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Introduction – Sensorless control of electric motors

Main target: sensorless control of electric motors

Controller System
u

Observer

Voltages uabcs

xref e ya

Currents {¸˛s

−

bx

y1

Rotor position „

– System is observable with both currents and rotor position measurements

– Without mechanical sensor: degeneracy of observability at low speed

– To bypass this issue: signal injection technique
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Introduction — Signal injection technique and position estimation

ẋ = f (x) + g(x)u
y = h(x)

Controller System Demod.
yayu

Observer

xref e ya
−

bx

y1

s0(t=")

ya → y = h(x) + "h′(x)g(x)s1(t=") +O("2)

– Injection of a high-frenquency signal s0(t=")

– Perturbation of the measurement y

– Demodulation procedure for extracting ya and y1

– System is now observable with those “virtual measurements”
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Periodic averaging = Near-identity transformation + Comparison result

ẋ = "f 1(x; t) + : : :+ "k f k(x; t)

+ "k+1f [k+1](x; t; ")

System with injection

˙̌x = "g 1(x̌) + : : :+ "kgk(x̌)

+ "k+1g [k+1](x̌ ; t; ")

(Full) Averaged state

ẋ = "g 1(x) + : : :+ "kgk(x)

Truncated averaged stateėx = "f 1(ex; t) + : : :+ "k(f k(ex; t) + hk(ex; t))

+ "k+1 f̃ [k+1](ex; t; ")

x̌ = x + "’1(x; t) + : : :+ "k’k(x; t)

Near-identity transformation

with g1(x) =
R 1

0 f (x; ff) dff

Dropping the last term

g [k+1] (instationary)

x̃ = x + "’1(x; t) + : : :+ "k−1’k−1(x; t)

hk (x; t) periodic

with zero mean

Comparison result: x(t) = ex(t) +O("k)
on a timescale 1="

h(x) = h(x) + "dh(x) · ’1(x; t) + 1
2
"2d2h(x) · ’1(x; t) · ’1(x; t) + "2dh(x) · ’2(x; t) +O("3)

x = ex +O("k )

7



Introduction Averaging Endogenous injection Synchronous detection Experimental Conclusion

Periodic averaging = Near-identity transformation + Comparison result
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Third-order averaging theory – Exogenous signal injection – Linear dynamics

SISO system, linear dynamics, nonlinear measurement

ẋ = Ax + Bu; y = h(x) Exogenous injection: u → u + s0( t
"
)

Set of virtual measurements

H(x) =
“
h(x) "h′(x)B "2

2
h′′(x)(B;B) "2h′(x)AB

”
:

We assume that, with these additional measurements, the original system is observable

Non-perturbed system

ẋ = Ax + B¸(”;H(x); t)

”̇ = a(”;H(x); t)

System with signal injection

ẋ = Ax + B¸(”;H(x); t) + Bs0( t
"
)

”̇ = a(”;H(x); t)

H(x) = H(x − "Bs1( t
"
)− "2ABs2( t

"
))

– s0 : 1-periodic signal with zero mean.

– si+1 is the primitive of si with zero mean.
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Third-order averaging theorem – Exogenous signal injection

Theorem (Third-order averaging for exogenous signal injection, SCMR, 2019)

Let x(t) (resp. x(t)) be the solution of the perturbed (resp non-perturbed) system, with
x(0) = x(0) + "Bs1(0) + "2ABs2(0). Assume the original system is locally exponentially
stable. Then for t ≥ 0,

x(t) = x(t) + "Bs1( t
"
) + "2ABs2( t

"
) +O("3)

”(t) = ”(t) +O("3)

y(t) = h(x(t))| {z }
Y0(t)

+ "h′(x(t))B| {z }
Y1(t)

s1( t
"
)

+ "2

2
h′′(x(t))(B;B)| {z }

Y3(t)

s1( t
"
)2 + "2h′(x(t))AB| {z }

Y2(t)

s2( t
"
) +O("3)

– Locally exponentially stability hypothesis: for the extension to infinity of the result
(otherwise only valid on a timescale 1=")

– Idea of the proof: change of coordinates (the so-called near-identity
transformation), then use of a comparison theorem

9
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Third-order averaging theory for exogenous signal injection – Numerical example

Dynamic system

ẋ1 = x2

ẋ2 = x3

ẋ3 = u + d

y = x1x2 +
x3

3

3

– u: input

– d : (unknown) disturbance

– Objective: controlling x1 while rejecting d

Virtual measurements

Y1 := h′(x)B = x2
3

Y2 :=
1

2
h′′(x)(B;B) = x3

Y3 := h′(x)AB = x1

– Second-order averaging theory is not enough
here

– With Y3, the system is controllable with a linear
controller

→ Third-order averaging theory is paramount

10
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ẋ1 = x2

ẋ2 = x3
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3
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– u: input

– d : (unknown) disturbance

– Objective: controlling x1 while rejecting d

Virtual measurements

Y1 := h′(x)B = x2
3

Y2 :=
1

2
h′′(x)(B;B) = x3

Y3 := h′(x)AB = x1

– Second-order averaging theory is not enough
here

– With Y3, the system is controllable with a linear
controller

→ Third-order averaging theory is paramount

We (momentarily) assume we can extract

Yi with an accuracy in "3!
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Third-order averaging theory for exogenous signal injection – Scenario

Scenario

– System at rest at t = 0 ; step d = −0:25 at t = 4

– Filtered ramp (slope 5× 10−2) for 15 ≤ t ≤ 35

– At t = 35 : filtered step to go back to 0

– Injection: square wave with " = 10−3

0 4 15 20 35 40

0

0.05

0.1

Disturbance d

Time (s)

x
1
,
Ŷ
3
/
ε
2

Ŷ3/ε2
x1

0 10 20 30 40
−2

−1

0

1
·10−3

Time (s)

y

y

0 10 20 30 40

−1

0

1

Time (s)

u
+
s 0

,
u

u + s0
u

27.65 27.7 27.75
3

3.02

3.04

3.06

3.08

3.1
·10−4

Time (s)

y

y

27.65 27.7 27.75

−1

0

1

Time (s)

u
+
s 0

,
u

u + s0
u

Measured output y Input u
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Exogenous injection – Simulation, results
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3
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States x1, x2, x3, Virtual measurements Y2, Y3 (left); zoom on the error x − xi (right)

→ Control with the virtual measurements as effective as with the actual state x1
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Endogenous signal injection for PWM-controlled systems

– Many electrical motors are controlled using Pulse-Width Modulation (PWM),
and limits the use of an exogenous injection

Controller PWM System Demod
u upwm y

Observer

xref e yv
−

bx

ya

−ε −ε/2 tu1 0 tu2 ε/2 ε

−um

0

um

Time (s)

C
ar

rie
r,

In
pu

t/
O

ut
pu

t
vo

lt
ag

e
(V

)

upwm
u
c

Computation: comparison to a fast-varying carrier c

Induces the same response
as an exogenous signal injection

– The periodic modulation introduces a perturbation in the system

– For nonlinear systems, this perturbation may carry additional information...
– ...just as in the exogenous case!
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Endogenous signal injection – PWM operating principle

Principle: the input u is compared to an "-periodic carrier c to produce a PWM signal
upwm (with " << 1 is a small parameter)

Expression for upwm, with s0 =: endogenous injection

upwm(t) = u(t) + s0(u(t); t
"
);

0 1 2 3

−1

0

1

Time (s)

s 0
(V

)

u = 0 u = 0.2 u = 0.4

×um

0 1 2 3

−0.2
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0.4

Time (s)

s 1
(V
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u = 0 u = 0.2 u = 0.4

×um

0 1 2 3

−0.5

0

0.5

Time (s)

w
(V

)

×um

s0 (top), s1 (middle), w (right)

s0 1-periodic with zero mean in the
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Endogenous signal injection – PWM operating principle

Principle: the input u is compared to an "-periodic carrier c to produce a PWM signal
upwm (with " << 1 is a small parameter)
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Second-order averaging theorem for endogenous signal injection – 1

SISO nonlinear system

ẋ = f (x) + g(x)u

y = h(x)

Set of virtual measurements

H(x) =
`
h(x) "h′(x)g(x)

´
We assume that, with this additional measurement ("h′(x)g(x)), the original system is
observable

Non-perturbed system

ẋ = f (x) + g(x)u(t)

”̇ = a(”;H(x); t)

u(t) = ¸(”;H(x); t)

PWM-controlled system

ẋ = f (x) + g(x)(u + s0(u(t); t
"

))

”̇ = a
`
”;H(x; ”; t

"
; t); t

´
u = ¸

`
”;H(x; ”; t

"
; t); t

´
H(x; ”; ff; t) := H

„
x − "g(x)s1

“
¸
`
”;H(x); t

´
; ff
”«

– s0(u; fi): 1-periodic signal with zero mean in fi .

– s1(u; fi) is the primitive wrt. fi of s0 with zero mean.
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Second-order averaging theorem for endogenous signal injection – 2

Theorem (Second-order averaging for PWM-controlled systems, SCMR20)

Let (x(t); ”(t)) be the solution of the PWM-controlled system starting from (x0; ”0),
and define u(t) := ¸

`
”(t); H

`
x(t)

´
; t
´

and y(t) := H
`
x(t)

´
;

let (x(t); ”(t)) be the solution of the original system starting from`
x0 − "g(x0)s1

`
u(0); 0

´
; ”0

´
, and define u(t) := ¸

`
”(t); H

`
x(t)

´
; t
´
. Then, for all t ≥ 0,

x(t) = x(t) + "g
`
x(t)

´
s1

`
u(t); t

"

´
+O("2)

”(t) = ”(t) +O("2)

y(t) = h(x(t))| {z }
:=ya(t)

+ "h′(x(t))g(x(t))| {z }
:=yv (t)

s1

`
u(t); t

"

´
+O("2):

– Idea of the proof: change of coordinates (the so-called near-identity transformation), then

use of a comparison theorem (similar to the Lipschitz case)

– The proof requires a slight adaptation of the classic averaging theorem for systems with
state-discontinuities
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Endogenous signal injection – Virtual measurements

Dynamic system

ẋ1 = x2

ẋ2 = x3

ẋ3 = u + d

y = x2 + x1x3

– u: input

– d : (unknown) disturbance

– Objective: controlling x1 while rejecting d

Virtual measurements

ya := x2 + x1x3

yv := "h′(x)g(x) = "x1

– Controlling the system with PWM gives access
to yv = "x1

– With yv , the system is controllable with a linear
controller

Still assume ya and yv
are known with a O("2) accuracy
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Endogenous signal injection – Scenario, results

Scenario

– System at rest at t = 0 ; step d = −0:25 at t = 2 s

– Filtered unit step at t = 14 s

– PWM period " = 10−3 s
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Recovery as good as in the exogenous scenario!
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Outline

1. Introduction
Sensorless control of electric motors: principle
(Exogenous) Signal injection technique

2. Higher-order averaging theory for exogenous signal injection
Higher-order generic averaging theory
Third-order theory – Exogenous injection, numerical validation

3. Second-order averaging theory for endogenous signal injection
Computation of the PWM-induced ripple
Averaging theorem, numerical validation

4. Synchronous detection over analog and Σ∆ outputs
Design of the reconstruction kernels
Ak -property, result and numerical validation
Demodulation over Σ∆ modulators

5. Sensorless position estimation of electric motors
Virtual measurement extraction
Numerical/Experimental recovery of the rotor position

6. Conclusion
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Demodulation procedure of multiplexed signals

Extraction of the coordinates z from the physical measurement y

y =
NX
i=1

zi si ; zi ∈ R; si ∈ RN

→ Objective: Recovery of each zi with an arbitrary accuracy in O("k)

– Simple projection using Gram-Schmidt orthogonalization process: exact recovery

– Projection (on L2
per), still using G-S: exact recovery → procedure for recovering the

”exogenous” virtual measurements!

– Projection (on L2
per), but no guarantee on the extraction accuracy

– Carriers with a slow-time dependency: is it possible to design a
uniform estimate...

– ...that also mitigates both the measurement noise � and the physical
disturbance d ...

– and still applies to a (multi-output) Σ∆ bitstream?
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Demodulation procedure of multiplexed signals

Extraction of the coordinates z from the physical measurement y
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`
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+ �Σ∆
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Demodulation procedure of multiplexed signals

Extraction of the coordinates z from the physical measurement y

y = Σ∆
ˆ
Z(t)S

`
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→ Objective: Recovery of each zi with an arbitrary accuracy in O("k)

– Simple projection using Gram-Schmidt orthogonalization process: exact recovery

– Projection (on L2
per), still using G-S: exact recovery → procedure for recovering the

”exogenous” virtual measurements!

– Projection (on L2
per), but no guarantee on the extraction accuracy

– Carriers with a slow-time dependency: is it possible to design a
uniform estimate...

– ...that also mitigates both the measurement noise � and the physical
disturbance d ...

– and still applies to a (multi-output) Σ∆ bitstream?

→ Synchronous detection problem on analog/Σ∆ signals (with exotic considerations)
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Demodulation procedure – Reconstruction kernel eKk
(Without disturbance d = 0 nor slow dependency on S

`
t; t
"

´
)

Definition of the kernel Kk

Kk =

„
1

"
1[0;"]

«∗k
=

1

"k
1[0;"] ∗ : : : ∗ 1[0;"]

→ k = 2: triangle/Bartlett window; k = 4:
Parzen/de la Vallée Poussin

Modified kernels eKk → eKk ∗ ’ = ’+O("k)

eK1(t) := K1(t)eK2(t) := 2K2(t)− 1K2(t − ");eK3(t) := 17
4
K3(t)− 5K3(t − ") + 7

4
K3(t − 2"):

0 1 2 3 4
0

0.5

1 K1

K2

K3

K4

0 2 4 6
−10

−5

0

5

10
K̃1 K̃2 K̃3 K̃4

Extraction of the vector Z (with R = S)

Pk [y ](t) :=
“ eKk ∗ `yRT" ´”(t)×

“ eKk ∗ `S"RT" ´”−1

(t)

= ZT (t) +O("k)
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Demodulation procedure – Main result

In presence of disturbances, one technique consists in windowing the location of the
perturbation:
→ c(t; t

"
) := 0 when d is active, 1 otherwise

→ R = S × c
With the slow-time dependency on S, we assume SRT (fl; ff) are Ak

Definition (Ak property)

Let g(t; ff) be 1-periodic with zero mean. It is said to be Ak , k ≥ 1, if g (−k) is k − 1 times

differentiable in the first variable, with bounded derivatives at all orders, and @k−1
1 g (−k)

Lipschitz. Example: g(fl; t) := sign(fl + t) ← PWM signal; g (−1) = |v + t|

Demodulation of the components of Z

The following estimator recovers zk with an accuracy in "k

Pk [y ](t) :=
“ eKk ∗ `yRT" ´”(t)×

“ eKk ∗ `S"RT" ´”−1

(t):

In other words, ZT (t) = Pk [y ](t) +O("k).

Same result as before using a modified vector R (with a trickier proof though)
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Demodulation procedure

LPF K̃k

LPF K̃k

(·)−1

y (t)

Sε(t)

RTε (t)

yε(t)R
T
ε (t)

Sε(t)R
T
ε (t)

ZT (t)SRT (t) +O(εk )

SRT (t) +O(εk )

Pk [y ](t) = Z
T (t) +O(εk )

SRT
−1

(t) +O(εk )

Diagram of the demodulation procedure
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Numerical validation of the demodulation procedure

Validation of the theory on a toy problem. Composite signal

y(t) = z1(t)s1(t; t
"
) + z2(t)s2(t; t

"
) + z3(t)s3(t; t

"
) + d(t; t

"
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k [y ]− z2

Asymptotic (L2)
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Synchronous detection over Sigma-Delta modulators

→ Modern Variable-Frequency Drives embedd Sigma-Delta ADC

1
sTs

1
sTs

1
sTs

bk ADC
x1 x2 y

DAC

b1

b2

a1 a2 an−1ak−1

u β ν[n]

ν

xk

− − − − +

Continuous time Discrete time

State-space model i = 1; : : : ; k − 1

1

N
ẋ1(fi) = u(fi)− �(Nfi)

1

N
ẋi+1(fi) = xi (fi)− ai�(Nfi)

y(fi) =
kX
i=1

bixi (fi)

– Input: u(t="), ": PWM period

– Sampling time Ts (15 MHz)

– Normalized time fi := t="

– Oversampling ratio N := "=Ts (= 3750
for the actual implementation)

→ (Filtered) input-ouput estimate?

Analog currents

(not available)

h(x) + "h′(x)g(x)s1 +O("2)

Output bitstream

∈ {0; 1}

26



Introduction Averaging Endogenous injection Synchronous detection Experimental Conclusion

Synchronous detection over Sigma-Delta modulators

→ Modern Variable-Frequency Drives embedd Sigma-Delta ADC

1
sTs

1
sTs

1
sTs

bk ADC
x1 x2 y

DAC

b1

b2

a1 a2 an−1ak−1

u β ν[n]

ν

xk

− − − − +

Continuous time Discrete time

State-space model i = 1; : : : ; k − 1

1

N
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Synchronous detection over continuous Σ∆ modulators – Theorem

Assumptions:

– the input u is selected such that the modulator is stable, i.e. the states x1;:::;k are
bounded. In particular, ‖u‖∞ < 1.

– kth-order continuous Σ∆ modulator in pure feedforward form: a1 = :: = ak−1 = 0

Definition: f p-times differentiable + f (p) absolutely continuous (resp. piecewise) = f
ACp (resp. piecewise).

Theorem (Error estimate for kth-order CT-Σ∆ modulators, SCMR21)

Consider ˛ ∈ L∞[0;+∞) such that the zero-mean primitive ˛(−j) of ˛(−j+1) exists
(j = 0; : : : ; k − 1). Consider as well Kk a (k − 1)th-times differentiable kernel with support in
[0; k], and such that Kk(0) = Kk(k) = (Kk)(j)(0) = (Kk)(j)(k) = 0 (j = 0; : : : ; k − 1). If s is
ACk−1, then for t ≥ 0,

I(t) := ˛s ∗Kk(t) = o(1=Nk)

If s is only piecewise ACk−1, then for t ≥ 0, I(t) = O(1=Nk).

Hypotheses on ˛ ← Output-input difference of a Σ∆ CT-MOD
Kk← satisfied by the previous kernels

27



Introduction Averaging Endogenous injection Synchronous detection Experimental Conclusion

Synchronous detection over continuous Σ∆ modulators – Theorem
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Synchronous detection – Numerical results

(Filtered) Output-Input difference, second-order CT-MOD2 in pure FF form

I(t) := ˛s ∗Kk(t) = o(1=N2); s AC1

= O(1=N2) s piecewise AC1

= O(1=N) s discontinuous

Input ui (t) := z(t)si (t) with z(t) := 0:04 cos(t=12) + 0:06 sin(t=4ı).
Expression for the different signals s

s1(t) :=
1√
0:03

`
fi1[0;0:6](fi) + 1:5(1− fi)1]0:6;1](fi)− 0:3

´
;

s2(t) :=
√

2 cos(2ıfi); s3(t) := 1[0;0:5](fi)− 1]0:5;1](fi);

with fi = mod(t; ")=" and " = 1.

– s1: piecewise AC1, s2 AC
1,

s3 discontinuous
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Outline
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Sensorless control of electric motors: principle
(Exogenous) Signal injection technique

2. Higher-order averaging theory for exogenous signal injection
Higher-order generic averaging theory
Third-order theory – Exogenous injection, numerical validation

3. Second-order averaging theory for endogenous signal injection
Computation of the PWM-induced ripple
Averaging theorem, numerical validation

4. Synchronous detection over analog and Σ∆ outputs
Design of the reconstruction kernels
Ak -property, result and numerical validation
Demodulation over Σ∆ modulators

5. Sensorless position estimation of electric motors
Virtual measurement extraction
Numerical/Experimental recovery of the rotor position

6. Conclusion
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Sensorless PMSM control scheme

Speed controller Current controller
dq

abc
PWM Inverter

αβ

abc

dq

αβ

DemodulationPLL/atan PMSM

ωref

idqs,ref udqs,ref

ıdqs

ω̂

−

θ̂

uabcs,ref

uabcs,pwm

Σ∆
modulator

ıabcs

ıαβs

Gate pulses

sαβ1

̂cos 2θ

̂sin 2θ

Averaging for endogenous signal injection

Synchronous demodulation over Σ∆ modulators

Controller design

Sensorless PMSM control scheme
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Model and virtual measurements for a PWM-controlled PMSM

State-space model of a PMSM in the dq-frame

dffidqs
dt

= udqs − Rs {dqs − !Jffidqs
J

n

d!

dt
= n{dq

T

s Jffidqs − Tl
d„

dt
= !

We assume there is no magnetic saturation

– Ld {
d
s = ffids − ffim

– Lq {
q
s = ffi

q
s

Inputs: voltages in abc: uabcs → uabcs;pwm

Outputs: currents in ¸˛: i¸˛s := R(„){dqs

b

c

a,α

β

d

q

θ

Set of virtual measurements for the PWM-controlled PMSM
→ Owing to the endogenous injection)

{¸˛s = {¸˛s + "dhx
`
g(x)s1

´
+O("2) ⇒ yv (t) = "S

`
„̄(t)

´
s¸˛1 s¸˛

T

1| {z }
∈M2Where S(„) is the so-called saliency matrix

S(„) :=
Ld + Lq
2LdLq

 
1 +

Lq−Ld
Ld+Lq

cos 2„
Lq−Ld
Ld+Lq

sin 2„
Lq−Ld
Ld+Lq

sin 2„ 1− Lq−Ld
Ld+Lq

cos 2„

!
:

→ yv is made available by the previous demodulation method!
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Recovery of the position – LSQ on the virtual measurement

yv (t) = "S
`
„̄(t)

´
s¸˛1 s¸˛

T

1 . Standard PWM scheme (i.e. same carrier for the three

voltages): the rank of s¸˛1 s¸˛
T

1 drops when two input voltages are equal

1.4020 1.4021 1.4022 1.4023 1.4024

−5

0

5

Time (s)

s
α
β
1

(V
s)

sα1

sβ1

×um · 10−3

1.6620 1.6621 1.6622 1.6623 1.6624
−10

−5

0

5

10

Time (s)

sα1

sβ1

×um · 10−3

6.1514 6.1516 6.1518

−5

0

5

Time (s)

sα1

sβ1

×um · 10−3

Least-squares method to estimate cos 2„ and sin 2„. Writing„
– —
— �

«
:= s¸˛1 s¸˛

T

1 ;

„
y11 y12

y21 y22

«
:=

2LdLq
Ld + Lq

yv :

and L :=
Ld+Lq
Lq−Ld

, the virtual measurement yv = S(„)s¸˛1 s¸˛
T

1 reads0BB@
– —
— �
−— –
−� —

1CCA„cos 2„
sin 2„

«
= L

0BB@
y11 − –
y12 − —
y21 − —
y22 − �

1CCA ⇒ „
cos 2„
sin 2„

«
= L

ˆ
P TP

˜−1
P T d

s
¸˛
1 collinear

⇓
rank = 1

s
¸˛
1 ind.

⇓
rank = 2

P =:

d =:
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Sensorless position estimation – Numerical and experimental results

Scenario: Salient PMSM Ld = 43:25 mH, Lq = 69:05 mH
Speed ramp: 0− 10 Hz in 8 s; Tl = 100, 150, 200% of the rated torque
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Experimental results

Numerical results (linear current-flux relation)

Speed ! (rad s−1) Position „ (rad) Error „ − b„ (rad)

– Discrepancy between the numerical and experimental values for „ − b„?
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Sensorless position estimation – Numerical and experimental results

Scenario: Salient PMSM Ld = 43:25 mH, Lq = 69:05 mH
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Sensorless position estimation – Saturation model – Results

Energy-based modelling (pi j : magnetic parameters)

Hdqm (ffidqs ) := p10ffi
d
s + p20(ffids )2 + p30(ffids )3 + p40(ffids )4 + p02(ffiqs )2 + p04(ffiqs )4

+p12ffi
d
s (ffiqs )2 + p22(ffids )2(ffiqs )2

Linear current-flux relation

{ds =
ffids − ffim
Ld

; {qs =
ffiqs
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Saturated current-flux relation
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– Behavior of the error wrt. numerically reproduced thanks to the magnetic model!

Numerical

Numerical
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Sensorless position estimation – Saturation model – Results
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Conclusion

Summary

– Higher-order averaging theory for exogenous/endogenous signal injection:
external HF probing signals or PWM harmonics induce nonlinear responses
carrying additional knowledge on the system

– Generic demodulation procedure for extracting the so-called virtual measurements
with an arbitrary accuracy in O("p)

– Several error estimates for kth-order CT-Σ∆ MOD: ”the demodulation process
commutes with the Σ∆ modulator”

– Experimental validations on a PMSM: successful sensorless position estimation
from the Σ∆ current bitstreams

In the near future

– Third/Higher-order averaging theory for endogenous signal injection

– Generalization of the Σ∆ estimates on various architectures (MASH, CIFB, etc.)

– Experimental implementation of a closed-loop sensorless scheme based on the
PWM excitation

Thank you!
\end{presentation}
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