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Main target: sensorless control of electric motors
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Main target: sensorless control of electric motors
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— System is observable with both currents and rotor position measurements

— Without mechanical sensor: degeneracy of observability at low speed

— To bypass this issue:
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Introduction

Introduction — Signal injection technique and position estimation

x = f(x) + g(x)u
y = h(x)
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— Perturbation of the measurement y
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— Injection of a high-frenquency signal so(t/¢)

— Perturbation of the measurement y

— Demodulation procedure for extracting y, and y1

— System is now observable with those “virtual measurements”



Averaging

Outline

2. Higher-order averaging theory for exogenous signal injection
Higher-order generic averaging theory
Third-order theory — Exogenous injection, numerical validation
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Periodic averaging = Near-identity transformation + Comparison result
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Periodic averaging = Near-identity transformation + Comparison result
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System with injection

Near-identity transformation

X = x + gp*(x,
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Averaging

Periodic averaging = Near-identity transformation + Comparison result

Near-identity transformation

X =x+ep(x,t) +...+ep"(x, t) with g'(x) = J§ f(x, o) do
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SISO system, linear dynamics, nonlinear measurement

x=Ax+ Bu, y=h(x) Exogenous injection: u — u+ so(£)

Set of virtual measurements

H) = (h(x) eW()B SH'(x)(B.B) € (x)AB).

We assume that, with these additional measurements, the original system is observable

= A% + Ba(7, H(%), t)

X = Ax + Ba(n, H(x), t) + Bso( %)
1= a(m, H(x), t) 1= a(n, H(x), t)

H(x) = H(x — eBsi(%) — e?ABsy(%))

— sp : 1-periodic signal with zero mean.

— sj4+1 is the primitive of s; with zero mean.



Let x(t) (resp. x(t)) be the solution of the perturbed (resp non-perturbed) system, with
x(0) = X(0) + €Bs1(0) 4 €?ABs,(0). Assume the original system is locally exponentially
stable. Then fort >0,

x(t) = X(t) + eBsi (L) + £2ABsy(£) + O(£°)
n(t) = 7(t) + O(e’)
=h

y(t) = h(x(t)) +eh'(x(t))B s1(%)
Yo(t) Yi(t)
+ 21 (=(1))(B, B) su(£) + 2 (X(t))AB (L) + O(&%)
e
Y3(t) Ya(t

— Locally exponentially stability hypothesis: for the extension to infinity of the result
(otherwise only valid on a timescale 1/¢)

— Idea of the proof: change of coordinates (the so-called near-identity
transformation), then use of a comparison theorem




Dynamic system

X1 = X2
)-(2:X3
x3=u+d

3]

= X1X: +X—3
Yy = Xix2 3

— u: input
— d: (unknown) disturbance

— Objective: controlling x; while rejecting d



Dynamic system

. — u: input

X1 = X2

. — d: (unknown) disturbance

X2 = X3

%= utd — Objective: controlling x; while rejecting d

+ X3 ! We (momentarily) assume we can extract |
=x1x2 + = ! !
4 2T ﬁ :Y,- with an accuracy in €°! |

— Second-order averaging theory is not enough

Y: = h(x)B = X2 here
1, — With Y3, the system is controllable with a linear
Y2 1= §h (x)(B, B) = xs controller

Ys := h'(x)AB = x — Third-order averaging theory is



System at rest at t =0 ; step d = —0.25 at t =4
Filtered ramp (slope 5 x 1072) for 15 < t < 35
At t = 35 : filtered step to go back to 0

Injection: square wave with ¢ = 1073
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Measured output y

Injection: square wave with ¢ = 1073

System at rest at t =0 ; step d = —0.25 at t =4
— Filtered ramp (slope 5 x 1072) for 15 < t < 35
At t = 35 : filtered step to go back to 0
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Averaging

Exogenous injection — Simulation, results
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States x1, x2, x3, Virtual measurements Y2, Y3 (left); zoom on the error x — x; (right)

— Control with the virtual measurements as effective as with the actual state x;




Endogenous injection
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3. Second-order averaging theory for endogenous signal injection
Computation of the PWM-induced ripple
Averaging theorem, numerical validation



— Many electrical motors are controlled using Pulse-Width Modulation (PWM),
and limits the use of an exogenous injection

Xref e
Controller

Upwm

PWM

y Ya
System Demod Yy

X)

Observer

— The periodic modulation introduces a perturbation in the system



—> Controller

— Many electrical motors are controlled using Pulse-Width Modulation (PWM),

and limits the use of an exogenous injection

Carrier. Input/Output voltage (V)

Computation: comparison to a fast-varying carrier ¢

il

X)

Observer

PWM

Upwm

System

Demod

Yv

— The periodic modulation introduces a perturbation in the system
— For nonlinear systems, this perturbation may carry additional information...

— ...just as in the exogenous case!



—> Controller

— Many electrical motors are controlled using Pulse-Width Modulation (PWM),
and limits the use of an exogenous injection
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Computation: comparison to a fast-varying carrier ¢

“— ——_ Induces the same response

as an exogenous signal injection

a
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X)

PWM System Demod yv

Observer

— The periodic modulation introduces a perturbation in the system
— For nonlinear systems, this perturbation may carry additional information...
— ...just as in the exogenous case!



Principle: the input u is compared to an g-periodic carrier ¢ to produce a PWM signal
Upwm (with € << 1 is a small parameter)



Principle: the input u is compared to an g-periodic carrier ¢ to produce a PWM

Upwm (with € << 1 is a small parameter)
Expression for upwm, with sp =: endogenous injection
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Principle: the input u is compared to an g-periodic carrier ¢ to produce a PWM signal
Upwm (with € << 1 is a small parameter)

Expression for upwm, with sp =: endogenous injection w(o) = ummod(o + £,1) — um/2)
Upwm(t) = u(t) + so(u(t), ),
XUm o ><Um XUm
‘ u=0 =02 u 04‘ u=0 =02 u= 04‘ '

s (V)
S

)

51 (Vs)

= e el e /‘ AR
VUV VY

0 1 2 3 0 3 0 1 2 3
Time (s) Time (s) Time (s)

sp (top), s (middle), w (right)

sp 1-periodic with zero mean in the s1 := zero-mean primitive of sp in the
second argument second argument

so(u,0) = um — U+ Um Sign(”ﬂ’"’

—w(o)) si(u,0) = (1— i) w(o) — |5 — w(o)|
+ umsign (252 + w(o)) + |45+ w(o)




SISO nonlinear system Set of virtual measurements
x = f(x) + g(x)u H(x) = (h(x) eh'(x)g(x))
y = h(x)

We assume that, with this additional measurement (¢h'(x)g(x)), the original system is
observable

[+ Xl
Il

f(x) + g(x)u(t) x = f(x) + g(x)(u+so(u(t), £))
7= a(7, H(X), t) n=a(n H(x,n £ t),t)
u(t) = (7, H(x). t) u=a(n Hxmn L)1)

H(x,m,0,t) 1:H<X_5g (a H(). 1), ))

— so(u, T): 1-periodic signal with zero mean in 7.

— s1(u, T) is the primitive wrt. T of sp with zero mean.



Let (x(t), n(t)) be the solution of the PWM-controlled system starting from (xo, Mo),
and define u(t) := a(n(t), H(x(t)), t) and y(t) := H(x(t));

let (x(t),n(t)) be the solution of the original system starting from

(x0 — £g(x0)s1 (u(0),0),m0), and define u(t) := a(7(t), H(x(t)), t). Then, for all t >0,

x(t) = x(t) + eg (x(t)) s (u(t), ﬁ) + O(€?)

n(t) =7(t) + O(e*)

y(t) = h(x(t)) + b (x())g(X(1)) s (a(t), £) + O(&?).
e e

=yal(t) =yv(t)

— ldea of the proof: change of coordinates (the so-called near-identity transformation), then
use of a comparison theorem (similar to the Lipschitz case)

— The proof requires a slight adaptation of the classic averaging theorem for systems with
state-discontinuities



Endogenous injection

Dynamic system — u: input
— d: (unknown) disturbance

X1 = X2

. — Objective: controlling x; while rejecting d
X2 = X3

X3 =u+d ' Stillassume y, and y,

|
|
y = x2 + x1x3 / are known with a O(e?) accuracy |

L e e e e e e e e e e e e - -

— Controlling the system with PWM gives access

Ya =X+ x13 toyy = ext
Y = b ()g(x) = ex1 — With y,, the system is controllable with a linear

controller



Endogenous injection

Endogenous signal injection — Scenario, results

Scenario
— System atrestat t =0 ; stepd =—-025att=2s
— Filtered unit step at t =14 s
~ PWM period ¢ =103 s



— System atrestat t =0 ; stepd =—-025att=2s

— Filtered unit step at t =14 s
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Endogenous injection
Endogenous signal injection — Scenario, results

— System atrestat t =0 ; stepd =—-025att=2s

— Filtered unit step at t =14 s
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— PWM period e =107 s
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Synchronous detection
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4. Synchronous detection over analog and XA outputs
Design of the reconstruction kernels
Ay-property, result and numerical validation
Demodulation over XA modulators
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Extraction of the coordinates z from the physical measurement y
N
y:ZZisi, zieR,sieRY
i=1

Recovery of each z with an arbitrary accuracy in O(g¥)

— Simple projection using Gram-Schmidt orthogonalization process: exact recovery



Extraction of the coordinates z from the physical measurement y
N
y = Zz,-s; , si € Lf,er 1-periodic with zero mean
i=1

Recovery of each z with an arbitrary accuracy in O(g¥)
— Simple projection using Gram-Schmidt orthogonalization process: exact recovery

— Projection (on Lf,er), still using G-S: exact recovery — procedure for recovering the
"exogenous” virtual measurements!



Extraction of the coordinates z from the physical measurement y
N
y = Zz,- si(%), si € L,2,er 1-periodic with zero mean
i=1

Recovery of each z with an arbitrary accuracy in O(g¥)
— Simple projection using Gram-Schmidt orthogonalization process: exact recovery

— Projection (on Lf,er), still using G-S: exact recovery — procedure for recovering the
"exogenous” virtual measurements!

— Projection (on Lf,er), but no guarantee on the extraction accuracy



Extraction of the coordinates z from the physical measurement y

N
y = Zz,-(t)s,-( 5, si(v, -) 1-periodic with zero-mean
i=1

Recovery of each z with an arbitrary accuracy in O(g¥)
Simple projection using Gram-Schmidt orthogonalization process: exact recovery

Projection (on Lf,er), still using G-S: exact recovery — procedure for recovering the
"exogenous” virtual measurements!

Projection (on Lf,er), but no guarantee on the extraction accuracy

Carriers with a slow-time dependency: is it possible to design a
uniform estimate...



Extraction of the coordinates z from the physical measurement y

N
y=> z(t)si(u(t), ) +
i=1
Recovery of each z with an arbitrary accuracy in O(g¥)
Simple projection using Gram-Schmidt orthogonalization process: exact recovery

Projection (on Lf,er), still using G-S: exact recovery — procedure for recovering the
"exogenous” virtual measurements!

Projection (on Lf,er), but no guarantee on the extraction accuracy

Carriers with a slow-time dependency: is it possible to design a
uniform estimate...

...that also mitigates both the measurement noise v and the physical
disturbance d...



Extraction of the coordinates z from the physical measurement y

y=5A1Z(0)S(u(t), ) +O(”) +d(t. %) +vra

Recovery of each z; with an arbitrary accuracy in O(g¥)
Simple projection using Gram-Schmidt orthogonalization process: exact recovery

Projection (on L,Q,er), still using G-S: exact recovery — procedure for recovering the
"exogenous” virtual measurements!

Projection (on L3.,), but no guarantee on the extraction accuracy

Carriers with a slow-time dependency: is it possible to design a
uniform estimate...

...that also mitigates both the measurement noise v and the physical
disturbance d...

and still applies to a (multi-output) XA bitstream?



Extraction of the coordinates z from the physical measurement y

y =3A[Z(8)S(u(t), ) + O(”) +d(t.£)] +vza

Recovery of each z; with an arbitrary accuracy in O(g¥)
Simple projection using Gram-Schmidt orthogonalization process: exact recovery

Projection (on Lﬁer), still using G-S: exact recovery — procedure for recovering the
"exogenous” virtual measurements!

Projection (on Lﬁe,), but no guarantee on the extraction accuracy

Carriers with a slow-time dependency: is it possible to design a
uniform estimate...

...that also mitigates both the measurement noise v and the physical
disturbance d...

and still applies to a (multi-output) XA bitstream?

(with exotic considerations)



(Without disturbance d = 0 nor slow dependency on S(t, £))

Definition of the kernel Ky

k' H

*k /\ 2
1 1 // \\ —K;
Kk = <g1[0’£]) = 671[0’5] L 1[0'51 . / \ 2 [
/ \
» k = 2: triangle/Bartlett window; k = 4: / \
Parzen/de la Vallée Poussin N’ ‘ ‘
- — 0 1 2 3 4
Modified kernels K, — | Ki x ¢ = ¢ + O(£)
|
Ki(t) := Ku(t) T ]
— = 5>\
Ka(t) := 2Ka(t) — 1Ka(t — €), ’ <
= st i
K3(t) = K3(t)— K3(t—£)—|— K3(t—2€).
10 ‘ ‘ ‘
2 4 6

Extraction of the vector Z (wit~h R=2S5) B .
PAyI(t) = (Rix (vRI))(2) x (Ricx (SeRT)) (1)
= Z"(t) + O(")



In presence of disturbances, one technique consists in windowing the location of the

perturbatjon:
— ¢(t, £) := 0 when d is active, 1 otherwise

— R=Sxc — P
With the slow-time dependency on S, we assume SR' (v, o) are A

Let g(t, o) be 1-periodic with zero mean. It is said to be Ay, k > 1, if g(_k) is k — 1 times

differentiable in the first variable, with bounded derivatives at all orders, and 6{(71g(_k)
Lipschitz. Example: g(v, t) := sign(v + t) « PWM signal; g(-1) = |v + ¢|

The following estimator recovers z, with an accuracy in £
. . -1
PyI() = (Rex (vRD) ) (8) x (Rix (SeRT)) ™ (1),

In other words, Z" (t) = Pi[y](t) + O(£¥).

Same result as before using a modified vector R (with a trickier proof though)

23



—Q————— LPF K,

Se(t) Se(t

)Re (1) ~
—Q————— LPF K,

RE (¢

SRT(t) + O(e)

Diagram of the demodulation procedure
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Validation of the theory on a toy problem. Composite signal
y(t) = z1(t)si(t, &) + z2(t)sa(t, &) + z3(t)ss(t, &) + d(t, &), e=1073

Components z;

2 73

Carriers s;

Signal y




Synchronous detection

Numerical validation of the demodulation procedure

Validation of the theory on a toy problem. Composite signal
y(t) = zi(t)si(t, L) + z(t)s2(t, £) + z3(t)ss(t, &) + d(t, &), e= 1073

Pyl - 2

Asymptotic (L?)

L L L L L
2 2.01 2.02 2.03 2.04 2.05 0 1 2 3 4 5
T

T —
g 341:.{) 7T - N 106 F / — el
1o o i —e

I
I
all _f
L

Iy = Yall2

S S S S . . . . . .
1.638 1.640 1.642 1.644 1.646 1.648 1.650 1.652 1.654 1.656 10-26 1024 1022 102 10-18 10-16
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— Modern Variable-Frequency Drives embedd Sigma-Delta ADC

Continuous time | Discrete time

e
V

/x 3 /\ Output bitstream
Analog currents B X1 e T - € {o0,1}
(not available) —O— = [O—| 7 —O-----0O— O—

h(x) + eh (X)g(x)sy + O(e2)
: A
i

State-space model i =1,... k-1 — Input: u(t/e), &2 PWM period
— Sampling time T, (15 MHz)

Normalized time T := t/¢

1.
le(“r) =u(T) — v(NT)

1.
NX"“(T) = xi(1) — aiv(NT) — Oversampling ratio N := ¢/T, (= 3750
k for the actual implementation)
y(r) =3 bix(r)
i=1
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Normalized time T := t/¢

1.
le(“r) =u(T) — v(NT)
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k for the actual implementation)
y(r) =3 bix(r)
i=1
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Assumptions:

— the input u is selected such that the modulator is stable, i.e. the states xi,. « are
bounded. In particular, ||ul|eo < 1.
— kth-order continuous YA modulator in pure feedforward form: a; = .. = a,_; =0

Definition: f p-times differentiable + () absolutely continuous (resp. piecewise) = f
ACP (resp. piecewise).



Assumptions:

— the input u is selected such that the modulator is stable, i.e. the states xi,. « are
bounded. In particular, ||ul|eo < 1.
— kth-order continuous YA modulator in pure feedforward form: a; = .. = a,_; =0

Definition: f p-times differentiable + () absolutely continuous (resp. piecewise) = f
ACP (resp. piecewise).

Consider B € L*°[0, +00) such that the zero-mean primitive B0 of B=i+D) exists
G=0,..., k —1). Consider as well KK a (k — 1)th-times differentiable kernel with support in
[0, k], and such that KK(0) = Kk(k) = (K¥)U)(0) = (KX))(k)=0 (j=0,..., k—1). Ifsis
ACK=1, then for t > 0,

I(t) := Bs * KK(t) = o(1/N¥)
If s is only piecewise ACK—1, then for t > 0, I(t) = O(1/N¥).

Hypotheses on 8 Output-input difference of a XA CT-MOD
K*+ satisfied by the previous kernels
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(Filtered) Output-Input difference, second-order CT-MOD2 in pure FF form

I(t) := Bs * K*(t) = o(1/N?),  sAC
= O(1/N?) s piecewise AC
= O(1/N) s discontinuous

Input u;(t) := z(t)s;(t) with z(t) := 0.04 cos(t/12) + 0.06sin(t/4m).
Expression for the different signals s

s1(t) 1= ——— (r1j006(7) + 1.5(1 — T)j061(7) — 0.3),

4/0.03
s5(t) := V2 cos(2m7), s3(t) = Ljp,0.5/(T) — Lj0.5,1)(7),

with 7 = mod(t,€)/e and € = 1. / %

o

I

— s piecewise ACl, S ACI, 0 1
s3 discontinuous

Time (s)

L2 error
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Synchronous detection

(Filtered) Output-Input difference, second-order CT-MOD2 in pure FF form

I(t) := Bs * K*(t) = o(1/N?),  sAC
= O(1/N?) s piecewise AC
= O(1/N) s discontinuous

Input u;(t) := z(t)s;(t) with z(t) := 0.04 cos(t/12) + 0.06sin(t/4m).
Expression for the different signals s

s1(t) 1= ——— (r1j006(7) + 1.5(1 — T)j061(7) — 0.3),

4/0.03
s5(t) := V2 cos(2m7), s3(t) = Ljp,0.5/(T) — Lj0.5,1)(7),

with 7 = mod(t,€)/e and € = 1. / %

o

I

— s piecewise ACl, S ACI, 0 1
s3 discontinuous

Time (s)

| Slope=1 (disc)
12 (piec. AC), 2.3 (AC)

L2 error
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Outline

5. Sensorless position estimation of electric motors
Virtual measurement extraction
Numerical/Experimental recovery of the rotor position

Experimental
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W

ref 0

/'dq
s,ref

Speed controller

Current controller

abc
s,ref

!

D)

dq

PWM

Is

dq

aB

[676]

abc

af

Is

)

PLL/atan

0s 26)
1cos 26|

le—

Demodulation

Gate pulses
Inverter
3P
abc
Us, pwm
abc
s
A r
t— modulator
]
PMSM

sin 20

Synchronous demodulation over A modulators

Sensorless PMSM control scheme
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Experimental

Sensorless PMSM control scheme

Controller design

dq

Averaging for enc

genous signal injection
q dq abc
Is ref Ug re Us,ref Gate pulses
Wref | da
—O—> Speed controller Current controller PWM Inverter
= I N abc
af
T °1 abc
] Us,pwm
,dq Igbc
'S
dq af 1 ZA [
af abc —— modulator
P
9 3,
c0s 20 d
PN PLL/atan Demodulation PMSM
@ |
sin 20

Synchronous demodulation over XA modulators

Sensorless PMSM control scheme
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State-space model of a PMSM in the dg-frame

dq
d:}j; — udh _ R, %T — w7

J dw o dg
ndt =T
do
=w

dt

We assume there is no magnetic saturation

- Ld = ¢g - ¢m

- Lqgic = 7 |
Inputs: voltages in abc: u2b¢ — u;’;@m

Outputs: currents in af: i2f := R(6)i29
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State-space model of a PMSM in the dg-frame

d¢gq _ 4R . wj(ﬁdq We assume there is no magnetic saturation
dt - Hs s s J
Jd - Ld = ¢s - ¢m
w d
ndt:n qusqu/ — Lg = ¢d
de Inputs: voltages in abc: uabC — u?%ﬁ/m
dt “ Outputs: currents in af: i2f = R(G)IS

Set of virtual measurements for the PWM-controlled PMSM
Owing to the endogenous injection)

i2F = 2F 4 +O() =

Where S(0) is the so-called saliency matrix EM

Lo+ Lg 1—|—L" Ld cos 20 iH sin 20
2L 4L, Lg—Lg

S(8) :=

Lg— Ld
Tatly sm20 1-— Totly cos 260
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State-space model of a PMSM in the dg-frame

d¢gq _ 4R . wj(ﬁdq We assume there is no magnetic saturation
dt - Hs s s J
Jd - Ld = ¢s - ¢m
w d
ndt:n qusqu/ — Lg = ¢d
de Inputs: voltages in abc: uabC — u?%ﬁ/m
dt “ Outputs: currents in af: i2f = R(G)IS

Set of virtual measurements for the PWM-controlled PMSM
Owing to the endogenous injection)

i2F = 2P 4 +0(%) =
—_———
Where S(0) is the so-called saliency matrix EM

La+ Lg <1+ Lq Ld cos 20 i+L sin 20 )

2Lalq Lo Ld sin 20 1-— :id cos 26
q

Lytlq

S(8) :=

— ¥, is made available by the previous demodulation method!
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. Standard PWM scheme (i.e. same carrier for the three

voltages): the rank of so‘ﬁ “B drops when two input voltages are equal

32



Recovery of the position — LSQ on the virtual measurement

w(t) = gS(é(t))sfﬁsi‘ﬁT. Standard PWM scheme (i.e. same carrier for the three

T .
voltages): the rank of s;"s; B drops when two input voltages are equal

@ .
s; B collinear

(3
rank = 1

59 (Vs)

af o

Xt 1072

Experimental

Xt 102
10 T

Xt 102
T

1N
/

~s|

. . . . .
1.4020 1.4021 1.4022 1.4023 1.4024
Time (s)

L L L
1.6620 1.6621 1.6622

Time (s)

L L L L
1.6623 1.6624 6.1514 6.1516

Time (s)

L
6.1518

sf‘ﬁ ind.

rank = 2
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voltages): the rank of saﬁ oo drops when two input voltages are equal

Xt 1072

Xt 102
10 T

Xt 102

. Standard PWM scheme (i.e. same carrier for the three

7 ; : ! ! ! ! ! ! , ! ! ap .
s, collinear 3 sk < s; - ind.

U 5y s 5| s & U
rank=1 12 o of {iop 1 rank =2

~s| 4

L L
6.1516 6.1518

Time (s)

L L L L L L
1.6620 1.6621 1.6622 1.6623 1.6624 6.1514

Time (s)

. . . . .
1.4020 1.4021 1.4022 1.4023 1.4024
Time (s)

Least-squares method to estimate cos 26 and sin 20. Writing

AR L aB R v yi2) . 2Lalg
pov)o ya ye) T Lot Ly

and L := L"H" , the virtual measurement y, = S(8)s>* s aFT reads
)\ 7 yir—A
p— ys w v cos 20 _ Yio— [ cos 26 _ T o1=1pT
—u A sin 20 L Vo1 — W = sin 20 L[P P] 2
—vou) A \yn—v



Salient PMSM Ly = 43.25mH, L, = 69.05 mH

Speed ramp: 0 — 10Hz in 8s; T; = 100,

Experimental results
T

150, 200% of the rated torque

T T T T T T T
- olk 100% ||
& 150 %
' - i = 200%
3 . g o2l
= R
g ool P 4 |
3 B ® 04|
3 B
o B ot
. . . . . . —06 . . . .
0 2 4 6 0 4 6 8 2 4 6 8
Time (s) Time (s) Time (s)
Numerical results (linear current-flux relation)
103
T :
1 2 100%
150%
= 5 200%
W 40 1 g
2 < of
3 20f @
ol
L 1 -5t
o L L L L L L L L L L
[ 2 4 6 0 4 6 8 0 2 4 6 8
Time (s) Time (s) Time (s)

Speed w (rads™ 1)

Position 6 (rad)

Error 0 — 6 (rad)
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Experimental

Sensorless position estimation — Numerical and experimental results

Salient PMSM Ly = 43.25mH, L4 = 69.05 mH
Speed ramp: 0 — 10Hz in 8s; T; = 100, 150, 200% of the rated torque

Experimental results
T

T T T T T T T T
ol — y olt ——100% ||
& e 150%
0 5
w > = 5 200%
3 40 ) 1% 1 E —02} ]
< <« > @
g 20 i 4 & 100F 40 TP |
M 4 © —~ ® —04} 4
3 -
0 4 0 p——"" 4
. . . . . . . . _06 . . . .
0 2 4 6 8 0 2 4 6 8 2 4 6 8
Time (s) Time (s) Time (s)
Numerical results (linear current-flux rela
102
300 y. 5 | — 100%
g 150%
A =) 1 3 200%
£ = - SR
=3 . L e 4 |
5 < 100 - J
0 f—" 1 gL
. . . . . . . .
0 2 4 6 8 0 2 4 6 8
Time (s) Time (s) Time (s)
Speed w (rads™ 1) Position 6 (rad) Error 6 — 6 (rad)
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Experimental

Sensorless position estimation — Numerical and experimental results

Scenario: Salient PMSM Ly = 43.25mH, Lq = 69.05 mH
Speed ramp: 0 — 10Hz in 8s; T; = 100, 150, 200% of the rated torque

I el el
I
i - -
13 40f . 1 13
IS g @
13 -
| 0 4 0 p——"" 4
Lo RS s oz 4+ s
| Time (s) Time (s)
| e o o e o o e o o e e e e e e e e e o — — —  — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
- {1
- S
T 5 s
Time (s) Time (s) Time (s)
Speed w (rads™ 1) Position 6 (rad) Error 6 — 8 (rad)
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Experimental

Sensorless position estimation — Numerical and experimental results

Scenario: Salient PMSM Ly = 43.25mH, Lq = 69.05 mH
Speed ramp: 0 — 10Hz in 8s; T; = 100, 150, 200% of the rated torque

Experimental results
T

T T T T T T T T T
ol w — ol ——100% ||
PS Wt o ——150%
0 & 9
o - = 200%
L " ] 1= )
B a0 . £ -02 |
- = H\
T oo b ot d - 4 1
i Vel - ® 04
3 . -
0 4 0 p——"" 4
. . . . . . . . —06 . . . .
0 2 4 6 8 0 2 4 6 8 2 4 6 8
Time (s) Time (s) Time (s)

Numerical results_(linear current-flux Does not match the XP!

w (rads™)

Time (s) Time (s) Time (s)

Speed w (rads™ 1) Position 6 (rad) Error 6 — 8 (rad)

— Discrepancy between the numerical and experimental values for 6 — 67
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Energy-based modelling (p;;: magnetic parameters)

(629) := p1od? + p20($9)* + p30(62)* + pao(92)" + poa($9)” + poa(¢?)*

+p126 (63)° + p22(99)*(99)?

Linear current-flux relation Saturated current-flux relation

N g d
i=& Ld¢ =1 5= agg 9°) #=5 097
q s

(629
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Experimental

Sensorless position estimation — Saturation model — Results

Energy-based modelling (p;;: magnetic parameters)

HT($29) = prod? + pa0(69)” + p3o(#7)® + pao(2)* + poa(¢d) + poa(dd)*
+p1292(69)? + paa(99)*(¢7)?

Linear current-flux relation Saturated current-flux relation
q aH dq 6 H dq
d -m d m d
d ¢s ¢m Iq _ Ps _ (¢sq) Ig (¢SL7)

= g =
6= T 1, o<

Numerical

umerical
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Experimental

Energy-based modelling (p;;: magnetic parameters)

(¢9) == p1o@? + p2o(¢7)” + P3o(#2)” + pao(9d)" + poa(62)” + poa(4)*
+p126? (32)° + paa(62)°(49)°

Linear current-flux relation Saturated current-flux relation
d ¢s ¢m q g d é dq q __ E dq
=1 I 13 =
I = L Iq L, s By (¢s9), 12 EYS (¢59)

Numerical

umerical

Time(s) ' _ _ _ _ _ _ _ _ Time(s) _ L e Time(s)_ _ _ _ _ _ I

— Behavior of the error wrt. numerically reproduced thanks to the magnetic model!
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Outline

Sensorless control of electric motors: principle
(Exogenous) Signal injection technique

Higher-order generic averaging theory
Third-order theory — Exogenous injection, numerical validation

Computation of the PWM-induced ripple
Averaging theorem, numerical validation

Design of the reconstruction kernels
Ax-property, result and numerical validation
Demodulation over XA modulators

Virtual measurement extraction
Numerical /Experimental recovery of the rotor position

6. Conclusion
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Summary

Higher-order signal injection:
external HF probing signals or PWM harmonics induce nonlinear responses
carrying additional knowledge on the system

Generic for extracting the so-called virtual measurements
with an arbitrary accuracy in O(e”)
Several for kth-order CT-ZA MOD: "the demodulation process

commutes with the XA modulator”

. successful sensorless position estimation
from the XA current bitstreams
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In the near future

Third/Higher-order averaging theory for endogenous signal injection
Generalization of the XA estimates on various architectures (MASH, CIFB, etc.)

Experimental implementation of a closed-loop sensorless scheme based on the
PWM excitation
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Summary

Higher-order signal injection:
external HF probing signals or PWM harmonics induce nonlinear responses
carrying additional knowledge on the system

Generic for extracting the so-called virtual measurements
with an arbitrary accuracy in O(e”)
Several for kth-order CT-ZA MOD: "the demodulation process

commutes with the XA modulator”

. successful sensorless position estimation
from the XA current bitstreams

In the near future

Third/Higher-order averaging theory for endogenous signal injection
Generalization of the XA estimates on various architectures (MASH, CIFB, etc.)

Experimental implementation of a closed-loop sensorless scheme based on the
PWM excitation
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