;i"f°(Ji)

= very flexible but hard to tune
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How to impose dual effect ?

Ji: Fisher Information Matrix

@ With a stabilising cost:
gi= g’_stab +gieco +g;i"f°(Ji)

= very flexible but hard to tune

o With a stabilising constraint:

gi =g +&"™(J),
a negative drift condition on ug.

= easier to tune but requires the knowledge of a drift
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Monte Carlo approximation

The practical resolution is done by combining a Monte Carlo
approximation and a particle filter:

Ny  /T-1 . . .
(P0): ymin St (% o (XLuengl) + 67 (X5)
i= =0

ug-uT_
st X, o= (X, uk &)
ug € U
X = X

where x; comes from a particle filter
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Application in terrain-aided navigation

@ state representation: 3 positions (x,y,z) , 3 speeds
(vx, vy, vz) and 3 accelerations (uy, uy, u;)
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Application in terrain-aided navigation

@ state representation: 3 positions (x,y,z) , 3 speeds
(vx, vy, vz) and 3 accelerations (uy, uy, u;)

@ dynamical system:

fic(Xie, Uk, Ek) = AX + BU + &
||Uk|| S Umax

where A and B from a double integrator with damping on the
speed, and &, a white Gaussian noise

@ observation equation:

hic( X €k) = 2k — hm(Xic, i) + 1k

where h,, is a map of the height of the ground and 7y a
white Gaussian noise
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merical simulations

« setof particles| * setof partides
* real position 60
real position

target point target point
50
a0
0
200

20 40 L 80 100 120 0
x1ikm)
(a) Trajectory from a passive (b) Trajectory from active controller
controller over a flat area avoiding a flat area
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Comparison of the two controllers

- setof particles 4500 - setof particles 50

+ real position

* real position
——target point 000 target point 4000

E 2500
5t ¥ 2500
R
- [
i | B
2000 2000

EEEEEEEEEE

oo o 1 40 150

100 100
X1 (km) X1 (km)

(a) Trajectory with a constant weight (b) Trajectory with a slowly decreasing
weight

Figure: Realisation of a trajectory of the true state and the particles
resulting from the Penalising Fisher controller on an artificial map with
several tuning
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Comparison of the two controllers

(a) Trajectory with a large weight on  (b) Trajectory with a large weight on
the FIM and rapidly converging the FIM and slowly converging

Figure: Realisation of a trajectory of the true state and the particles
resulting from the Lyapunov Fisher controller on an artificial map with
with different tuning
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Conclusion

In the analytic framework, we have:

@ Studied observability and extracted conditions on the
horizontal speed and acceleration

@ Designed nonlinear observers using &I for several terrain maps
that converge under PE of the horizontal speed

@ Designed a d-persistent controller for output-feedback control
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Conclusion

In the analytic framework, we have:

@ Studied observability and extracted conditions on the
horizontal speed and acceleration

@ Designed nonlinear observers using &I for several terrain maps
that converge under PE of the horizontal speed

@ Designed a d-persistent controller for output-feedback control

In the non-analytic framework, we have:
@ Proposed a joint modelling of optimal control and estimation
which can be split sequentially into:
e an optimal estimation step
e an estimation-based stochastic optimal control step
@ Showed that the Inner Estimation step can be solved by a PF

@ The Outer Control problem can be relaxed into a Dual Explicit
control one

@ Proposed two Explicit Dual MPC schemes based on a PF and
applied them to TAN for arbitrary maps
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Future research axes

In the analytic framework:
@ Design an observer for 3-Spline maps and deal with real maps

@ Improve the convergence result of the output-feedback system
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Future research axes

In the analytic framework:
@ Design an observer for 3-Spline maps and deal with real maps
@ Improve the convergence result of the output-feedback system
In the non-analytic framework
@ Show near optimality of the particle filter for a general cost g©.
@ Look for better approximation of gf than the FIM.

@ Show the formal closed-loop convergence of the dual MPC
schemes

@ Speed up the numerical resolution with a decomposition
method
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Thank you for your attention !
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