Stabilization of non-uniformly observable control systems

Lucas Brivadis
Joint work with Jean-Paul Gauthier, Ludovic Sacchelli and Ulysse Serres
December 2, 2021
Mini-workshop: Défauts d’observabilité des systèmes non-linéaires
Introduction
Consider a nonlinear observation-control system:

\[
\begin{aligned}
\dot{x} &= f(x, u) \\
y &= h(x)
\end{aligned}
\]

\(x \in \mathbb{R}^n\) is the state, \(u \in \mathbb{R}^p\) is the input and \(y \in \mathbb{R}^m\) is the output.

Semi-global dynamic output feedback stabilization:

For each compact set \(K \subset \mathbb{R}^n\), find a dynamic output feedback

\[
\begin{aligned}
\dot{x} &= \nu(\hat{x}, u, y) \\
u &= \omega(\hat{x}, y)
\end{aligned}
\]

and a compact set \(\hat{K}\) such that \((x^*, \hat{x}^*)\) is an asymptotically stable equilibrium with basin of attraction containing \(K \times \hat{K}\) in closed-loop.
Consider a nonlinear observation-control system:

\[
\begin{aligned}
\dot{x} &= f(x, u) \\
y &= h(x)
\end{aligned}
\]

\(x \in \mathbb{R}^n\) is the state, \(u \in \mathbb{R}^p\) is the input and \(y \in \mathbb{R}^m\) is the output.

Semi-global dynamic output feedback stabilization:

For each compact set \(K \subset \mathbb{R}^n\), find a dynamic output feedback

\[
\begin{aligned}
\dot{x} &= \nu(\hat{x}, u, y) \\
u &= \varpi(\hat{x}, y)
\end{aligned}
\]

and a compact set \(\hat{K}\) such that \((x^*, \hat{x}^*)\) is an asymptotically stable equilibrium with basin of attraction containing \(K \times \hat{K}\) in closed-loop.
Consider a nonlinear observation-control system:

\[
\begin{align*}
\dot{x} &= f(x, u) \\
y &= h(x)
\end{align*}
\]

\(x \in \mathbb{R}^n\) is the state, \(u \in \mathbb{R}^p\) is the input and \(y \in \mathbb{R}^m\) is the output.

Semi-global dynamic output feedback stabilization:

For each compact set \(K \subset \mathbb{R}^n\), find a dynamic output feedback

\[
\begin{align*}
\dot{\hat{x}} &= \nu(\hat{x}, u, y) \\
u &= \omega(\hat{x}, y)
\end{align*}
\]

and a compact set \(\hat{K}\) such that \((0, 0)\) is an asymptotically stable equilibrium with basin of attraction containing \(K \times \hat{K}\) in closed-loop.
Dynamic output feedback stabilization

State feedback stabilization: Find a feedback λ such that the origin is a globally asymptotically stable equilibrium point of the vector field $x \mapsto f(x, \lambda(x))$.

Observer-based strategy: Design an observer system

$$\dot{\hat{x}} = \nu(\hat{x}, u, y)$$

such that $\hat{x} - x \to 0$ for all initial conditions in $K \times \hat{K}$ and use the control $u = \lambda(\hat{x})$ with λ globally stabilizing.

Closed-loop:

$$\begin{cases}
\dot{x} = f(x, \lambda(\hat{x})) \\
y = h(x)
\end{cases}, \quad \begin{cases}
\dot{\hat{x}} = \nu(\hat{x}, u, y) \\
u = \lambda(\hat{x})
\end{cases}$$
Dynamic output feedback stabilization

State feedback stabilization: Find a feedback λ such that the origin is a globally asymptotically stable equilibrium point of the vector field $x \mapsto f(x, \lambda(x))$.

Observer-based strategy: Design an observer system

$$\dot{\hat{x}} = \nu(\hat{x}, u, y)$$

such that $\hat{x} - x \to 0$ for all initial conditions in $K \times \hat{K}$ and use the control $u = \lambda(\hat{x})$ with λ globally stabilizing.

Closed-loop:

$$\begin{align*}
\begin{cases}
\dot{x} = f(x, \lambda(\hat{x})) \\
y = h(x)
\end{cases},
\begin{cases}
\dot{\hat{x}} = \nu(\hat{x}, u, y) \\
u = \lambda(\hat{x})
\end{cases}
\end{align*}$$
State feedback stabilization: Find a feedback λ such that the origin is a globally asymptotically stable equilibrium point of the vector field $x \mapsto f(x, \lambda(x))$.

Observer-based strategy: Design an observer system

$$\dot{\hat{x}} = \nu(\hat{x}, u, y)$$

such that $\hat{x} - x \to 0$ for all initial conditions in $K \times \hat{K}$ and use the control $u = \lambda(\hat{x})$ with λ globally stabilizing.

Closed-loop:

$$\begin{cases}
\dot{x} = f(x, \lambda(\hat{x})) \\
y = h(x)
\end{cases}, \quad \begin{cases}
\dot{\hat{x}} = \nu(\hat{x}, u, y) \\
u = \lambda(\hat{x})
\end{cases}$$
Dynamic output feedback stabilization

Dynamic output feedback stabilization diagram

$D(\lambda)$

x^*
Dynamic output feedback stabilization

Dynamic output feedback stabilization diagram
Dynamic output feedback stabilization

Dynamic output feedback stabilization diagram
Dynamic output feedback stabilization

Dynamic output feedback stabilization diagram
Dynamic output feedback stabilization

Dynamic output feedback stabilization diagram
Dynamic output feedback stabilization

Dynamic output feedback stabilization diagram
Dynamic output feedback stabilization

Definition (Observability and Uniform observability). A system is said to be *observable* in time T for an input u if and only if, for all initial conditions $x_a \neq x_b \in \mathbb{R}^n$,

$$\text{measure} \left\{ t \in [0, T] \mid y(t; x_a) \neq y(t; x_b) \right\} > 0$$

If it is observable in any time $T > 0$ for all inputs u, then it is said to be *uniformly observable* in small time.
Uniform observability

Theorem (Teel and Praly, 1994). If the system is

- globally state feedback stabilizable
- completely uniformly observable

then it is also semi-globally stabilizable by dynamic output feedback.

Problem: It is not generic to be uniformly observable when \(m \leq p \) (Gauthier and Kupka, 2001).

What if there is no uniform observability?
Uniform observability

Theorem (Teel and Praly, 1994). If the system is

- globally state feedback stabilizable
- completely uniformly observable

then it is also semi-globally stabilizable by dynamic output feedback.

Problem: It is not generic to be uniformly observable when $m \leq p$ (Gauthier and Kupka, 2001).

What if there is no uniform observability?
Non-uniformly observable systems

Definition (Control value at the target).

If \((x, \hat{x}) \to (0, 0)\), then \(u = \varpi(\hat{x}, h(x)) \to u^*\).

Does the constant input \(u \equiv 0\) make the system observable?

\[
\begin{aligned}
\dot{x} &= f(x, 0) \\
y &= h(x)
\end{aligned}
\]

- Yes: Observable target
- No: Unobservable target
Non-uniformly observable systems

Definition (Control value at the target).

If \((x, \hat{x}) \to (0, 0)\), then \(u = \varpi(\hat{x}, h(x)) \to u^* = 0\).

Does the constant input \(u \equiv 0\) make the system observable?

\[
\begin{align*}
\dot{x} &= f(x, 0) \\
y &= h(x)
\end{align*}
\]

Yes \quad Observable target

No \quad Unobservable target
Non-uniformly observable systems

Definition (Control value at the target).

If \((x, \hat{x}) \to (0, 0)\), then \(u = \varpi(\hat{x}, h(x)) \to u^* = 0\).

Does the constant input \(u \equiv 0\) make the system observable?

\[
\begin{cases}
\dot{x} = f(x, 0) \\
y = h(x)
\end{cases}
\]

Yes

Observable target

No

Unobservable target
Main obstacles and tools

Main problems to be tackled:

- Observable target: avoid observability singularities when possible
- Unobservable target: observation and stabilization are antagonistic

Main techniques to deal with these problems:

- Feedback perturbation
- Dissipative systems
- Embeddings
Main obstacles and tools

Main problems to be tackled:

- Observable target: avoid observability singularities when possible
- Unobservable target: observation and stabilization are antagonistic

Main techniques to deal with these problems:

- Feedback perturbation
- Dissipative systems
- Embeddings
Observable target
Systems under consideration: SISO bilinear systems with linear output

\[
\begin{aligned}
\dot{x} &= (A + uB)x + bu \\
y &= Cx
\end{aligned}
\]

\(x \in \mathbb{R}^n, \ u \in \mathbb{R}, \ y \in \mathbb{R}, \ A, B \in \mathbb{R}^{n \times n}, \ C \in \mathbb{R}^{1 \times n}, \ b \in \mathbb{R}^n.\)

State feedback: \(u = \lambda(x)\) is globally asymptotically stabilizing.

Observer system:

\[
\dot{x} = (A + uB)\hat{x} + bu - PC^*C(\hat{x} - x)
\]

- \(\dot{P} = 0\) (Luenberger observer)
- \(\dot{P} = (A + uB)P + P(A + uB)^* + Q - PC^*CP\) (Kalman observer)
Systems under consideration: SISO bilinear systems with linear output

\[
\begin{align*}
\dot{x} &= (A + uB)x + bu \\
y &= Cx
\end{align*}
\]

\(x \in \mathbb{R}^n, \ u \in \mathbb{R}, \ y \in \mathbb{R}, \ A, B \in \mathbb{R}^{n \times n}, \ C \in \mathbb{R}^{1 \times n}, \ b \in \mathbb{R}^n.\)

State feedback: \(u = \lambda(x)\) is globally asymptotically stabilizing.

Observer system:

\[
\dot{\hat{x}} = (A + uB)\hat{x} + bu - PC^*C(\hat{x} - x)
\]

- \(\dot{P} = 0\) (Luenberger observer)
- \(\dot{P} = (A + uB)P + P(A + uB)^* + Q - PC^*CP\) (Kalman observer)
Systems under consideration: SISO bilinear systems with linear output

\[
\begin{align*}
\dot{x} &= (A + uB)x + bu \\
y &= Cx
\end{align*}
\]

\(x \in \mathbb{R}^n, \ u \in \mathbb{R}, \ y \in \mathbb{R}, \ A, B \in \mathbb{R}^{n \times n}, \ C \in \mathbb{R}^{1 \times n}, \ b \in \mathbb{R}^n.\)

State feedback: \(u = \lambda(x)\) is globally asymptotically stabilizing.

Observer system:

\[
\dot{\hat{x}} = (A + uB)\hat{x} + bu - PC^* C(\hat{x} - x)
\]

- \(\dot{P} = 0\) (Luenberger observer)
- \(\dot{P} = (A + uB)P + P(A + uB)^* + Q - PC^* CP\) (Kalman observer)
Systems under consideration: SISO bilinear systems with linear output

\[
\begin{aligned}
\dot{x} &= (A + uB)x + bu \\
y &= Cx
\end{aligned}
\]

\(x \in \mathbb{R}^n, u \in \mathbb{R}, y \in \mathbb{R}, A, B \in \mathbb{R}^{n \times n}, C \in \mathbb{R}^{1 \times n}, b \in \mathbb{R}^n.\)

State feedback: \(u = \lambda(x)\) is globally asymptotically stabilizing.

Observer system:

\[
\dot{\hat{x}} = (A + uB)\hat{x} + bu - PC^*C(\hat{x} - x)
\]

- \(\dot{P} = 0\) (Luenberger observer)
- \(\dot{P} = (A + uB)P + P(A + uB)^* + Q - PC^*CP\) (Kalman observer)
Feedback perturbation

Issue: What happens if the chosen control $u = \lambda(\hat{x})$ makes the system unobservable?

General idea: Feedback modification

- Periodic additive perturbation

 $$u(t) = \lambda(\hat{x}(t)) \rightarrow u(t) = \lambda(\hat{x}(t)) + d(t)$$

 - [Combes et al., 2016]: virtual measurements

- Switching strategy

 - Excite the system to estimate the state, then control to stabilize, etc.
 - [Coron, 1994]: local stabilization
 - [Shim and Teel, 2002]: practical stabilization

- Smooth autonomous perturbation

 $$u(t) = \lambda(\hat{x}(t)) \rightarrow u(t) = \lambda(\hat{x}(t)) + \delta(\hat{x}(t))$$

 - [Lagache, Serres and Gauthier, 2017]: additive perturbation
Feedback perturbation

Issue: What happens if the chosen control $u = \lambda(\hat{x})$ makes the system unobservable?

General idea: Feedback modification

- Periodic additive perturbation

 $$u(t) = \lambda(\hat{x}(t)) \rightarrow u(t) = \lambda(\hat{x}(t)) + d(t)$$

 - [Combes et al., 2016]: virtual measurements

- Switching strategy
 - Excite the system to estimate the state, then control to stabilize, etc.
 - [Coron, 1994]: local stabilization
 - [Shim and Teel, 2002]: practical stabilization

- Smooth autonomous perturbation

 $$u(t) = \lambda(\hat{x}(t)) \rightarrow u(t) = \lambda(\hat{x}(t)) + \delta(\hat{x}(t))$$

 - [Lagache, Serres and Gauthier, 2017]: additive perturbation
Feedback perturbation

Issue: What happens if the chosen control $u = \lambda(\hat{x})$ makes the system unobservable?

General idea: Feedback modification

- Periodic additive perturbation

 $$u(t) = \lambda(\hat{x}(t)) \longrightarrow u(t) = \lambda(\hat{x}(t)) + d(t)$$

 - [Combes et al., 2016]: virtual measurements

- Switching strategy
 - Excite the system to estimate the state, then control to stabilize, etc.
 - [Coron, 1994]: local stabilization
 - [Shim and Teel, 2002]: practical stabilization

- Smooth autonomous perturbation

 $$u(t) = \lambda(\hat{x}(t)) \longrightarrow u(t) = \lambda(\hat{x}(t)) + \delta(\hat{x}(t))$$

 - [Lagache, Serres and Gauthier, 2017]: additive perturbation
Issue: What happens if the chosen control $u = \lambda(\hat{x})$ makes the system unobservable?

General idea: Feedback modification

- **Periodic additive perturbation**

 $u(t) = \lambda(\hat{x}(t)) \rightarrow u(t) = \lambda(\hat{x}(t)) + d(t)$

 - [Combes et al., 2016]: virtual measurements

- **Switching strategy**
 - Excite the system to estimate the state, then control to stabilize, etc.
 - [Coron, 1994]: local stabilization
 - [Shim and Teel, 2002]: practical stabilization

- **Smooth autonomous perturbation**

 $u(t) = \lambda(\hat{x}(t)) \rightarrow u(t) = \lambda(\hat{x}(t)) + \delta(\hat{x}(t))$

 - [Lagache, Serres and Gauthier, 2017]: additive perturbation
Feedback perturbation

Issue: What happens if the chosen control $u = \lambda(\hat{x})$ makes the system unobservable?

General idea: Feedback modification

- **Periodic additive perturbation**

 $$u(t) = \lambda(\hat{x}(t)) \rightarrow u(t) = \lambda(\hat{x}(t)) + d(t)$$

 - [Combes et al., 2016]: virtual measurements
- **Switching strategy**

 - Excite the system to estimate the state, then control to stabilize, etc.
 - [Coron, 1994]: local stabilization
 - [Shim and Teel, 2002]: practical stabilization
- **Smooth autonomous perturbation**

 $$u(t) = \lambda(\hat{x}(t)) \rightarrow u(t) = (\lambda + \delta)(\hat{x}(t))$$

 - [Lagache, Serres and Gauthier, 2017]: additive perturbation
Strategy of [Lagache, Serres and Gauthier, 2017]:

1. Show that there exists a (smooth) small perturbation δ such that
 $$u = (\lambda + \delta) \circ \hat{x}$$ makes the system observable.
2. Show that for this input, the observer converges to the state (and remains in a fixed compact set).
3. Show asymptotic stability.

Remarks:

- Example of quantum control;
- **Unobservable** target;
- **Practical** stabilization and **exact** stabilization.

Towards a generalization?
Feedback perturbation

Strategy of [Lagache, Serres and Gauthier, 2017]:

1. Show that there exists a (smooth) small perturbation δ such that $u = (\lambda + \delta) \circ \hat{x}$ makes the system observable.
2. Show that for this input, the observer converges to the state (and remains in a fixed compact set).
3. Show asymptotic stability.

Remarks:

- Example of quantum control;
- **Unobservable** target;
- **Practical** stabilization and **exact** stabilization.

Towards a generalization?
Feedback perturbation

Strategy of [Lagache, Serres and Gauthier, 2017]:

1. Show that there exists a (smooth) small perturbation δ such that $u = (\lambda + \delta) \circ \hat{x}$ makes the system observable.

2. Show that for this input, the observer converges to the state (and remains in a fixed compact set).

3. Show asymptotic stability.

Remarks:

- Example of quantum control;
- **Unobservable** target;
- **Practical** stabilization and **exact** stabilization.

Towards a generalization?
Avoiding observability singularities

Theorem (Brivadis, Gauthier, Sacchelli and Serres, 2021).

\[
\begin{aligned}
\dot{x} &= (A + uB)x + bu \\
y &= Cx, \\
\dot{\hat{x}} &= (A + uB)\hat{x} + bu - PC^*C(\hat{x} - x)
\end{aligned}
\]

If
- \(\lambda\) is a smooth globally stabilizing feedback
- \((C, A)\) and \((C, B)\) are observable

then, for any compact \(K\), there exists \(\mathcal{N} \subset C^\infty(\mathbb{R}^n, \mathbb{R})\),

\[
\mathcal{N} = \left\{ \delta \mid \sup_{K_x} |\partial^\sigma \delta| < \varepsilon \text{ for } |\sigma| < k \text{ and } \delta = 0 \text{ in a nbh. of 0} \right\}
\]

such that
- \(\delta \in \mathcal{N} \implies \lambda + \delta\) is a semi-globally stabilizing state feedback
- \(\exists \Delta\) open and dense (Whitney \(C^\infty\)) in \(\mathcal{N}\) such that:
 \(\forall \delta \in \Delta, \forall (x_0, \hat{x}_0, P_0) \in K\), the system is observable in small time
 for the control \(u = (\lambda + \delta) \circ \hat{x}\).
Avoiding observability singularities

Theorem (Brivadis, Gauthier, Sacchelli and Serres, 2021).
\[
\begin{align*}
\dot{x} &= (A + uB)x + bu \\
y &= Cx,
\end{align*}
\]
\[
\dot{\hat{x}} = (A + uB)\hat{x} + bu - PC^*C(\hat{x} - x)
\]

If
- λ is a smooth globally stabilizing feedback
- (C, A) and (C, B) are observable

then, for any compact K, there exists $\mathcal{N} \subset C^\infty(\mathbb{R}^n, \mathbb{R})$,
\[
\mathcal{N} = \left\{ \delta \Big| \sup_{K_x} |\partial^\sigma \delta| < \varepsilon \text{ for } |\sigma| < k \text{ and } \delta = 0 \text{ in a nbh. of 0} \right\}
\]
such that
- $\delta \in \mathcal{N} \implies \lambda + \delta$ is a **semi-globally stabilizing state feedback**
- $\exists \Delta$ open and dense (Whitney C^∞) in \mathcal{N} such that:
 \[
 \forall \delta \in \Delta, \forall (x_0, \hat{x}_0, P_0) \in K, \text{ the system is observable in small time for the control } u = (\lambda + \delta) \circ \hat{x}.
 \]
Avoiding observability singularities

Theorem (Brivadis, Gauthier, Sacchelli and Serres, 2021).
\[
\begin{align*}
\dot{x} &= (A + uB)x + bu \\
y &= Cx,
\end{align*}
\]
\[
\dot{\hat{x}} = (A + uB)\hat{x} + bu - PC^*C(\hat{x} - x)
\]
If
- \(\lambda\) is a smooth globally stabilizing feedback
- \((C, A)\) and \((C, B)\) are observable
then, for any compact \(K\), there exists \(\mathcal{N} \subset C^\infty(\mathbb{R}^n, \mathbb{R})\),
\[
\mathcal{N} = \left\{ \delta \mid \sup_{K_x} |\partial^\sigma \delta| < \varepsilon \text{ for } |\sigma| < k \text{ and } \delta = 0 \text{ in a nbh. of } 0 \right\}
\]
such that
- \(\delta \in \mathcal{N} \implies \lambda + \delta\) is a semi-globally stabilizing state feedback
- \(\exists \Delta \text{ open and dense (Whitney } C^\infty)\) in \(\mathcal{N}\) such that:
 \(\forall \delta \in \Delta, \forall (x_0, \hat{x}_0, P_0) \in K\), the system is \textit{observable} in small time
 for the control \(u = (\lambda + \delta) \circ \hat{x}\).
Avoiding observability singularities

We can prove the convergence of bounded trajectories.

If x and \hat{x} remain in K', then $\hat{x} - x$ converges to zero (thanks to δ), and stabilization is achieved.

Otherwise, one must adapt the observer gain. How does it affect δ?
Avoiding observability singularities

We can prove the convergence of **bounded trajectories**.

If \(x \) and \(\hat{x} \) remain in \(K' \), then \(\hat{x} - x \) converges to zero (thanks to \(\delta \)), and stabilization is achieved.

Otherwise, one must adapt the observer gain. How does it affect \(\delta \)?
Avoiding observability singularities

We can prove the convergence of bounded trajectories.

If x and \hat{x} remain in K', then $\hat{x} - x$ converges to zero (thanks to δ), and stabilization is achieved. Otherwise, one must adapt the observer gain. How does it affect δ?
Dissipative systems

Definition (Dissipativity).

\[
\begin{align*}
\dot{x} &= A(u)x + B(u) \\
y &=Cx
\end{align*}
\]

with

\[
x'A(u)x \leq 0, \quad \forall x \in \mathbb{R}^n, \forall u \in \mathbb{R}^p.
\]

Luenberger observer:

\[
\begin{align*}
\dot{x} &= A(u)x - \alpha C' C \varepsilon \\
\dot{\varepsilon} &= (A(u) - \alpha C' C) \varepsilon
\end{align*}
\]

\(\alpha > 0\)

The norm of \(\varepsilon\) is non-increasing:

\[
\frac{1}{2} \frac{d}{dt} |\varepsilon|^2 = \varepsilon' A(u) \varepsilon - \alpha \varepsilon' C' C \varepsilon \leq -\alpha |C \varepsilon|^2 \leq 0
\]
Dissipative systems

Definition (Dissipativity).

\[
\begin{aligned}
\dot{x} &= A(u)x + B(u) \\
y &= Cx
\end{aligned}
\]

with

\[x' A(u)x \leq 0, \quad \forall x \in \mathbb{R}^n, \forall u \in \mathbb{R}^p.\]

Luenberger observer:

\[
\begin{aligned}
\dot{x} &= A(u)\hat{x} - \alpha C' C\varepsilon \\
\dot{\varepsilon} &= (A(u) - \alpha C' C)\varepsilon
\end{aligned}
\]

\[\alpha > 0\]

The norm of \(\varepsilon\) is non-increasing:

\[
\frac{1}{2} \frac{d}{dt} |\varepsilon|^2 = \varepsilon' A(u)\varepsilon - \alpha \varepsilon' C' C\varepsilon \leq -\alpha |C\varepsilon|^2 \leq 0
\]
Dissipative systems

Theorem (Sacchelli, Brivadis, Andrieu, Serres and Gauthier, 2020). If

- λ is a globally stabilizing feedback
- $A(u)$ is dissipative

then the system is semi-globally asymptotically stabilizable if and only if $(C, A(0))$ is detectable. The dynamic output feedback is given by

$$
\begin{cases}
\dot{x} = A(u)\hat{x} + B(u) - \alpha C'(C\hat{x} - y) \\
u = \lambda(\hat{x})
\end{cases}
$$

Strategy of the proof:

- $|\epsilon|$ is non-increasing
- choose α sufficiently small
Dissipative systems

Theorem (Sacchelli, Brivadis, Andrieu, Serres and Gauthier, 2020). If

- λ is a globally stabilizing feedback
- $A(u)$ is dissipative

then the system is **semi-globally asymptotically stabilizable** if and only if $(C, A(0))$ is detectable. The dynamic output feedback is given by

$$\begin{cases}
\dot{\hat{x}} = A(u)\hat{x} + B(u) - \alpha C'(C\hat{x} - y) \\
u = \lambda(\hat{x})
\end{cases}$$

Strategy of the proof:

- $|\varepsilon|$ is non-increasing
- choose α sufficiently small
Dissipative systems

Theorem (Sacchelli, Brivadis, Andrieu, Serres and Gauthier, 2020).

If

- \(\lambda \) is a globally stabilizing feedback
- \(A(u) \) is dissipative

then the system is **globally asymptotically stabilizable** if and only if \((C, A(0))\) is detectable. The dynamic output feedback is given by

\[
\begin{align*}
\dot{\hat{x}} &= A(u)\hat{x} + B(u) - \alpha(\hat{x})C'(C\hat{x} - y) \\
u &= \lambda(\hat{x})
\end{align*}
\]

Strategy of the proof:

- \(|\varepsilon|\) is non-increasing
- choose \(\alpha \) sufficiently small
Unobservable target
An illustrative example

Example inspired by [Coron, 1994]:

\[
\begin{cases}
\dot{x} = Jx + bu \\
y = h(|x|)
\end{cases}, \quad J' = -J, \quad (J, b) \text{ controllable}
\]

with \(x \in \mathbb{R}^n, u \in \mathbb{R}, y \in \mathbb{R} \).

Unobservability at \(u \equiv 0 \):

\[|x_a| = |x_b| \implies y(t; x_a) \equiv y(t; x_b) \]

Theorem (Brivadis, Gauthier, Sacchelli and Serres, 2021).

If \(J \) is not invertible, then the system **not** stabilizable by means of dynamic output feedback.

This is due to a **topological constraint**.
An illustrative example

Example inspired by [Coron, 1994]:

$$\begin{cases}
\dot{x} = Jx + bu \\
y = h(|x|)
\end{cases}, \quad J' = -J, \quad (J, b) \text{ controllable}$$

with $x \in \mathbb{R}^n$, $u \in \mathbb{R}$, $y \in \mathbb{R}$.

Unobservability at $u \equiv 0$:

$$|x_a| = |x_b| \implies y(t; x_a) \equiv y(t; x_b)$$

Theorem (Brivadis, Gauthier, Sacchelli and Serres, 2021). If J is not invertible, then the system not stabilizable by means of dynamic output feedback.

This is due to a **topological constraint**.
An illustrative example

Example inspired by [Coron, 1994]:

\[
\begin{align*}
\dot{x} &= Jx + bu \\
y &= h(|x|)
\end{align*}
\]

with \(x \in \mathbb{R}^n, u \in \mathbb{R}, y \in \mathbb{R} \).

Unobservability at \(u \equiv 0 \):

\[|x_a| = |x_b| \implies y(t; x_a) \equiv y(t; x_b) \]

Theorem (Brivadis, Gauthier, Sacchelli and Serres, 2021).

If \(J \) is not invertible, then the system not stabilizable by means of dynamic output feedback.

This is due to a **topological constraint**.
Embedding into a dissipative system

Theorem (Brivadis, Gauthier, Sacchelli and Serres, 2021). If J is invertible, (J, b) is controllable and $h(|x|) = |x|^2/2$, then the system is stabilizable by means of dynamic output feedback.

Idea: Embedding into a bilinear dissipative system with linear output.

$$z = \tau(x) = (x, \frac{1}{2}|x|^2).$$

\[
\begin{align*}
\dot{x} &= Jx + bu \\
y &= \frac{1}{2}|x|^2 \\
x(0) &\in \mathbb{R}^n
\end{align*} \quad \rightarrow \quad \begin{align*}
\dot{z} &= A(u)z + Bu \\
y &= Cz \\
z(0) &\in \tau(\mathbb{R}^n) \subset \mathbb{R}^{n+1}
\end{align*}
\]

$$A(u) = \begin{pmatrix} J & 0 \\ ub' & 0 \end{pmatrix}, \quad B = \begin{pmatrix} b \\ 0 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & \cdots & 0 & 1 \end{pmatrix}.$$
Embedding into a dissipative system

Theorem (Brivadis, Gauthier, Sacchelli and Serres, 2021). If J is invertible, (J, b) is controllable and $h(|x|) = |x|^2/2$, then the system is stabilizable by means of dynamic output feedback.

Idea: Embedding into a bilinear dissipative system with linear output.

$$z = \tau(x) = (x, \frac{1}{2}|x|^2).$$

$$\begin{align*}
\dot{x} &= Jx + bu \\
y &= \frac{1}{2}|x|^2 \\
x(0) &\in \mathbb{R}^n
\end{align*} \quad \rightarrow \quad \begin{align*}
\dot{z} &= A(u)z + Bu \\
y &= Cz \\
z(0) &\in \tau(\mathbb{R}^n) \subset \mathbb{R}^{n+1}
\end{align*}$$

$$A(u) = \begin{pmatrix} J & 0 \\ ub' & 0 \end{pmatrix}, \quad B = \begin{pmatrix} b \\ 0 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & \cdots & 0 & 1 \end{pmatrix}.$$
Embedding into a dissipative system

Observer system:

\[
\begin{align*}
\dot{\varepsilon} &= (A(u) - L(u)C)\varepsilon \\
\dot{\hat{z}} &= A(u)\hat{z} + Bu - L(u)C\varepsilon.
\end{align*}
\]

with \(L(u) = \begin{pmatrix} bu \\ \alpha \end{pmatrix} \) and \(\alpha > 0 \). Then,

\[A(u) - L(u)C = \begin{pmatrix} J & -bu \\ ub' & 0 \end{pmatrix} - \underbrace{\alpha C' C}_{\text{Luenberger correction term}} \]

Feedback law:

\[u = \begin{pmatrix} K & 0 \end{pmatrix}\hat{z} + \delta \hat{z}_{n+1} \] with \(J + bK \) Hurwitz and \(\delta > 0 \)
Embedding into a dissipative system

Observer system:

\[
\begin{align*}
\dot{\varepsilon} &= (A(u) - L(u)C)\varepsilon \\
\dot{\hat{z}} &= A(u)\hat{z} + Bu - L(u)C\varepsilon.
\end{align*}
\]

with \(L(u) = \begin{pmatrix} bu \\ \alpha \end{pmatrix} \) and \(\alpha > 0 \). Then,

\[
A(u) - L(u)C = \begin{pmatrix} J & -bu \\ ub' & 0 \end{pmatrix} - \begin{pmatrix} \alpha C' C \bigg) \end{pmatrix}
\]

Feedback law:

\[
u = \begin{pmatrix} K \\ 0 \end{pmatrix} \hat{z} + \delta \hat{\hat{z}}_{n+1} \text{ with } J + bK \text{ Hurwitz and } \delta > 0
\]
Embedding into a dissipative system

Sketch of the proof:

- Trajectories are **bounded**: choose α large enough
- **Observability analysis**: If $(\varepsilon_0, \hat{z}_0) \neq (0, 0)$, then the perturbed feedback makes the system observable in small time. Hence, $\varepsilon \to 0$.
- $\hat{z} \to 0$: choose δ small enough

What if J is **not** invertible?
Embedding into a dissipative system

Sketch of the proof:

- Trajectories are **bounded**: choose α large enough

- **Observability analysis**: If $(\varepsilon_0, \hat{z}_0) \neq (0, 0)$, then the perturbed feedback makes the system observable in small time. Hence, $\varepsilon \to 0$.

 - $\hat{z} \to 0$: choose δ small enough

What if J is **not** invertible?
Embedding into a dissipative system

Sketch of the proof:

- Trajectories are **bounded**: choose α large enough
- **Observability analysis**: If $(\varepsilon_0, \hat{z}_0) \neq (0, 0)$, then the perturbed feedback makes the system observable in small time. Hence, $\varepsilon \to 0$.
- $\hat{z} \to 0$: choose δ small enough

What if J is not invertible?
Embedding into a dissipative system

Sketch of the proof:

- Trajectories are **bounded**: choose α large enough
- **Observability analysis**: If $(\varepsilon_0, \hat{z}_0) \neq (0, 0)$, then the perturbed feedback makes the system observable in small time. Hence, $\varepsilon \to 0$.
- $\hat{z} \to 0$: choose δ small enough

What if J is **not** invertible?
Embedding into a dissipative system

Theorem (Brivadis, Sacchelli, 2021).

If \((J, b)\) is controllable and \(h(|x|) = |x|^2/2\), Then the system is globally stabilizable by means of a periodic time-varying dynamic output feedback.

Proof by switching strategy:

- **Observation phase:** On \([t_k, t_k + T]\), apply a control making the system observable except at the target point. Use the embedded observer.

- **Stabilization phase:** On \([t_k + T, t_{k+1}]\), apply a stabilizing control, based on a stabilizing feedback and the observer.

Open question: How to embed a nonlinear system into a system for which an observer with dissipative error can be designed?
Embedding into a dissipative system

Theorem (Brivadis, Sacchelli, 2021).
If \((J, b)\) is controllable and \(h(|x|) = |x|^2/2\), Then the system is **globally stabilizable** by means of a **periodic time-varying** dynamic output feedback.

Proof by **switching strategy**:

- **Observation phase**: On \([t_k, t_k + T)\), apply a control making the system observable except at the target point. Use the embedded observer.

- **Stabilization phase**: On \([t_k + T, t_{k+1})\), apply a stabilizing control, based on a stabilizing feedback and the observer.

Open question: How to embed a nonlinear system into a system for which an observer with dissipative error can be designed?
Embedding into a dissipative system

Theorem (Brivadis, Sacchelli, 2021).
If \((J, b)\) is controllable and \(h(|x|) = |x|^2/2\), Then the system is **globally stabilizable** by means of a **periodic time-varying** dynamic output feedback.

Proof by switching strategy:

- **Observation phase:** On \([t_k, t_{k+1}]\), apply a control making the system observable except at the target point. Use the embedded observer.

- **Stabilization phase:** On \([t_k + T, t_{k+1})\), apply a stabilizing control, based on a stabilizing feedback and the observer.

Open question: How to embed a nonlinear system into a system for which an observer with dissipative error can be designed?
Definition (Unitary representation). A unitary representation of a group G is a group morphism $\rho : G \rightarrow \mathcal{L}(H)$, where $\mathcal{L}(H)$ are the bounded endomorphism of the Hilbert space H and $\rho(g)$ is a unitary operator for all $g \in G$.

When considering control systems, the group of interest is the Lie group of diffeomorphisms generated by the dynamics:

For all $u \in \mathbb{R}$ and all $T > 0$, the flow over $[0, T]$ of

$$\dot{x} = f(x, u)$$

defines a diffeomorphism of \mathbb{R}^n.

We can use a unitary representation ρ to define an embedding into a dissipative system.
Embedding into an infinite-dimensional dissipative system

Definition (Unitary representation). A unitary representation of a group G is a group morphism $\rho : G \rightarrow \mathcal{L}(H)$, where $\mathcal{L}(H)$ are the bounded endomorphism of the Hilbert space H and $\rho(g)$ is a unitary operator for all $g \in G$.

When considering control systems, the group of interest is the Lie group of diffeomorphisms generated by the dynamics:

For all $u \in \mathbb{R}$ and all $T > 0$, the flow over $[0, T]$ of

$$\dot{x} = f(x, u)$$

defines a diffeomorphism of \mathbb{R}^n.

We can use a unitary representation ρ to define an embedding into a dissipative system.
Embedding into an infinite-dimensional dissipative system

Definition (Unitary representation). A unitary representation of a group \mathbb{G} is a group morphism $\rho : \mathbb{G} \to \mathcal{L}(H)$, where $\mathcal{L}(H)$ are the bounded endomorphism of the Hilbert space H and $\rho(g)$ is a unitary operator for all $g \in \mathbb{G}$.

When considering control systems, the group of interest is the Lie group of diffeomorphisms generated by the dynamics:

For all $u \in \mathbb{R}$ and all $T > 0$, the flow over $[0, T]$ of

$$\dot{x} = f(x, u)$$

defines a diffeomorphism of \mathbb{R}^n.

We can use a unitary representation ρ to define an embedding into a dissipative system.
Embedding into an infinite-dimensional dissipative system

The dynamical system

\[\dot{x} = Jx + bu, \quad J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \]

generates the group \(SE(2) = \mathbb{R}^2 \rtimes SO(2) \) (motions of the plane).

Unitary representations: \(\rho : SE(2) \rightarrow \mathcal{L}(L^2(S^1; \mathbb{C})) \)

\[\rho((x_1, x_2), \beta) \cdot \xi(\theta) = e^{i\mu(x_1 \cos \theta + x_2 \sin \theta)} \xi(\theta - \beta) \]

This defines an **embedding:** \(\tau : \mathbb{R}^2 \rightarrow L^2(S^1; \mathbb{C}) \)

\[\tau(x_1, x_2) = \rho((x_1, x_2), 0) \cdot 1 : \theta \mapsto e^{i\mu(x_1 \cos \theta + x_2 \sin \theta)} \]

\[\langle \tau(x), 1 \rangle_{L^2} = J_0(\mu|x|). \]

\(J_0 \): Bessel function of the first kind of order 0.
Embedding into an infinite-dimensional dissipative system

The dynamical system

\[\dot{x} = Jx + bu, \quad J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \]

generates the group \(SE(2) = \mathbb{R}^2 \ltimes SO(2) \) (motions of the plane).

Unitary representations: \(\rho : SE(2) \to \mathcal{L}(L^2(S^1; \mathbb{C})) \)

\[\rho((x_1, x_2), \beta) \cdot \xi(\theta) = e^{i\mu(x_1 \cos \theta + x_2 \sin \theta)} \xi(\theta - \beta) \]

This defines an **embedding:** \(\tau : \mathbb{R}^2 \to L^2(S^1; \mathbb{C}) \)

\[\tau(x_1, x_2) = \rho((x_1, x_2), 0) \cdot 1 : \theta \mapsto e^{i\mu(x_1 \cos \theta + x_2 \sin \theta)} \]

\[\langle \tau(x), 1 \rangle_{L^2} = J_0(\mu|x|). \]

\(J_0 \): Bessel function of the first kind of order 0.
Embedding into an infinite-dimensional dissipative system

The dynamical system

\[
\dot{x} = Jx + bu, \quad J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 0 \\ 1 \end{pmatrix}
\]

generates the group \(SE(2) = \mathbb{R}^2 \rtimes SO(2) \) (motions of the plane).

Unitary representations: \(\rho : SE(2) \to \mathcal{L}(L^2(S^1; \mathbb{C})) \)

\[
\rho((x_1, x_2), \beta) \cdot \xi(\theta) = e^{i\mu(x_1 \cos \theta + x_2 \sin \theta)} \xi(\theta - \beta)
\]

This defines an embedding: \(\tau : \mathbb{R}^2 \to L^2(S^1; \mathbb{C}) \)

\[
\tau(x_1, x_2) = \rho((x_1, x_2), 0) \cdot 1 : \theta \mapsto e^{i\mu(x_1 \cos \theta + x_2 \sin \theta)}
\]

\[
\langle \tau(x), 1 \rangle_{L^2} = J_0(\mu|x|).
\]

\(J_0 \): Bessel function of the first kind of order 0.
Embedding into an infinite-dimensional dissipative system

The dynamical system

\[\dot{x} = Jx + bu, \quad J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \]

generates the group \(SE(2) = \mathbb{R}^2 \rtimes SO(2) \) (motions of the plane).

Unitary representations: \(\rho : SE(2) \to \mathcal{L}(L^2(S^1; \mathbb{C})) \)

\[
\rho((x_1, x_2), \beta) \cdot \xi(\theta) = e^{i \mu (x_1 \cos \theta + x_2 \sin \theta)} \xi(\theta - \beta)
\]

This defines an **embedding**: \(\tau : \mathbb{R}^2 \to L^2(S^1; \mathbb{C}) \)

\[
\tau(x_1, x_2) = \rho((x_1, x_2), 0) \cdot 1 : \theta \mapsto e^{i \mu (x_1 \cos \theta + x_2 \sin \theta)}
\]

\[
\langle \tau(x), 1 \rangle_{L^2} = J_0(\mu |x|).
\]

\(J_0 \): Bessel function of the first kind of order 0.
Embedding into an infinite-dimensional dissipative system

The dynamical system

\[\dot{x} = Jx + bu, \quad J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \]

generates the group \(SE(2) = \mathbb{R}^2 \rtimes SO(2) \) (motions of the plane).

Unitary representations: \(\rho : SE(2) \to \mathcal{L}(L^2(S^1; \mathbb{C})) \)

\[\rho((x_1, x_2), \beta) \cdot \xi(\theta) = e^{i\mu(x_1 \cos \theta + x_2 \sin \theta)} \xi(\theta - \beta) \]

This defines an **embedding:** \(\tau : \mathbb{R}^2 \to L^2(S^1; \mathbb{C}) \)

\[\tau(x_1, x_2) = \rho((x_1, x_2), 0) \cdot 1 : \theta \mapsto e^{i\mu(x_1 \cos \theta + x_2 \sin \theta)} \]

\[\langle \tau(r \cos(s), r \sin(s)), e^{ik\theta} \rangle_{L^2} = i^k J_k(\mu r) e^{-iks}. \]

\(J_k \): Bessel function of the first kind of order \(k \).
Embedding into an infinite-dimensional dissipative system

Bessel functions

$J_0(x)$
$J_1(x)$
$J_2(x)$
Embedding into an infinite-dimensional dissipative system

The system is now embedded via

\[z = \tau(x) : \theta \in S^1 \mapsto e^{i\mu(x_1 \cos(\theta) + x_2 \sin(\theta))}. \]

\[
\begin{align*}
\dot{x} &= Jx + bu \\
y &= |x| \\
x(0) &\in \mathbb{R}^2
\end{align*}
\]

\[
\begin{align*}
\dot{z} &= A(u)z \\
J_0(\mu y) &= Cz \\
z_0 &\in \text{Im } \tau \subset L^2(S^1; \mathbb{C})
\end{align*}
\]

\[A(u) = -\frac{\partial}{\partial \theta} + i\mu u \sin(\theta), \quad Cz = \langle z, 1 \rangle_{L^2}. \]

How to build an observer for this infinite-dimensional system?
Embedding into an infinite-dimensional dissipative system

The system is now embedded via

\[z = \tau(x) : \theta \in \mathbb{S}^1 \mapsto e^{i\mu(x_1 \cos(\theta) + x_2 \sin(\theta))} . \]

\[
\begin{cases}
\dot{x} = Jx + bu \\
y = |x| \\
x(0) \in \mathbb{R}^2
\end{cases}
\mapsto
\begin{cases}
\dot{z} = A(u)z \\
J_0(\mu y) = Cz \\
z_0 \in \text{Im } \tau \subset L^2(\mathbb{S}^1; \mathbb{C})
\end{cases}
\]

\[A(u) = -\frac{\partial}{\partial \theta} + i\mu u \sin(\theta), \quad Cz = \langle z, 1 \rangle_{L^2}. \]

How to build an observer for this infinite-dimensional system?
Embedding into an infinite-dimensional dissipative system

The system is now embedded via

\[z = \tau(x) : \theta \in S^1 \mapsto e^{i\mu(x_1 \cos(\theta) + x_2 \sin(\theta))} \]

\[
\begin{align*}
\dot{x} &= Jx + bu \\
y &= h(x) \\
x(0) &\in \mathbb{R}^2
\end{align*} \quad \quad \begin{align*}
\dot{z} &= A(u)z \\
g(y) &= Cz \\
z_0 &\in \text{Im } \tau \subset L^2(S^1; \mathbb{C})
\end{align*}
\]

\[A(u) = -\frac{\partial}{\partial \theta} + i\mu u \sin(\theta), \quad Cz = \langle z, \sum_{\text{finite}} c_k e^{ik\theta} \rangle_{L^2}. \]

How to build an observer for this infinite-dimensional system?
Embedding into an infinite-dimensional dissipative system

The system is now embedded via

\[z = \tau(x) : \theta \in S^1 \mapsto e^{i\mu(x_1 \cos(\theta)+x_2 \sin(\theta))} . \]

\[
\begin{cases}
\dot{x} = Jx + bu \\
y = h(x) \\
x(0) \in \mathbb{R}^2
\end{cases}
\]

\[
\begin{cases}
\dot{z} = A(u)z \\
g(y) = Cz \\
z_0 \in \text{Im } \tau \subset L^2(S^1; \mathbb{C})
\end{cases}
\]

\[
A(u) = -\frac{\partial}{\partial \theta} + i\mu u \sin(\theta), \quad Cz = \left\langle z, \sum_{\text{finite}} c_k e^{ik\theta} \right\rangle_{L^2}.
\]

How to build an observer for this infinite-dimensional system?
Infinite-dimensional observer

Luenberger observer:

\[
\begin{aligned}
\dot{z} &= A(u(t))z, \quad z(0) = z_0 \in H \\
y &= Cz \\
\dot{\hat{z}} &= A(u(t))\hat{z} - \alpha C^* C \varepsilon, \quad \hat{z}(0) = \hat{z}_0 \in H \\
\dot{\varepsilon} &= (A(u(t)) - \alpha C^* C)\varepsilon, \quad \varepsilon(0) = \varepsilon_0 = \hat{z}_0 - z_0
\end{aligned}
\]

- H and Y are Hilbert spaces, $C \in \mathcal{L}(H, Y)$
- $A(u(t)) : \mathcal{D}(A) \to H$ generates an evolution system $(T(t, s))_{t \geq s \geq 0}$
- $z, \hat{z}, \varepsilon \in C^0(\mathbb{R}_+; H)$

Example: $H = L^2(S^1; \mathbb{C}), \ Y = \mathbb{C}, \ \mathcal{D}(A) = H^1(S^1; \mathbb{C})$
Infinite-dimensional observer

Luenberger observer:

\[
\begin{align*}
\dot{z} &= A(u(t))z, \quad z(0) = z_0 \in \mathcal{D}(A) \\
y &= Cz \\
\dot{\hat{z}} &= A(u(t))\hat{z} - \alpha C^* C \varepsilon, \quad \hat{z}(0) = \hat{z}_0 \in \mathcal{D}(A) \\
\dot{\varepsilon} &= (A(u(t)) - \alpha C^* C)\varepsilon, \quad \varepsilon(0) = \varepsilon_0 = \hat{z}_0 - z_0
\end{align*}
\]

- H and Y are Hilbert spaces, $C \in \mathcal{L}(H, Y)$
- $A(u(t)) : \mathcal{D}(A) \rightarrow H$ generates an evolution system $(T(t, s))_{t \geq s \geq 0}$
- $z, \hat{z}, \varepsilon \in C^0(\mathbb{R}_+; \mathcal{D}(A)) \cap C^1(\mathbb{R}_+; H)$

Example: $H = L^2(\mathbb{S}^1; \mathbb{C}), \ Y = \mathbb{C}, \ \mathcal{D}(A) = H^1(\mathbb{S}^1; \mathbb{C})$
Infinite-dimensional observer

Recall that $A(u) = -\frac{\partial}{\partial \theta} + i\mu u \sin(\theta)$ is **skew-adjoint**. Hence

\[
\frac{1}{2} \frac{d}{dt} \|\epsilon(t)\|_H^2 = \langle \epsilon(t), \dot{\epsilon}(t) \rangle_H
\]

\[
= \langle \epsilon(t), A(u(t))\epsilon(t) \rangle_H - \alpha \langle \epsilon(t), C^* C \epsilon(t) \rangle_H
\]

\[
\leq -\alpha \| C \epsilon(t) \|_Y^2
\]

\[
\leq 0.
\]

More generally, if

\[
\langle A(u(t))z, z \rangle_H \leq p \| Cz \|_Y^2, \quad \forall z \in H, \forall t \geq 0 \quad (**weak\ detectability**)
\]

for some $p > 0$, then

\[
\frac{1}{2} \frac{d}{dt} \|\epsilon(t)\|_H^2 \leq -(\alpha - p) \| C \epsilon(t) \|_Y^2 \leq 0 \quad \text{if } \alpha > p.
\]
Infinite-dimensional observer

Recall that $A(u) = -\frac{\partial}{\partial \theta} + i\mu u \sin(\theta)$ is skew-adjoint. Hence

\[
\frac{1}{2} \frac{d}{dt} \|\varepsilon(t)\|_H^2 = \langle \varepsilon(t), \dot{\varepsilon}(t) \rangle_H \\
= \langle \varepsilon(t), A(u(t))\varepsilon(t) \rangle_H - \alpha \langle \varepsilon(t), C^* C\varepsilon(t) \rangle_H \\
\leq -\alpha \|C\varepsilon(t)\|_Y^2 \\
\leq 0.
\]

More generally, if

\[
\langle A(u(t))z, z \rangle_H \leq p \|Cz\|_Y^2, \quad \forall z \in H, \forall t \geq 0 \quad (\text{weak detectability})
\]

for some $p > 0$, then

\[
\frac{1}{2} \frac{d}{dt} \|\varepsilon(t)\|_H^2 \leq -(\alpha - p) \|C\varepsilon(t)\|_Y^2 \leq 0 \quad \text{if } \alpha > p.
\]
Infinite-dimensional observer

Definition (Exact observability).
The system is **exactly** observable on \([t_0, t_0 + T]\) if for some \(k > 0\),

\[
\int_{t_0}^{t_0+T} \| C \mathbb{T}(t, t_0) z_0 \|^2_Y dt \geq k \| z_0 \|^2_H, \quad \forall z_0 \in H
\]

Definition (Approximate observability).

\[
\emptyset = \left\{ z_0 \in H \mid \int_{t_0}^{t_0+T} \| C \mathbb{T}(t, t_0) z_0 \|^2_Y dt = 0 \right\} \perp
\]

The system is **approximately** observable on \([t_0, t_0 + T]\) if \(\emptyset = H\).
Infinite-dimensional observer

Definition (Exact observability).
The system is **exactly** observable on \([t_0, t_0 + T]\) if for some \(k > 0\),

\[
\int_{t_0}^{t_0 + T} \| C_T(t, t_0)z_0 \|_Y^2 \, dt \geq k \| z_0 \|_H^2, \quad \forall z_0 \in H
\]

Definition (Approximate observability).

\[
\mathcal{O} = \left\{ z_0 \in H \mid \int_{t_0}^{t_0 + T} \| C_T(t, t_0)z_0 \|_Y^2 \, dt = 0 \right\} \perp
\]

The system is **approximately** observable on \([t_0, t_0 + T]\) if \(\mathcal{O} = H\).
Theorem (Brivadis, Andrieu, Serres and Gauthier, 2021).
Assumptions:

- \(((A(u(t))))_{t \geq 0}, C)\) is weakly detectable, \(\alpha > p\)
- \(\exists (t_n)_{n \geq 0} \to +\infty\) and an evolution system \((T_\infty(t, s))_{0 \leq s \leq t}\) s.t.

\[
\|T(t_n + t, t_n) - T_\infty(t, 0)\|_{\mathcal{L}(H)} \xrightarrow{n \to +\infty} 0
\]
uniformly in \(t \in [0, \tau], \forall \tau > 0\).

Let \(\mathcal{O}\) be the observable subspace of \((T_\infty, C)\) in infinite-time. Then

\[
\langle \varepsilon(t_n), \psi \rangle_H \xrightarrow{n \to +\infty} 0, \quad \forall \psi \in \mathcal{O}, \forall \varepsilon_0 \in H.
\]

Moreover, if \((t_{n+1} - t_n)_{n \geq 0}\) is bounded and \(\mathcal{O} = H\), then \(\varepsilon(t) \xrightarrow{t \to +\infty} 0\).
Infinite-dimensional observer

Theorem (Brivadis, Andrieu, Serres and Gauthier, 2021).

Assumptions:

- \((A(u(t)))_{t\geq 0}, C)\) is weakly detectable, \(\alpha > p\)
- \(\exists (t_n)_{n \geq 0} \to +\infty\) and an evolution system \((T_\infty(t, s))_{0 \leq s \leq t}\) s.t.

\[
\|T(t_n + t, t_n) - T_\infty(t, 0)\|_{\mathcal{L}(H)} \xrightarrow{n\to+\infty} 0
\]

uniformly in \(t \in [0, \tau], \forall \tau > 0\).

Let \(\mathcal{O}\) be the observable subspace of \((T_\infty, C)\) in infinite-time. Then

\[
\langle \varepsilon(t_n), \psi \rangle_H \xrightarrow{n\to+\infty} 0, \quad \forall \psi \in \mathcal{O}, \forall \varepsilon_0 \in H.
\]

Moreover, if \((t_{n+1} - t_n)_{n \geq 0}\) is bounded and \(\mathcal{O} = H\), then \(\varepsilon(t) \xrightarrow{\text{weak}}_{t \to +\infty} 0\).
Infinite-dimensional observer

Theorem (Brivadis, Gauthier, Sacchelli and Serres, 2021). If

- $\exists g \mid g(h(r \cos(s), r \sin(s))) = \sum_{\text{finite}} c_k J_k(\mu r)e^{-iks}$
- $u \equiv 0$ is an isolated observability singularity

then there exist a **left-inverse** τ^{-1} and a **feedback** $u = \lambda(\hat{x}) + \delta(\hat{z})$ such that the closed-loop system is asymptotically stable.
Main differences with the finite dimensional embedding:

- The embedded system is unitary.
- ε is convergent in the weak topology.
- Depending on the isolation of $u \equiv 0$, a discretization of the control may be required.

Towards a generalization:

- The existence of an embedding of a dynamical system into a unitary one, either finite or infinite-dimensional, has been studied for observer design in [Celle, Gauthier, Kazakos and Sallet, 1989]
- If $\varepsilon \xrightarrow{\text{weak}} 0$, we can prove the existence of pseudo-inverse τ^{-1} such that $\tau^{-1}(\hat{z}) - x \to 0$.
Unobservable target

Main differences with the finite dimensional embedding:

- The embedded system is unitary.
- ε is convergent in the weak topology.
- Depending on the isolation of $u \equiv 0$, a discretization of the control may be required.

Towards a generalization:

- The existence of an embedding of a dynamical system into a unitary one, either finite or infinite-dimensional, has been studied for observer design in [Celle, Gauthier, Kazakos and Sallet, 1989]
- If $\varepsilon \xrightarrow{weak} 0$, we can prove the existence of pseudo-inverse τ^{-1} such that $\tau^{-1}(\hat{z}) - x \to 0$.

Lucas Brivadis
Stabilization of non-uniformly observable control systems and infinite-dimensional observers
Conclusion and Perspectives
Conclusion and Perspectives

Guidelines for output feedback stabilization:

- Uniform observability
- **Dissipative** systems
- Observable target:
 - Feedback perturbation to get observability
 - Convergence of bounded trajectories
 → Asymptotic stability?
- Unobservable target:
 - Feedback perturbation to get observability
 - Embedding into dissipative/unitary system
 - Infinite-dimensional Luenberger observer
 → Generalization?
Conclusion and Perspectives

Guidelines for output feedback stabilization:

- Uniform observability
 - **Dissipative** systems
- Observable target:
 - Feedback perturbation to get observability
 - Convergence of **bounded trajectories**

 → Asymptotic stability?
- Unobservable target:
 - Feedback perturbation to get observability
 - Embedding into dissipative/unitary system
 - Infinite-dimensional Luenberger observer

 → Generalization?
Conclusion and Perspectives

Guidelines for output feedback stabilization:

- Uniform observability
- **Dissipative** systems
 - Observable target:
 - Feedback perturbation to get observability
 - Convergence of bounded trajectories
 → Asymptotic stability?
 - Unobservable target:
 - Feedback perturbation to get observability
 - Embedding into dissipative/unitary system
 - Infinite-dimensional Luenberger observer
 → Generalization?
Conclusion and Perspectives

Guidelines for output feedback stabilization:

- Uniform observability
- **Dissipative** systems
- Observable target:
 - Feedback perturbation to get observability
 - Convergence of bounded trajectories
 → Asymptotic stability?
- Unobservable target:
 - Feedback perturbation to get observability
 - Embedding into dissipative/unitary system
 - Infinite-dimensional Luenberger observer
 → Generalization?
Guidelines for output feedback stabilization:

- Uniform observability
- **Dissipative** systems
- Observable target:
 - Feedback perturbation to get observability
 - Convergence of **bounded trajectories**
 \[\rightarrow \text{Asymptotic stability?} \]
- Unobservable target:
 - Feedback perturbation to get observability
 - Embedding into dissipative/unitary system
 - Infinite-dimensional Luenberger observer
 \[\rightarrow \text{Generalization?} \]
Conclusion and Perspectives

Our references on this subject:

Thank you for your attention