Introd	uction
0000	000

Functional KKL observer

KKL and indistinguishability

KKL observer design for non observable systems

Pauline Bernard

Centre Automatique et Systèmes MINES ParisTech, Université PSL

Collaboration with L. Praly, M. Spirito, L. Marconi, L. Brivadis, V. Andrieu, U. Serres

Nice, November, 2021

Pauline Bernard

イロト イヨト イヨト イヨト

Introduction	
000000	

Contents

1 Introduction

2 Non observable system

- Sensorless PMSM with unknown resistance
- Indistinguishable trajectories
- KKL observer design

Functional KKL observer

- Existence of T
- Injectivity of T with respect to q
- Left-inverse and convergence

KKL and indistinguishability

<ロト < 回ト < 回ト < 回ト < 回ト</p>

Introd	uction
0000	000

Functional KKL observer

KKL and indistinguishability

Standard observation problem

We consider a nonlinear dynamical system

$$\dot{x} = f(x, u)$$
 , $y = h(x, u)$ (1)

イロト イヨト イヨト イヨト

with state x in \mathbb{R}^{d_x} , input $u : \mathbb{R} \to \mathbb{R}^{d_u}$, output $y : \mathbb{R} \to \mathbb{R}^{d_y}$.

э

Introd	uction
0000	000

Functional KKL observer

KKL and indistinguishability

Standard observation problem

We consider a nonlinear dynamical system

$$\dot{x} = f(x, u) \quad , \quad y = h(x, u) \tag{1}$$

イロト イボト イヨト イヨト

with state x in \mathbb{R}^{d_x} , input $u : \mathbb{R} \to \mathbb{R}^{d_u}$, output $y : \mathbb{R} \to \mathbb{R}^{d_y}$.

Observation problem

Whatever u in \mathcal{U} , whatever the initial condition $x_0 \in \mathcal{X}_0$, find an estimate $\hat{x}(t)$ of x(t) at each time $t \ge 0$, based on $u_{[0,t]}$ and $y_{[0,t]}$ and such that

$$\lim_{t\to+\infty}\hat{x}(t)-x(t)=0.$$

Pauline Bernard

Introd	luction
0000	000

Functional KKL observer

KKL and indistinguishability

Standard observation problem

We consider a nonlinear dynamical system

$$\dot{x} = f(x, u)$$
 , $y = h(x, u)$ (1)

イロト イボト イヨト イヨト

with state x in \mathbb{R}^{d_x} , input $u : \mathbb{R} \to \mathbb{R}^{d_u}$, output $y : \mathbb{R} \to \mathbb{R}^{d_y}$.

Observation problem

Whatever u in \mathcal{U} , whatever the initial condition $x_0 \in \mathcal{X}_0$, find an estimate $\hat{x}(t)$ of x(t) at each time $t \ge 0$, based on $u_{[0,t]}$ and $y_{[0,t]}$ and such that

$$\lim_{t\to+\infty}\hat{x}(t)-x(t)=0.$$

=> Observer design

In Observing the state of a linear system, D. Luenberger, 1964

and if T invertible,

 $\lim \hat{x} - x = 0$

э

Introduction	Non observable system	Functional KKL observer	KKL and indistinguishability
000000	00000000000	0000000	0000

イロン イロン イヨン イヨン 三日

Introduction	Non observable system	Functional KKL observer	KKL and indistinguishability
0000000	00000000000	0000000	0000

= T must verify the "Luenberger equation"

TF = AT + BH

э

Introduction	Non observable system	Functional KKL observer	KKL and indistinguishability
0000000	00000000000	0000000	0000

=> T must verify the "Luenberger equation"

TF = AT + BH

- unique solution if F and A have no common eigenvalue
- invertible if (F, H) observable and (A, B) controllable

э

Introduction	Non observable system	Functional KKL observer	KKL and indistinguishability
0000000	00000000000	0000000	0000

=> T must verify the "Luenberger equation"

$$TF = AT + BH$$

• unique solution if F and A have no common eigenvalue

• invertible if (F, H) observable and (A, B) controllable

=> Luenberger observer :

$$\dot{\hat{\xi}} = A\hat{\xi} + By$$
 , $\hat{x} = T^{-1}\hat{\xi}$

 \Leftrightarrow

 $\dot{\hat{x}} = F\,\hat{x} + T^{-1}B(y - H\hat{x})$

イロン イヨン イヨン 「ヨ

Introd	uction
0000	000

Extension to nonlinear systems?

Local analysis :

- A. Shoshitaishvili, On control branching systems with degenerate linearization, NOLCOS, 1992
- N. Kazantzis, C. Kravaris, Nonlinear observer design using Lyapunov's auxiliary theorem, SCL, 1998
- A. Krener and M. Xiao, Nonlinear observer design in the Siegel domain, SIAM, 2003

Global analysis (autonomous) :

G. Kreisselmeier, R. Engel, Nonlinear observers for autonomous Lipschitz continuous systems, TAC, 2003

V. Andrieu, L. Praly, On the existence of a Kazantzis-Kravaris/Luenberger observer, SIAM, 2006

V. Andrieu, Convergence speed of nonlinear Luenberger observers, SIAM, 2014

Global analysis (time-varying) :

- R. Engel, Nonlinear observers for Lipschitz continuous systems with inputs , IJC, 2007
- P. Bernard, V. Andrieu, Luenberger observers for non autonomous nonlinear systems, TAC, 2019

イロト イボト イヨト イヨト

э

Theorem 1 (KKL observer, general statement).

Let u such that the trajectories of interest remain in X and the system is backward-distinguishable on X.

Then, there exists a set *S* of zero-Lebesgue measure in \mathbb{C}^{d_x+1} such that for any diagonalizable Hurwitz matrix $A_0 \in \mathbb{C}^{(d_x+1)\times(d_x+1)}$ and any $B_0 \in \mathbb{C}^{d_x+1}$ such that $\operatorname{eig}(A_0) \notin S$ and (A_0, B_0) controllable,

there exists T_u such that

•
$$\xi(t) = T_u(x(t), t)$$
 is solution to $\dot{\xi} = A\xi + By$ with $A = A_0 \otimes I_{d_v}$, $B = B_0 \otimes I_{d_v}$

• $x \mapsto T_u(x, t)$ becomes **injective** on \mathcal{X} , at least after some time.

э

ヘロン ヘロン ヘビン ヘビン

Introduction	Non observable system	Functional KKL observer	KKL and indistinguishabili
000000	00000000000	0000000	0000

2 Non observable system

- Sensorless PMSM with unknown resistance
- Indistinguishable trajectories
- KKL observer design

Functional KKL observer

- Existence of T
- Injectivity of T with respect to q
- Left-inverse and convergence

KKL and indistinguishability

A (1) > A (2) > A (2) >

Introduction	
0000000	

Functional KKL observer

KKL and indistinguishability

Contents

Introduction

2 Non observable system

- Sensorless PMSM with unknown resistance
- Indistinguishable trajectories
- KKL observer design

Functional KKL observer

- Existence of T
- Injectivity of T with respect to q
- Left-inverse and convergence

KKL and indistinguishability

<ロト < 回ト < 回ト < 回ト < 回ト</p>

Non observable system

Functional KKL observer

KKL and indistinguishability

Sensorless PMSM with unknown resistance

PMSM model in a fixed $\alpha\beta$ -frame :

$$\dot{\Psi} = u - R i$$

where

- $\Psi \in \mathbb{R}^2$: total flux generated by the windings and the permanent magnet
- $u \in \mathbb{R}^2$, $i \in \mathbb{R}^2$: voltage and intensity of the current in the fixed frame
- R : stator winding resistance

For a non-salient PMSM :

$$\Psi = Li + \Phi \left(\begin{array}{c} \cos \theta \\ \sin \theta \end{array} \right)$$

where L is the inductance, Φ the magnet's flux, and θ the electrical phase.

Introduction	Non observable system	Functional KKL observer	KKL and indistinguishability
0000000	00000000000	0000000	0000

"Sensorless" PMSM model :

$$\dot{\Psi} = u - Ri$$

$$\Psi = Li + \Phi \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \iff \begin{cases} |\Psi - Li|^2 - \Phi^2 = 0 \\ \theta = \arg(\Psi - Li) \end{cases}$$

Measured input signals Parameters assumed known

Goal : estimate θ with R unknown \iff estimate Ψ with R unknown

Model :

$$\begin{cases} \dot{\Psi} &= u - R i \\ \dot{R} &= 0 \end{cases}, \quad y = |\Psi - Li|^2 - \Phi^2 = 0 \quad \text{``virtual measurement''}$$

э

Introduction	Non observable system	Functional KKL observer	KKL and indistinguishability
0000000	000000000000000000000000000000000000000	0000000	0000
Observability	[,] analysis		

For inputs (u, i), the model is

$$\begin{cases} \dot{x} = u - x_3 i \\ \dot{x}_3 = 0 \\ y = 0 = x^{\top} x - 2Li^{\top} x + L^2 |i|^2 - \Phi^2 \end{cases}$$

with state $x = (x_1, x_2) \in \mathbb{R}^2$ and $x_3 \in \mathbb{R}$.

э

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Introduction	Non observable system	Functional KKL observer	KKL and indistinguishability
0000000	000000000000000000000000000000000000000	0000000	0000
Observabili	ty analysis		

For inputs (u, i), the model is

$$\begin{cases} \dot{x} = u - x_3 i \\ \dot{x}_3 = 0 \\ y = 0 = x^\top x - 2Li^\top x + L^2 |i|^2 - \Phi^2 \end{cases}$$

with state $x = (x_1, x_2) \in \mathbb{R}^2$ and $x_3 \in \mathbb{R}$.

Let (Ψ, R) a particular solution, with the corresponding θ such that

$$\Psi = Li + \Phi \left(\begin{array}{c} \cos \theta \\ \sin \theta \end{array} \right)$$

and $\omega := \dot{\theta}$.

э

Introduction	Non observable system	Functional KKL observer	KKL and indistinguishability
0000000	000000000000000000000000000000000000000	0000000	0000
Observabili	ty analysis		

For inputs (u, i), the model is

$$\begin{cases} \dot{x} = u - x_3 i \\ \dot{x}_3 = 0 \\ y = 0 = x^\top x - 2Li^\top x + L^2 |i|^2 - \Phi^2 \end{cases}$$

with state $x = (x_1, x_2) \in \mathbb{R}^2$ and $x_3 \in \mathbb{R}$.

Let (Ψ, R) a particular solution, with the corresponding θ such that

$$\Psi = Li + \Phi \left(\begin{array}{c} \cos\theta \\ \sin\theta \end{array} \right)$$

and $\omega := \dot{\theta}$.

Denote $i_{dq} = (i_d, i_q) = \mathcal{R}(-\theta)i_{dq}$ and $u_{dq} = (u_d, u_q) = \mathcal{R}(-\theta)u_{dq}$.

Does there exist another solution $t \mapsto (x(t), x_3(t))$ giving the same output?

Pauline Bernard

イロン イヨン イヨン 「ヨ

Introduction 0000000	Non observable system	Functional KKL observer	KKL and indistinguishability
Theorem 2 (Finite number of indistingui	shable trajectories).	
There exist $\omega(t) =$	at most 6 indistinguishable s 0 for all t	olutions, unless	

or

b) there exists t such that $\omega(t) \neq 0$, but for all t, $i_d(t) = 0$, and $\frac{\omega}{i_q}$ is constant,

where there exists an infinite number of indistinguishable solutions.

イロト イヨト イヨト イヨト

ntroduction	Non observable system	Functional KKL observer	KKL and indistinguishability
Theorem 2 (Finite number of indistingui	shable trajectories).	

There exist at most 6 indistinguishable solutions, unless

a) $\omega(t) = 0$ for all t,

or

b) there exists t such that $\omega(t) \neq 0$, but for all t, $i_d(t) = 0$, and $\frac{\omega}{i_q}$ is constant, where there exists an infinite number of indistinguishable solutions.

In particular, at each time t, how many solutions in (x, x_3) may the following equation have

$$H_3(x,x_3,t)=0 = \left(h(x,t), \overline{h(x,t)}, \overline{h(x,t)}\right)?$$

イロト イヨト イヨト イヨト

Introd	uction
0000	000

Functional KKL observer

KKL and indistinguishability

Theorem 2 (Finite number of indistinguishable trajectories).

There exist at most 6 indistinguishable solutions, unless

a)
$$\omega(t) = 0$$
 for all t,

or

b) there exists t such that $\omega(t) \neq 0$, but for all t, $i_d(t) = 0$, and $\frac{\omega}{i_q}$ is constant, where there exists an infinite number of indistinguishable solutions.

In particular, at each time t, how many solutions in (x, x_3) may the following equation have

$$H_3(x,x_3,t) = 0 = \left(h(x,t), \overline{h(x,t)}, \overline{h(x,t)}\right)?$$

If $\omega(t) \neq 0$ and $i_d(t) \neq 0$, there are as many solutions (x, x_3) as the number of distinct real roots of a polynomial of degree six :

$$P(\mathbf{x_3}, t) = \omega(t)^{\mathbf{6}} \Phi^{\mathbf{6}} \left[\left(\mathbf{1} - \frac{(R - \mathbf{x_3})}{\omega(t)\Phi} \left(\frac{i}{\omega} \right)(t) - 2i_q(t) \right) + \frac{(R - \mathbf{x_3})^2}{\omega(t)^2 \Phi^2} \mu(t) |i(t)|^2 \right)^2 - \left(\mathbf{1} + \frac{(R - \mathbf{x_3})^2}{\omega(t)\Phi} 2i_q + \frac{(R - \mathbf{x_3})^2}{\omega(t)^2 \Phi^2} |i(t)|^2 \right)^3 \right]$$

イロト イロト イヨト イヨト

Introd	uction
0000	000

Functional KKL observer

KKL and indistinguishability

Theorem 2 (Finite number of indistinguishable trajectories).

There exist at most 6 indistinguishable solutions, unless

a)
$$\omega(t) = 0$$
 for all t,

or

b) there exists t such that $\omega(t) \neq 0$, but for all t, $i_d(t) = 0$, and $\frac{\omega}{i_q}$ is constant, where there exists an infinite number of indistinguishable solutions.

In particular, at each time t, how many solutions in (x, x_3) may the following equation have

$$H_3(x,x_3,t) = 0 = \left(h(x,t), \overline{h(x,t)}, \overline{h(x,t)}\right)?$$

If $\omega(t) \neq 0$ and $i_d(t) \neq 0$, there are as many solutions (x, x_3) as the number of distinct real roots of a polynomial of degree six :

$$P(\mathbf{x_3}, t) = \omega(t)^{\mathbf{6}} \Phi^{\mathbf{6}} \left[\left(\mathbf{1} - \frac{(R - \mathbf{x_3})}{\omega(t)\Phi} \left(\frac{i}{\omega} \right)(t) - 2iq(t) \right) + \frac{(R - \mathbf{x_3})^2}{\omega(t)^2 \Phi^2} \mu(t) |i(t)|^2 \right)^2 - \left(\mathbf{1} + \frac{(R - \mathbf{x_3})^2}{\omega(t)\Phi} 2iq + \frac{(R - \mathbf{x_3})^2}{\omega(t)^2 \Phi^2} |i(t)|^2 \right)^3 \right]$$

If besides $i_q(t) \neq -\overline{\left(\frac{i_d}{\omega}\right)}(t)$, then $P(x_3, t)$ admits at least two distinct real roots.

 Introduction
 Non observable system
 Functional KKL observer
 KKL and indistinguishability

 0000000
 000000000
 00000000
 0000

 Database
 000000000
 00000000
 0000

Particular case : ω , i_d and i_q constant

Theorem 3 (Case of constant ω , i_d and i_q).

Assume $\omega \neq 0$ and $i_d \neq 0$.

There exist exactly two indistinguishable solutions (x, x_3) , of the form (Ψ, R) and $(\Psi_{\delta}, R_{\delta})$ with

$$R_{\delta} = R + \frac{2\Phi\omega i_q}{|i|^2} , \quad i_{d,\delta} = i_d , \quad i_{q,\delta} = -i_q ,$$
$$\omega_{\delta} = \dot{\theta}_{\delta} = \dot{\theta} = \omega .$$

3

イロン イ団 と イヨン イヨン

Theorem 3 (Case of constant ω , i_d and i_q).

Assume $\omega \neq 0$ and $i_d \neq 0$.

There exist exactly two indistinguishable solutions (x, x_3) , of the form (Ψ, R) and $(\Psi_{\delta}, R_{\delta})$ with

$$R_{\delta} = R + \frac{2\Phi\omega i_q}{|i|^2} , \quad i_{d,\delta} = i_d , \quad i_{q,\delta} = -i_q ,$$
$$\omega_{\delta} = \dot{\theta}_{\delta} = \dot{\theta} = \omega .$$

Besides, if $(\hat{R}, \hat{\theta})$ is one of the solutions (R, θ) or $(R_{\delta}, \theta_{\delta})$, then the other solution is

$$\left(\hat{R}+rac{2\Phi\hat{\omega}\,\hat{\widehat{i_q}}}{|i|^2}\;,\;\hat{ heta}+rctan_2\left(2rac{\hat{\widehat{i_q}\,\hat{i_d}}}{|i|^2},1-2rac{\hat{\widehat{i_q}}^2}{|i|^2}
ight)
ight)\;.$$

イロン イ団 と イヨン イヨン

Non observable system

Functional KKL observer

KKL and indistinguishability

Observer design

Find a transformation $(x, x_3, t) \mapsto T_\lambda(x, x_3, t)$ mapping

$$\begin{cases} \dot{x} = u - x_3 i \\ \dot{x}_3 = 0 \end{cases}$$

into a Hurwitz form

$$\dot{\xi}_{\lambda} = -\lambda \xi_{\lambda} + y$$
 , $y = x^{\top}x - 2Li^{\top}x + L^{2}|i|^{2} - \Phi^{2}$

2

Non observable system

Functional KKL observer

KKL and indistinguishability

Observer design

Find a transformation $(x, x_3, t) \mapsto T_\lambda(x, x_3, t)$ mapping

$$\begin{cases} \dot{x} = u - x_3 i \\ \dot{x}_3 = 0 \end{cases}$$

into a Hurwitz form

$$\dot{\xi}_{\lambda} = -\lambda \xi_{\lambda} + y$$
 , $y = x^{\top}x - 2Li^{\top}x + L^{2}|i|^{2} - \Phi^{2}$

We find

$$T_{\lambda}(x, x_3, t) = \lambda^2 x^{\top} x + \lambda c_{\lambda}(t)^{\top} x + \lambda x_3 b_{\lambda}(t)^{\top} x + a_{\lambda}(t) x_3 + d_{\lambda}(t) x_3^2 - e_{\lambda}$$

with

$$\begin{split} \dot{a_{\lambda}} &= -\lambda \left(a_{\lambda} - c_{\lambda}^{\top} i + b_{\lambda}^{\top} u \right) \\ \dot{b_{\lambda}} &= -\lambda \left(b_{\lambda} - 2i \right) \\ \dot{c_{\lambda}} &= -\lambda \left(c_{\lambda} + 2u + 2\lambda Li \right) \\ \dot{d_{\lambda}} &= -\lambda \left(d_{\lambda} - b_{\lambda}^{\top} i \right) \\ \dot{e_{\lambda}} &= -\lambda \left(e_{\lambda} - c_{\lambda}^{\top} u + \lambda^{2} L^{2} |i|^{2} - \lambda^{2} \Phi^{2} \right) . \end{split}$$

Pauline Bernard

2

Introduction	Non observable system	Functional KKL observer	KKL and indistinguishability
000000	000000000000	0000000	0000

$$T(x, x_3, t) = \begin{pmatrix} T_{\lambda_1}(x, x_3, t) \\ T_{\lambda_2}(x, x_3, t) \\ T_{\lambda_3}(x, x_3, t) \end{pmatrix}$$
(2)
= $m(\Lambda) x^{\top} x + M(\Lambda) (c(t) + x_3 b(t)) x + a(t) x_3 + d(t) x_3^2 - e(t)$

for $\lambda_k \in \mathbb{C}$ with $\Re(\lambda_k) > 0$.

2

Introduction	Non observable system	Functional KKL observer	KKL and indistinguishability
000000	000000000000	0000000	0000

$$T(x, x_3, t) = \begin{pmatrix} T_{\lambda_1}(x, x_3, t) \\ T_{\lambda_2}(x, x_3, t) \\ T_{\lambda_3}(x, x_3, t) \end{pmatrix}$$

$$= m(\Lambda) x^{\top} x + M(\Lambda) (c(t) + x_3 b(t)) x + a(t) x_3 + d(t) x_3^2 - e(t)$$
(2)

for $\lambda_k \in \mathbb{C}$ with $\Re(\lambda_k) > 0$.

Since y(t) = 0 for all t, a possible solution is $\xi_{\lambda}(t) = 0$ for all t and for all λ , so we solve online at each time

 $T(\hat{x},\hat{x}_3,t)=0$

2

Introduction	Non observable system	Functional KKL observer	KKL and indistinguishability
0000000	00000000000	0000000	0000

$$T(x, x_3, t) = \begin{pmatrix} T_{\lambda_1}(x, x_3, t) \\ T_{\lambda_2}(x, x_3, t) \\ T_{\lambda_3}(x, x_3, t) \end{pmatrix}$$

$$= m(\Lambda) x^{\top} x + M(\Lambda) (c(t) + x_3 b(t)) x + a(t) x_3 + d(t) x_3^2 - e(t)$$
(2)

for $\lambda_k \in \mathbb{C}$ with $\Re(\lambda_k) > 0$.

Since y(t) = 0 for all t, a possible solution is $\xi_{\lambda}(t) = 0$ for all t and for all λ , so we solve online at each time

$$T(\hat{x},\hat{x}_3,t)=0$$

Number of solutions proved to be equal to the number of solutions to $H_3(x, x_3, t) = 0$ in the differential observability analysis for sufficiently fast eigenvalues!

イロン イヨン イヨン 「ヨ

Introduction	Non observable system	Functional KKL observer	KKL and indistinguishability
0000000	00000000000	0000000	0000

$$T(x, x_3, t) = \begin{pmatrix} T_{\lambda_1}(x, x_3, t) \\ T_{\lambda_2}(x, x_3, t) \\ T_{\lambda_3}(x, x_3, t) \end{pmatrix}$$

$$= m(\Lambda) x^{\top} x + M(\Lambda) (c(t) + x_3 b(t)) x + a(t) x_3 + d(t) x_3^2 - e(t)$$
(2)

for $\lambda_k \in \mathbb{C}$ with $\Re(\lambda_k) > 0$.

Since y(t) = 0 for all t, a possible solution is $\xi_{\lambda}(t) = 0$ for all t and for all λ , so we solve online at each time

$$T(\hat{x},\hat{x}_3,t)=0$$

Number of solutions proved to be equal to the number of solutions to $H_3(x, x_3, t) = 0$ in the differential observability analysis for sufficiently fast eigenvalues!

 \implies Elimination of $x^{\top}x$, then x and finally grid in x_3 !

イロン イヨン イヨン 「ヨ

Pauline Bernard

KKL observer design for non observable systems

17 / 33

Introduction	Non observable system	Functional KKL observer	KKL and indistinguishability
0000000	0000000000000	0000000	0000

Additional knowledge : $i_q > 0$ because motor mode \Rightarrow removes indistinguishability

Figure – Results of the observer algorithm with $\lambda_1 = 20$, $\lambda_2 = 30$, $\lambda_3 = 40$, $dt_R = 0.1$, and two grids with amplitude G = 1 and G = 0.1 respectively. The estimation starts at $\bar{t} = 0.5$.

э

イロト イヨト イヨト イヨト

(b) Zoom around R = 1.45

< ロ > < 回 > < 回 > < 回 > < 回 >

Figure – Plot of the criterion $|J(\cdot, t)|$ on the grid with G = 1 at each iteration where \hat{R} is updated, i.e. every $dt_R = 0.1$.

2

Functional KKL observer

KKL and indistinguishability

Experimental data with constant i_d , i_q and ω

Figure – Real data : Plot of the criterion $|J(\cdot, t)|$ on the grid with G = 1 at each iteration where \hat{R} is updated, i.e. every $dt_R = 0.1$.

2

イロト イヨト イヨト イヨト

Introduction	Non observable system
0000000	00000000000
Conclusion	

• KKL observer design possible for a non observable system

- the inversion of the transformation enables to recover the different possibilities predicted by differential observability analysis
- comparison with high gain :
 - transformation independent from input derivatives
 - non observability prevents having a triangular normal form (set-valued last line)

イロト イボト イヨト イヨト

Introduction	
0000000	

Contents

Introduction

2 Non observable system

- Sensorless PMSM with unknown resistance
- Indistinguishable trajectories
- KKL observer design

Functional KKL observer

- Existence of T
- Injectivity of T with respect to q
- Left-inverse and convergence

KKL and indistinguishability

э

< ロ > < 回 > < 回 > < 回 > < 回 >

Existence of a left-inverse \mathcal{T} requires observability !

- \Rightarrow What if the system is not observable?
- \Rightarrow Estimate only the observable part !

< ロ > < 回 > < 回 > < 回 > < 回 >

Functional KKL observer

KKL and indistinguishability

Functional KKL design

Consider a continuous map $q : \mathbb{R}^{d_x} \to \mathbb{R}^{d_q}$.

Goal : estimate z := q(x)

Existence of T doesn't change!

Can we show existence of \mathcal{T} such that $\lim_{t\to+\infty} |q(x) - \hat{z}| = 0$ under observability of q(x)?

3

イロト イヨト イヨト イヨト

Functional KKL observer

KKL and indistinguishability

Functional KKL design

Consider a continuous map $q : \mathbb{R}^{d_x} \to \mathbb{R}^{d_q}$.

Goal : estimate z := q(x)

Existence of T doesn't change!

Can we show existence of \mathcal{T} such that $\lim_{t\to+\infty} |q(x) - \hat{z}| = 0$ under observability of q(x)?

Assumption 1 (Bounded trajectories). The trajectories of $\dot{x} = f(x)$ to be estimated evolve in a compact set \mathcal{X} . Pauline Bernard KKL observer design for non observable systems 24 / 33

Introduction	
0000000	

Functional KKL observer

KKL and indistinguishability

Existence of T

Goal : Find a transformation $x \mapsto T(x)$ such that $\xi = T(x)$ verifies

 $\dot{\xi} = A\xi + By$, A Hurwitz

2

< ロ > < 回 > < 回 > < 回 > < 回 > <

Introd	uction
0000	000

Functional KKL observer

KKL and indistinguishability

Existence of T

Goal : Find a transformation $x \mapsto T(x)$ such that $\xi = T(x)$ verifies

$$\dot{\xi}=A\,\xi+B\,y$$
 , A Hurwitz

 \Rightarrow We want $\overline{T(x)} = A T(x) + B h(x)$

2

イロン イ団 とくほと くほとう

Introd	uction
0000	000

Functional KKL observer

KKL and indistinguishability

Existence of T

Goal : Find a transformation $x \mapsto T(x)$ such that $\xi = T(x)$ verifies

$$\dot{\xi} = A\xi + By$$
 , A Hurwitz

$$\Rightarrow$$
 We want $\overline{T(x)} = A T(x) + B h(x)$

=> Find a solution to the PDE

$$\frac{\partial T}{\partial x}(x)f(x) = A T(x) + B h(x)$$
(3)

イロン イ団 とくほと くほとう

2

Introd	uction
0000	000

Functional KKL observer

KKL and indistinguishability

Existence of T

Goal : Find a transformation $x \mapsto T(x)$ such that $\xi = T(x)$ verifies

$$\dot{\xi} = A\xi + By$$
 , A Hurwitz

$$\Rightarrow$$
 We want $\overline{T(x)} = A T(x) + B h(x)$

=> Find a solution to the PDE

$$\frac{\partial T}{\partial x}(x)f(x) = A T(x) + B h(x)$$
(3)

Theorem 4 (Existence of T).

There exists $\ell > 0$ such that for any $A \in \mathbb{R}^{d_{\xi} \times d_{\xi}}$ with $\text{Re}(\text{eig}(A)) < -\ell$, and any $B \in \mathbb{R}^{d_{\xi} \times d_{y}}$, the map

$$T(x) = \int_{-\infty}^{0} e^{-As} B h(\check{X}(x,s)) ds$$

is C¹ and verifies PDE (3), where $s \mapsto \check{X}(x, s)$ is the solution initialized at x of $\dot{x} = \check{f}(x)$ with \check{f} bounded equal to f on \mathcal{X} .

Pauline Bernard

3

Introduction	Non observable system	Functional KKL observer	KKL and indistinguishability
0000000	00000000000	00000000	0000
Injectivity of	T with respect to a		

Let an open set S such that $\mathcal{X} \subset S$.

Assumption 2 (Backward O-distinguishability with respect to q).

There exist $\delta_d > \delta_{\Upsilon}$, such that for each pair (x_a, x_b) in $\mathcal{O} + \delta_{\Upsilon}$ verifying $q(x_a) \neq q(x_b)$, there exists $t \in (\max\{\sigma_{\mathcal{O}+\delta_d}^-(x_a), \sigma_{\mathcal{O}+\delta_d}^-(x_b)\}, 0]$, such that

 $h(X(x_a,t)) \neq h(X(x_b,t)).$

イロト イロト イヨト イヨト

Introduction	Non observable system	Functional KKL observer	KKL and indistinguishability
0000000	000000000000	00000000	0000
Injectivity of	T with respect to a		

Let an open set S such that $\mathcal{X} \subset S$.

Assumption 2 (Backward O-distinguishability with respect to q).

There exist $\delta_d > \delta_{\Upsilon}$, such that for each pair (x_a, x_b) in $\mathcal{O} + \delta_{\Upsilon}$ verifying $q(x_a) \neq q(x_b)$, there exists $t \in (\max\{\sigma_{\mathcal{O}+\delta_d}^-(x_a), \sigma_{\mathcal{O}+\delta_d}^-(x_b)\}, 0]$, such that

 $h(X(x_a,t)) \neq h(X(x_b,t)).$

Theorem 5 (Injectivity with respect to q).

Assume the system is backward O-distinguishable with respect to q.

Then, there exists $\ell > 0$ and a set S of zero-Lebesgue measure in $\mathbb{C}_{\ell}^{d_{x}+1}$ with

$$\mathbb{C}_{\ell} = \{z \in \mathbb{C} : \operatorname{Re}(z) < -\ell\}$$

such that for any diagonalizable matrix $A_0 \in \mathbb{C}^{(d_x+1) \times (d_x+1)}$ and any $B_0 \in \mathbb{C}^{d_x+1}$ such that $\operatorname{eig}(A_0) \in \mathbb{C}^{d_x+1} \setminus S$ and (A_0, B_0) controllable,

the map T defined for $A = A_0 \otimes I_{d_y}$ and $B = B_0 \otimes I_{d_y}$ is injective with respect to q on \mathcal{X} , i.e, for all $(x_a, x_b) \subset \mathcal{X} \times \mathcal{X}$,

$$T(x_a) = T(x_b) \implies q(x_a) = q(x_b)$$
.

Pauline Bernard

Non observable system

Functional KKL observer

KKL and indistinguishability

Left-inverse and convergence

Taking real and imaginary parts, $T : \mathbb{R}^{d_{\chi}} \to \mathbb{R}^{d_{\xi}}$ with $d_{\xi} = 2(d_{\chi} + 1)d_{y}$, such that for all $(x_{a}, x_{b}) \in \mathcal{X} \times \mathcal{X}$,

$$T(x_a) = T(x_b) \implies q(x_a) = q(x_b)$$
.

3

イロト イロト イヨト イヨト

Non observable system

Functional KKL observer

KKL and indistinguishability

Left-inverse and convergence

Taking real and imaginary parts, $T : \mathbb{R}^{d_x} \to \mathbb{R}^{d_{\xi}}$ with $d_{\xi} = 2(d_x + 1)d_y$, such that for all $(x_a, x_b) \in \mathcal{X} \times \mathcal{X}$,

$$T(x_a) = T(x_b) \implies q(x_a) = q(x_b)$$

Therefore, there exists $\mathcal{T}: \mathbb{R}^{d_{\xi}} \to \mathbb{R}^{d_x}$ and ρ of class \mathcal{K} such that

- $\mathcal{T}(\mathcal{T}(x)) = q(x)$ for all $x \in \mathcal{X}$
- $|\mathcal{T}(\xi_a) \mathcal{T}(\xi_b)| \le \rho(|\xi_a \xi_b|)$ for all $(\xi_a, \xi_b) \in \mathbb{R}^{d_{\xi}} \times \mathbb{R}^{d_{\xi}}$

3

イロン イ団 と イヨン イヨン

Non observable system

Functional KKL observer

KKL and indistinguishability

Left-inverse and convergence

Taking real and imaginary parts, $T : \mathbb{R}^{d_x} \to \mathbb{R}^{d_{\xi}}$ with $d_{\xi} = 2(d_x + 1)d_y$, such that for all $(x_a, x_b) \in \mathcal{X} \times \mathcal{X}$,

$$T(x_a) = T(x_b) \implies q(x_a) = q(x_b)$$

Therefore, there exists $\mathcal{T}: \mathbb{R}^{d_{\xi}} \to \mathbb{R}^{d_x}$ and ρ of class \mathcal{K} such that

- $\mathcal{T}(\mathcal{T}(x)) = q(x)$ for all $x \in \mathcal{X}$
- $|\mathcal{T}(\xi_a) \mathcal{T}(\xi_b)| \le \rho(|\xi_a \xi_b|)$ for all $(\xi_a, \xi_b) \in \mathbb{R}^{d_{\xi}} \times \mathbb{R}^{d_{\xi}}$

 \Rightarrow Uniformly continuous left-inverse of T with respect to q !

3

イロン イ団 とくほと くほとう

Non observable system

Functional KKL observer

KKL and indistinguishability

Left-inverse and convergence

Taking real and imaginary parts, $T : \mathbb{R}^{d_x} \to \mathbb{R}^{d_{\xi}}$ with $d_{\xi} = 2(d_x + 1)d_y$, such that for all $(x_a, x_b) \in \mathcal{X} \times \mathcal{X}$,

$$T(x_a) = T(x_b) \implies q(x_a) = q(x_b)$$

Therefore, there exists $\mathcal{T}: \mathbb{R}^{d_{\xi}} \to \mathbb{R}^{d_{x}}$ and ρ of class \mathcal{K} such that

- *T*(*T*(*x*)) = *q*(*x*) for all *x* ∈ *X*|*T*(ξ_a) − *T*(ξ_b)| ≤ ρ(|ξ_a − ξ_b|) for all (ξ_a, ξ_b) ∈ ℝ^dξ × ℝ^dξ
- \Rightarrow Uniformly continuous left-inverse of T with respect to q!

Since $x(t) \in \mathcal{X}$ for all $t \ge 0$, taking $\xi_a = \hat{\xi}$ and $\xi_b = \xi = \mathcal{T}(x)$, $|\mathcal{T}(\hat{\xi}(t)) - x(t)| \le \rho(|\hat{\xi}(t) - \xi(t)|)$ so that

$$\lim_{t\to+\infty}|\hat{z}(t)-q(x(t))|=0$$

Pauline Bernard

3

イロト イヨト イヨト イヨト

Introd	uction
0000	000

Functional KKL observer

KKL and indistinguishability

Functional KKL

$$\dot{x} = f(x)$$
 , $y = h(x)$

Theorem 6 (Functional KKL).

Assume

- \bullet the trajectories of interest remain in a compact set ${\cal X}$
- the system is backward distinguishable with respect to q.

Then, there exists a map $\mathcal{T}: \mathbb{R}^{d_{\xi}} \to \mathbb{R}^{d_x}$, a matrix $A \in \mathbb{R}^{d_{\xi} \times d_{\xi}}$ and $B \in \mathbb{R}^{d_{\xi} \times d_y}$ with $d_{\xi} = 2(d_x + 1)d_y$ such that

$$\dot{\hat{\xi}} = A\hat{\xi} + By$$

 $\hat{z} = \mathcal{T}(\hat{\xi})$

is a functional KKL observer with respect to q, i.e., for any $\hat{\xi}(0)$,

$$\lim_{t\to+\infty}|\hat{z}(t)-q(x(t))|=0$$

Pauline Bernard

Introduction	Non observable system	Functional KKL observer	KKL and indistinguishability
0000000	00000000000	0000000	0000

• It is actually sufficient to take $d_{\xi} = (2d_x + 1)d_y$ and the result holds for "almost any" choice of Hurwitz $A_0 \in \mathbb{R}^{(2d_x+1)\times(2d_x+1)}$ and any B making (A, B) controllable.

э

< ロ > < 回 > < 回 > < 回 > < 回 >

Introduction	Non observable system	Functional KKL observer	KKL and indistinguishability
0000000	00000000000	0000000	0000

- It is actually sufficient to take d_ξ = (2d_x + 1)d_y and the result holds for "almost any" choice of Hurwitz A₀ ∈ ℝ^{(2d_x+1)×(2d_x+1)} and any B making (A, B) controllable.
- The result extends to **time-varying systems** with q(x, t) continuous but for $d_{\xi} = (2d_x + 2)d_y$ and with time-varying T(x, t) and T(x, t). But uniform injectivity in time not guaranteed for convergence.

イロン 不得と イヨン イヨン

Introduction	Non observable system	Functional KKL observer	KKL and indistinguishability
000000	00000000000	0000000	0000

- It is actually sufficient to take d_ξ = (2d_x + 1)d_y and the result holds for "almost any" choice of Hurwitz A₀ ∈ ℝ^{(2d_x+1)×(2d_x+1)} and any B making (A, B) controllable.
- The result extends to **time-varying systems** with q(x, t) continuous but for $d_{\xi} = (2d_x + 2)d_y$ and with time-varying T(x, t) and T(x, t). But uniform injectivity in time not guaranteed for convergence.
- In presence of **inputs**, the time-varying paradigm applies, but with $T_u(x, t)$ and $T_u(x, t)$ depending implicitly on the the input :
 - -> either we can compute this dependence explicitly (for instance via filters as in the context of electrical machines)
 - -> or we design ${\mathcal T}$ and ${\mathcal T}$ for a particular class of inputs generated by

$$\dot{w} = s(w)$$
, $u = l(w)$

via a functional observer on the extended system with state (x, w) and extended output (h(x, l(w)), l(w)), leading to

$$\dot{\hat{\xi}} = A\hat{\xi} + B\begin{pmatrix} y\\ u \end{pmatrix}$$

イロト イヨト イヨト

Introduction	Non observable system	Functional KKL observer	KKL and indistinguishability
000000	00000000000	0000000	0000

- It is actually sufficient to take d_ξ = (2d_x + 1)d_y and the result holds for "almost any" choice of Hurwitz A₀ ∈ ℝ^{(2d_x+1)×(2d_x+1)} and any B making (A, B) controllable.
- The result extends to **time-varying systems** with q(x, t) continuous but for $d_{\xi} = (2d_x + 2)d_y$ and with time-varying T(x, t) and T(x, t). But uniform injectivity in time not guaranteed for convergence.
- In presence of **inputs**, the time-varying paradigm applies, but with $T_u(x, t)$ and $T_u(x, t)$ depending implicitly on the the input :
 - -> either we can compute this dependence explicitly (for instance via filters as in the context of electrical machines)
 - -> or we design ${\mathcal T}$ and ${\mathcal T}$ for a particular class of inputs generated by

$$\dot{w} = s(w)$$
, $u = l(w)$

via a functional observer on the extended system with state (x, w) and extended output (h(x, l(w)), l(w)), leading to

$$\dot{\hat{\xi}} = A\hat{\xi} + B\begin{pmatrix} y\\ u \end{pmatrix}$$

 When the maps T and T are not known explicitly, we can compute them numerically via neural networks ⇒ "numerical KKL"

L. Da Costa Ramos, F. Di Meglio, L. F. Figueira Da Silva, V. Morgenthalter, P. Bernard, Numerical design of Luenberger observers for nonlinear systems, CDC, 2020

Introduction	
0000000	

Functional KKL observer

KKL and indistinguishability

Contents

Introduction

2 Non observable system

- Sensorless PMSM with unknown resistance
- Indistinguishable trajectories
- KKL observer design

Functional KKL observer

- Existence of T
- Injectivity of T with respect to q
- Left-inverse and convergence

KKL and indistinguishability

э

< ロ > < 回 > < 回 > < 回 > < 回 >

Introduc	tion
000000	0

Functional KKL observer

KKL and indistinguishability

Differential non-observability

$$\dot{x} = f(x,t)$$
 , $y = h(x,t)$

The system is always instantaneously backward-distinguishable with respect to the map

$$q(x,t) = \begin{pmatrix} h(x,t) \\ L_f h(x,t) \\ \vdots \\ L_f^{m-1} h(x,t) \end{pmatrix}$$

for any $m \in \mathbb{N}$.

 \Rightarrow q(x, t) can always be estimated via functional KKL observer!

$$\dot{\hat{\xi}} = A\hat{\xi} + By$$
 , $\hat{z} = \mathcal{T}(\hat{\xi}, t)$

 \Rightarrow Recover all possible \hat{x} such that

$$\hat{x} \in \operatorname{Argmin}_{x \in \mathcal{X}} |q(x, t) - \hat{z}|^2$$

 \Rightarrow No need for normal triangular form unlike in high-gain design !

Pauline Bernard

イロト イヨト イヨト イヨト

Introd	uction
0000	000

Functional KKL observer

KKL and indistinguishability

Indistinguishability

Given \check{f} bounded such that $\check{f} = f$ on an open set \mathcal{O} containing \mathcal{X} :

Consider the set $\check{\mathcal{I}} \subset \mathbb{R}^{d_x} \times \mathbb{R}^{d_x}$ of pairs (x_a, x_b) backward-indistinguishable for $\dot{x} = \check{f}(x)$, i.e., such that

$$h(\breve{X}(x_a),t)) = h(\breve{X}(x_b),t)) \quad \forall t \leq 0$$

Then, by definition, for all $(x_a, x_b) \in \check{\mathcal{I}}$,

$$T(x_a) = \int_{-\infty}^0 e^{-As} B h(\check{X}(x_a,s)) ds = \int_{-\infty}^0 e^{-As} B h(\check{X}(x_b,s)) ds = T(x_b)$$

 \Rightarrow Indistinguishable by T!

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Introduction	
0000000	

Functional KKL observer

KKL and indistinguishability

Indistinguishability

Given \check{f} bounded such that $\check{f} = f$ on an open set \mathcal{O} containing \mathcal{X} :

Consider the set $\check{I} \subset \mathbb{R}^{d_x} \times \mathbb{R}^{d_x}$ of pairs (x_a, x_b) backward-indistinguishable for $\dot{x} = \check{f}(x)$, i.e., such that

$$h(\breve{X}(x_a), t)) = h(\breve{X}(x_b), t)) \quad \forall t \leq 0$$

Then, by definition, for all $(x_a, x_b) \in \check{\mathcal{I}}$,

$$T(x_a) = \int_{-\infty}^0 e^{-As} B h(\breve{X}(x_a,s)) ds = \int_{-\infty}^0 e^{-As} B h(\breve{X}(x_b,s)) ds = T(x_b)$$

 \Rightarrow Indistinguishable by T !

Conversely, applying the proof of KKL on the open set $(\mathbb{R}^{d_x} imes \mathbb{R}^{d_x}) \setminus \check{\mathcal{I}}$ instead of

$$\{(x_a, x_b) \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_x} : x_a \neq x_b\}$$

should show that for "almost all" choice of (A, B) of dimension $(2d_x + 1)d_y$,

$$T(x_a) = T(x_b) \implies (x_a, x_b) \in \breve{\mathcal{I}}$$

i.e., T is injective with respect to the distinguishable states !

Pauline Bernard

イロン イヨン イヨン 「ヨ

Introduction	Non observable system	Functional KKL observer	KKL and indistinguishability
0000000	00000000000	0000000	0000
Conclusion			

- KKL design well suited for non observable systems since the dynamics are well-defined and everything is in the inversion of the transformation
- very general theoretical answer to the observation problem under weak assumptions
- problem : numerical computation of T and T challenging in practice !
- how generic is the case of "finite-indistinguishability"?