Sensorless control of electric motors

Dilshad Surroop^{1,2} Joint work with P.Combes², P.Martin¹ and P.Rouchon¹ ¹Mines Paristech, ²Schneider Electric

December 1st, 2021

Conclusion

Outline

1. Introduction

Sensorless control of electric motors: principle (Exogenous) Signal injection technique

- 2. Higher-order averaging theory for exogenous signal injection Higher-order generic averaging theory Third-order theory – Exogenous injection, numerical validation
- 3. Second-order averaging theory for endogenous signal injection Computation of the PWM-induced ripple Averaging theorem, numerical validation
- Synchronous detection over analog and ΣΔ outputs Design of the reconstruction kernels *A_k*-property, result and numerical validation Demodulation over ΣΔ modulators
- 5. Sensorless position estimation of electric motors Virtual measurement extraction Numerical/Experimental recovery of the rotor position
- 6. Conclusion

Outline

1. Introduction

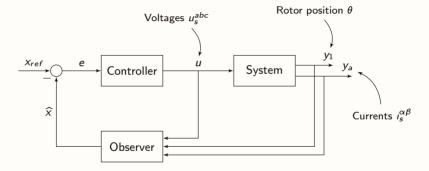
Sensorless control of electric motors: principle (Exogenous) Signal injection technique

- Higher-order averaging theory for exogenous signal injection Higher-order generic averaging theory Third-order theory – Exogenous injection, numerical validation
- 3. Second-order averaging theory for endogenous signal injection Computation of the PWM-induced ripple Averaging theorem, numerical validation
- Synchronous detection over analog and ΣΔ outputs Design of the reconstruction kernels A_k-property, result and numerical validation Demodulation over ΣΔ modulators
- 5. Sensorless position estimation of electric motors Virtual measurement extraction Numerical/Experimental recovery of the rotor posit
- 6. Conclusion

Introduction	Averaging	Endogenous injection	Synchronous detection	Experimental	Conclusion
Introductio	n – Sensorl	ess control of elect	ric motors		

Introduction – Sensorless control of electric motors

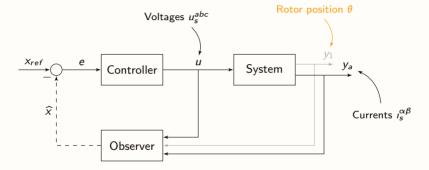
Main target: sensorless control of electric motors



- System is observable with both currents and rotor position measurements

Introduction				
Introducti	on – Sensorle	ess control of elect	ric motors	

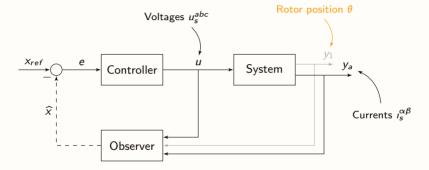
Main target: sensorless control of electric motors



- System is observable with both currents and rotor position measurements
- <u>Without mechanical sensor</u>: degeneracy of observability at low speed

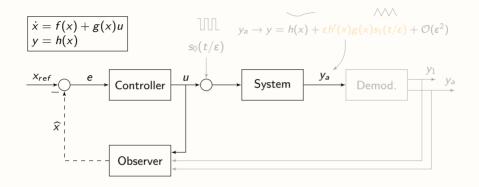
Introduction				
Introductio	n – Sensorl	ess control of elect	ric motors	

Main target: sensorless control of electric motors

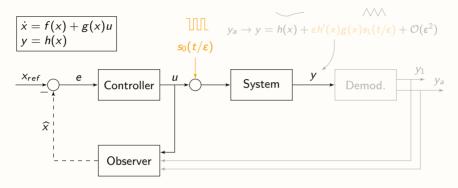


- System is observable with both currents and rotor position measurements
- Without mechanical sensor: degeneracy of observability at low speed
- To bypass this issue: signal injection technique

Introduction — Signal injection technique and position estimation

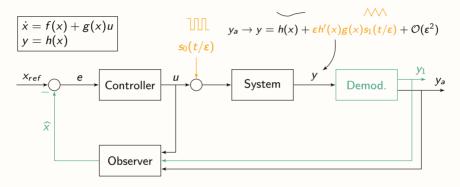


Introduction — Signal injection technique and position estimation



- Injection of a high-frenquency signal $s_0(t/\varepsilon)$
- Perturbation of the measurement y

Introduction — Signal injection technique and position estimation



- Injection of a high-frenquency signal $s_0(t/\varepsilon)$
- Perturbation of the measurement y
- Demodulation procedure for extracting y_a and y_1
- $-\,$ System is now observable with those "virtual measurements"

	Averaging	Endogenous injection		
Outling				
Outline				

1. Introduction

Sensorless control of electric motors: principle (Exogenous) Signal injection technique

Higher-order averaging theory for exogenous signal injection Higher-order generic averaging theory Third-order theory – Exogenous injection, numerical validation

- 3. Second-order averaging theory for endogenous signal injection Computation of the PWM-induced ripple Averaging theorem, numerical validation
- Synchronous detection over analog and ΣΔ outputs Design of the reconstruction kernels A_k-property, result and numerical validation Demodulation over ΣΔ modulators
- Sensorless position estimation of electric motors Virtual measurement extraction Numerical/Experimental recovery of the rotor positi
- 6. Conclusion

troduction A	Veraging		

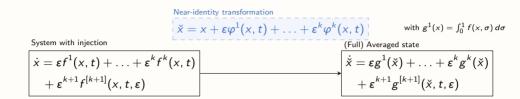
$\label{eq:Periodic averaging} {\sf Periodic averaging} = {\sf Near-identity transformation} + {\sf Comparison result}$

System with injection

$$\begin{split} \dot{x} &= \varepsilon f^1(x,t) + \ldots + \varepsilon^k f^k(x,t) \\ &+ \varepsilon^{k+1} f^{[k+1]}(x,t,\varepsilon) \end{split}$$

Averaging	

$\label{eq:Periodic averaging} Periodic \ averaging = Near-identity \ transformation \ + \ Comparison \ result$



Introduction	Averaging	Endogenous injection	Synchronous detection	Experimental	Conclusion
Periodic av	veraging $=$ N	ear-identity tran	sformation + Co	mparison result	
	with injection $f^1(x,t)+\ldots+k^{k+1}f^{[k+1]}(x,t,arepsilon)$		$(x,t)+\ldots+arepsilon^k arphi^k)$	$\begin{array}{c c} \text{with } g^{1}(x) = \\ \hline (Full) & \text{Averaged state} \\ \dot{\dot{X}} = \varepsilon g^{1}(\ddot{X}) + \ldots + \varepsilon \\ & + \varepsilon^{k+1} g^{[k+1]}(\ddot{X}, t, s) \end{array}$	
			Г		$\overline{z^k g^k(\overline{x})}$

Introduction	Averaging	Endogenous injection	Synchronous detection	Experimental Conclusion
Periodic a	veraging = N	ear-identity transf	formation + Compar	ison result
-	with injection $f^1(x,t)+\ldots+k^{k+1}f^{[k+1]}(x,t,arepsilon)$		$(x,t)+\ldots+arepsilon^k arphi^k(x,t)$	with $g^{1}(x) = \int_{0}^{1} f(x, \sigma) d\sigma$ veraged state $g^{1}(\check{x}) + \ldots + \varepsilon^{k} g^{k}(\check{x})$ $e^{k+1} g^{[k+1]}(\check{x}, t, \varepsilon)$
<i>h^k(x, t)</i> period with zero mea				Dropping the last term $g^{[k+1]}$ (instationary)
$egin{aligned} \dot{\widetilde{x}} &= arepsilon f^1(\widetilde{x},t) \ &+ arepsilon^{k+1} \widetilde{f}^{[k+1]} \end{aligned}$	$(r) + \ldots + \varepsilon^k (f^k)$ $(\tilde{x}, t, \varepsilon)$	$(\tilde{x}, t) + h^k(\tilde{x}, t))$		ed averaged state $g^1(\overline{x})+\ldots+arepsilon^kg^k(\overline{x})$
		$ ilde{x} = \overline{x} + arepsilon arphi^1 (arepsilon arphi)$	$\overline{x}, t) + \ldots + arepsilon^{k-1} arphi^{k-1} (\overline{z})$	\overline{x}, t)

Introduction	Averaging	Endogenous injection	Synchronous detection	Experimental	Conclusion
Periodic av	veraging = I	Near-identity trar	sformation + Co	omparison result	
		Near-identity trans $\check{x}=x+arepsilonarphi^1$	formation $(x,t)+\ldots+oldsymbol{arepsilon}^k arphi^k ($	(x, t) with $g^1(x) =$	$=\int_0^1 f(x,\sigma)d\sigma$
System w	ith injection	Ll	· · · · · · · · · · · · · · · · · · ·	(Full) Averaged state	
$\dot{x} = \varepsilon x + \varepsilon x$	$f^{1}(x, t) + \ldots + k^{k+1}f^{[k+1]}(x, t, t)$	$-\varepsilon^k f^k(x,t)$		$\dot{\check{x}} = \varepsilon g^1(\check{x}) + \ldots + \varepsilon^{k+1} g^{[k+1]}(\check{x}, t)$	
$h^k(imes,t)$ period with zero mea	ic	Comparison result: ×	$\widetilde{X}(t) = \widetilde{X}(t) + \mathcal{O}(oldsymbol{arepsilon}^k)$ on a timescale $1/arepsilon$	[k+	ng the last term ^{1]} (instationary)
$\dot{\sim}$ $c1/\sim$	× K(c)	$(2 \rightarrow k = k = k)$		Truncated averaged state	/

 $ilde{x} = \overline{x} + arepsilon arphi^1(\overline{x},t) + \ldots + arepsilon^{k-1} arphi^{k-1}(\overline{x},t)$

Introduction	Averaging	Endogenous injection	Synchronous detection	Experimental Conclusion
Period	ic averaging =	Near-identity trans	sformation $+$ Co	mparison result
· ·	stem with injection $= \varepsilon f^{1}(x, t) +$ $+ \varepsilon^{k+1} f^{[k+1]}(x, t)$		$(x, t) + \ldots + \varepsilon^k \varphi^k (x)$	$\begin{aligned} \begin{array}{c} \text{with } g^{1}(x) &= \int_{0}^{1} f(x,\sigma) d\sigma \\ \hline \text{(Full) Averaged state} \\ \dot{\dot{x}} &= \varepsilon g^{1}(\check{x}) + \ldots + \varepsilon^{k} g^{k}(\check{x}) \\ &+ \varepsilon^{k+1} g^{[k+1]}(\check{x},t,\varepsilon) \end{aligned}$
h ^k (x, t) with zer	· \	Comparison result: x	$\widetilde{X}(t) = \widetilde{X}(t) + \mathcal{O}(oldsymbol{arepsilon}^k)$ on a timescale $1/arepsilon$	Dropping the last term $g^{[k+1]}$ (instationary)
	$(\widetilde{x},t)+\ldots+arepsilon^k$ $f^{[k+1]}(\widetilde{x},t,arepsilon)$	$(f^k(\widetilde{x},t)+h^k(\widetilde{x},t))$	Г	$\frac{\text{Truncated averaged state}}{\dot{\overline{x}} = \varepsilon g^1(\overline{x}) + \ldots + \varepsilon^k g^k(\overline{x})}$
$x = \tilde{x}$	$+\mathcal{O}(\boldsymbol{\varepsilon}^k)$	$\tilde{x} = \overline{x} + \varepsilon \varphi^1$	$(\overline{x},t)+\ldots+\varepsilon^{k-1}q$	$ ho^{k-1}(\overline{x},t)$

 $h(x) = h(\overline{x}) + \varepsilon dh(\overline{x}) \cdot \varphi^{1}(\overline{x}, t) + \frac{1}{2} \varepsilon^{2} d^{2} h(\overline{x}) \cdot \varphi^{1}(\overline{x}, t) \cdot \varphi^{1}(\overline{x}, t) + \varepsilon^{2} dh(\overline{x}) \cdot \varphi^{2}(\overline{x}, t) + \mathcal{O}(\varepsilon^{3})$

Introduction	Averaging	Endogenous injection	Synchronous detection	Experimental	Conclusion
Periodic av	veraging $=$ N	lear-identity tra	nsformation + Co	mparison result	
$\dot{x} = \varepsilon t$	c	$\left[\frac{\varepsilon^{k} f^{k}(x, t)}{2} \right]$	has formation $f^1(x, t) + \ldots + \varepsilon^k \varphi^k(x)$ $(t) = \widetilde{x}(t) + \mathcal{O}(\varepsilon^k)$ on a timescale $1/\varepsilon$	$\begin{aligned} \begin{array}{c} \text{with } g^{1}(x) &= \int_{0}^{1} f(x) \\ \text{(Full) Averaged state} \\ \dot{\check{X}} &= \varepsilon g^{1}(\check{X}) + \ldots + \varepsilon^{k} g^{k}(x) \\ &+ \varepsilon^{k+1} g^{[k+1]}(\check{X}, t, \varepsilon) \end{aligned}$ Dropping the lag $g^{[k+1]}$ (instal	Ž)
$egin{aligned} \dot{\widetilde{x}} &= oldsymbol{arepsilon} f^1(\widetilde{x},t) \ &+ oldsymbol{arepsilon}^{k+1} \widetilde{f}^{[k+1]} \end{aligned}$		$(\widetilde{x},t)+h^k(\widetilde{x},t))$	<	Truncated averaged state $\dot{\overline{x}} = \varepsilon g^1(\overline{x}) + \ldots + \varepsilon^k g^k($	<u>x</u>)
$x = \tilde{x} + \mathcal{O}(\epsilon$ $h(x) = h$			$arphi^1(ar{x},t) + \ldots + arepsilon^{k-1} arepsilon$ $(ar{x}) \cdot arphi^1(ar{x},t) \cdot arphi^1(ar{x},t)$	$\left(ho^{k-1}(\overline{x},t) ight) + arepsilon^2 dh(\overline{x}) \cdot arphi^2(\overline{x},t) + \mathcal{O}$	(ε^3)

Third-order averaging theory – Exogenous signal injection – Linear dynamics

SISO system, linear dynamics, nonlinear measurement

 $\dot{x} = Ax + Bu$, y = h(x) Exogenous injection: $u \to u + s_0(\frac{t}{\epsilon})$

Set of virtual measurements

$$H(x) = \begin{pmatrix} h(x) & \varepsilon h'(x)B & \frac{\varepsilon^2}{2}h''(x)(B,B) & \varepsilon^2 h'(x)AB \end{pmatrix}.$$

We assume that, with these additional measurements, the original system is observable

Non-perturbed system

$$egin{aligned} &\dot{\overline{\mathbf{x}}} = A\overline{\mathbf{x}} + Blpha(\overline{\eta}, H(\overline{\mathbf{x}}), t)\ &\dot{\overline{\eta}} = \mathsf{a}(\overline{\eta}, H(\overline{\mathbf{x}}), t) \end{aligned}$$

System with signal injection

$$\dot{x} = Ax + B\alpha(\eta, \overline{H}(x), t) + Bs_0(\frac{t}{\varepsilon})$$
$$\dot{\eta} = a(\eta, \overline{H}(x), t)$$
$$\overline{H}(x) = H(x - \varepsilon Bs_1(\frac{t}{\varepsilon}) - \varepsilon^2 ABs_2(\frac{t}{\varepsilon}))$$

- $-\ s_0$: 1-periodic signal with zero mean.
- s_{i+1} is the primitive of s_i with zero mean.

Third-order averaging theorem – Exogenous signal injection

Theorem (Third-order averaging for exogenous signal injection, SCMR, 2019)

Let x(t) (resp. $\overline{x}(t)$) be the solution of the perturbed (resp non-perturbed) system, with $x(0) = \overline{x}(0) + \varepsilon B s_1(0) + \varepsilon^2 A B s_2(0)$. Assume the original system is locally exponentially stable. Then for $t \ge 0$,

$$\begin{aligned} x(t) &= \overline{x}(t) + \varepsilon B s_1(\frac{t}{\varepsilon}) + \varepsilon^2 A B s_2(\frac{t}{\varepsilon}) + \mathcal{O}(\varepsilon^3) \\ \eta(t) &= \overline{\eta}(t) + \mathcal{O}(\varepsilon^3) \\ y(t) &= \underbrace{h(\overline{x}(t))}_{Y_0(t)} + \underbrace{\varepsilon h'(\overline{x}(t))B}_{Y_1(t)} s_1(\frac{t}{\varepsilon}) \\ &+ \underbrace{\frac{\varepsilon^2}{2} h''(\overline{x}(t))(B,B)}_{Y_3(t)} s_1(\frac{t}{\varepsilon})^2 + \underbrace{\varepsilon^2 h'(\overline{x}(t))AB}_{Y_2(t)} s_2(\frac{t}{\varepsilon}) + \mathcal{O}(\varepsilon^3) \end{aligned}$$

- $\frac{-\text{Locally exponentially stability hypothesis: for the extension to infinity of the result}{(\text{otherwise only valid on a timescale } 1/\epsilon)}$
- <u>Idea of the proof</u>: change of coordinates (the so-called *near-identity transformation*), then use of a comparison theorem

Third-order averaging theory for exogenous signal injection – Numerical example

Dynamic system

- $\dot{x}_1 = x_2$
- $\dot{x}_2 = x_3$
- $\dot{x}_3 = u + d$
- $y = x_1 x_2 + \frac{x_3^3}{3}$

- u: input
- d: (unknown) disturbance
- **Objective**: controlling x_1 while rejecting d

Third-order averaging theory for exogenous signal injection – Numerical example

Dynamic system

- $\dot{x}_1 = x_2$
- $\dot{x}_{2} = x_{3}$
- $\dot{x}_3 = u + d$

$$y=x_1x_2+\frac{x_3^3}{3}$$

Virtual measurements

$$Y_{1} := h'(x)B = x_{3}^{2}$$
$$Y_{2} := \frac{1}{2}h''(x)(B, B) = x_{3}$$
$$Y_{3} := h'(x)AB = x_{1}$$

- u: input
- d: (unknown) disturbance
- **Objective**: controlling x_1 while rejecting d

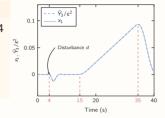
We (momentarily) assume we can extract Y_i with an accuracy in ε^3 !

- Second-order averaging theory is not enough here
- With Y_3 , the system is controllable with a linear controller
- $\rightarrow\,$ Third-order averaging theory is paramount

Third-order averaging theory for exogenous signal injection – Scenario

Scenario

- System at rest at t=0 ; step d=-0.25 at t=4
- Filtered ramp (slope 5 \times 10 $^{-2})$ for 15 \leq t \leq 35
- At t = 35 : filtered step to go back to 0
- Injection: square wave with $\varepsilon = 10^{-3}$

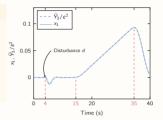


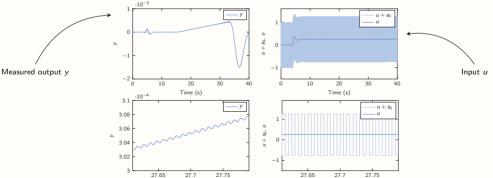
11

Third-order averaging theory for exogenous signal injection – Scenario

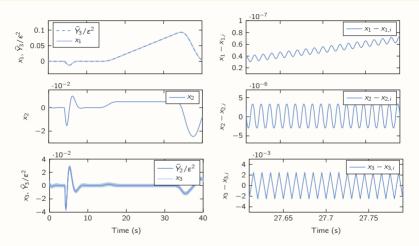
Scenario

- System at rest at t=0 ; step d=-0.25 at t=4
- Filtered ramp (slope 5 \times 10 $^{-2})$ for 15 \leq t \leq 35
- At t = 35: filtered step to go back to 0
- Injection: square wave with $\varepsilon = 10^{-3}$





Exogenous injection - Simulation, results



States x_1 , x_2 , x_3 , Virtual measurements Y_2 , Y_3 (left); zoom on the error $x - x_i$ (right)

 \rightarrow <u>Control with the virtual measurements</u> as effective as with the actual state x_1

Introduction	Averaging	Endogenous injection	Synchronous detection	Conclusion
Outline				
Outime				

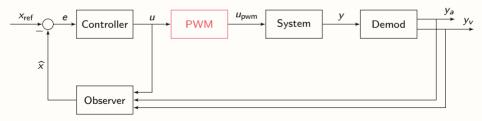
1. Introduction

Sensorless control of electric motors: principle (Exogenous) Signal injection technique

- Higher-order averaging theory for exogenous signal injection Higher-order generic averaging theory Third-order theory – Exogenous injection, numerical validation
- 3. Second-order averaging theory for endogenous signal injection Computation of the PWM-induced ripple Averaging theorem, numerical validation
- Synchronous detection over analog and Σ∆ outputs Design of the reconstruction kernels A_k-property, result and numerical validation Demodulation over Σ∆ modulators
- Sensorless position estimation of electric motors Virtual measurement extraction Numerical/Experimental recovery of the rotor position
- 6. Conclusion

Endogenous signal injection for PWM-controlled systems

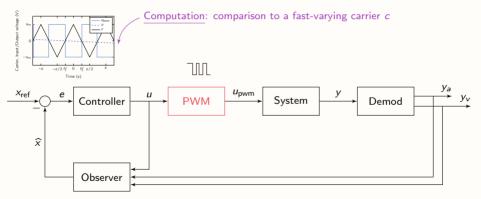
 Many electrical motors are controlled using Pulse-Width Modulation (PWM), and limits the use of an exogenous injection



- The periodic modulation introduces a perturbation in the system

Endogenous signal injection for PWM-controlled systems

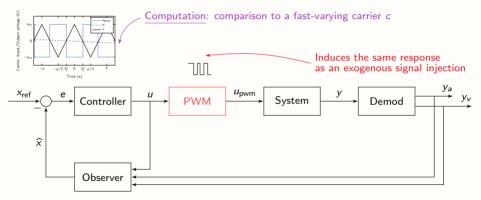
- Many electrical motors are controlled using **Pulse-Width Modulation (PWM)**, and limits the use of an exogenous injection



- The periodic modulation introduces a perturbation in the system
- For nonlinear systems, this perturbation may carry additional information...
- ... just as in the exogenous case!

Endogenous signal injection for PWM-controlled systems

- Many electrical motors are controlled using **Pulse-Width Modulation (PWM)**, and limits the use of an exogenous injection



- The periodic modulation introduces a perturbation in the system
- For nonlinear systems, this perturbation may carry additional information...
- ... just as in the exogenous case!

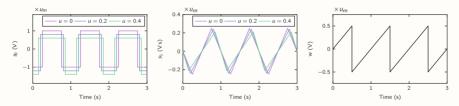
Endogenous signal injection – PWM operating principle

Principle: the input *u* is compared to an ε -periodic carrier *c* to produce a PWM signal $\overline{u_{pwm}}$ (with $\varepsilon \ll 1$ is a small parameter)

Endogenous signal injection - PWM operating principle

 $\frac{\text{Principle: the input } u \text{ is compared to an } \varepsilon \text{-periodic carrier } c \text{ to produce a PWM signal } \frac{1}{u_{\rho w m}} \text{ (with } \varepsilon << 1 \text{ is a small parameter)}$

Expression for u_{pwm} , with $s_0 =:$ endogenous injection



 $u_{pwm}(t) = u(t) + s_0(u(t), \frac{t}{\varepsilon}),$

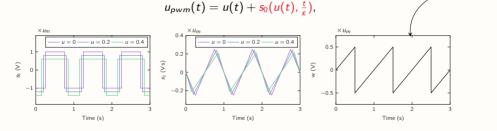
 s_0 (top), s_1 (middle), w (right)

 $w(\sigma) = u_m \mod(\sigma + \frac{t}{2}, 1) - u_m/2)$

Endogenous signal injection – PWM operating principle

$\frac{\text{Principle: the input } u \text{ is compared to an } \varepsilon \text{-periodic carrier } c \text{ to produce a PWM signal}}{u_{pwm} \text{ (with } \varepsilon << 1 \text{ is a small parameter)}}$

Expression for u_{pwm} , with $s_0 =:$ endogenous injection



 s_0 (top), s_1 (middle), w (right)

 s_0 1-periodic with zero mean in the second argument

$$s_0(u, \sigma) = u_m - u + u_m \operatorname{sign}\left(\frac{u - u_m}{4} - w(\sigma)\right) \\ + u_m \operatorname{sign}\left(\frac{u - u_m}{4} + w(\sigma)\right)$$

 $s_1 :=$ zero-mean primitive of s_0 in the second argument

$$\begin{split} \mathfrak{s}_1(u,\sigma) &:= \left(1 - \frac{u}{u_m}\right) \mathsf{w}(\sigma) - \left|\frac{u - u_m}{4} - \mathsf{w}(\sigma)\right| \\ &+ \left|\frac{u - u_m}{4} + \mathsf{w}(\sigma)\right| \end{split}$$

Second-order averaging theorem for endogenous signal injection -1

SISO nonlinear system Set of virtual measurements

 $\dot{x} = f(x) + g(x)u$ y = h(x) $H(x) = (h(x) \epsilon h'(x)g(x))$

We assume that, with this additional measurement $(\epsilon h'(x)g(x))$, the original system is <u>observable</u>

Non-perturbed system

PWM-controlled system

$$\begin{split} \dot{\overline{x}} &= f(\overline{x}) + g(\overline{x})u(t) \\ \dot{\overline{\eta}} &= a(\overline{\eta}, H(\overline{x}), t) \\ u(t) &= \alpha(\overline{\eta}, H(\overline{x}), t) \\ \end{split}$$

$$\begin{aligned} \dot{\overline{\eta}} &= a(\eta, \overline{H}(x, \eta, \frac{t}{\varepsilon}, t), t) \\ u &= \alpha(\eta, \overline{H}(x, \eta, \frac{t}{\varepsilon}, t), t) \\ \hline{H}(x, \eta, \sigma, t) &:= H\left(x - \varepsilon g(x)s_1\left(\alpha(\eta, H(x), t), \sigma\right)\right) \end{aligned}$$

- $s_0(u, au)$: 1-periodic signal with zero mean in au.
- $s_1(u, \tau)$ is the primitive wrt. τ of s_0 with zero mean.

			Endoge	nous injection					
~	1 C			~		 	 	•	

Second-order averaging theorem for endogenous signal injection – 2

Theorem (Second-order averaging for PWM-controlled systems, SCMR20)

Let $(x(t), \eta(t))$ be the solution of the PWM-controlled system starting from (x_0, η_0) , and define $u(t) := \alpha(\eta(t), H(x(t)), t)$ and y(t) := H(x(t)); let $(\overline{x}(t), \overline{\eta}(t))$ be the solution of the original system starting from $(x_0 - \varepsilon g(x_0)s_1(u(0), 0), \eta_0)$, and define $\overline{u}(t) := \alpha(\overline{\eta}(t), H(\overline{x}(t)), t)$. Then, for all $t \ge 0$,

$$\begin{aligned} x(t) &= \overline{x}(t) + \varepsilon g(\overline{x}(t)) s_1(\overline{u}(t), \frac{t}{\varepsilon}) + \mathcal{O}(\varepsilon^2) \\ \eta(t) &= \overline{\eta}(t) + \mathcal{O}(\varepsilon^2) \\ y(t) &= \underbrace{h(\overline{x}(t))}_{:=y_s(t)} + \underbrace{\varepsilon h'(\overline{x}(t))g(\overline{x}(t))}_{:=y_v(t)} s_1(\overline{u}(t), \frac{t}{\varepsilon}) + \mathcal{O}(\varepsilon^2) \end{aligned}$$

- Idea of the proof: change of coordinates (the so-called *near-identity transformation*), then use of a comparison theorem (similar to the Lipschitz case)
- The proof requires a slight adaptation of the classic averaging theorem for systems with state-discontinuities

Endogenous signal injection - Virtual measurements

Dynamic system

 $\dot{x}_1 = x_2$ $\dot{x}_2 = x_3$ $\dot{x}_3 = u + d$ $v = x_2 + x_1 x_3$

Virtual measurements

 $y_a := x_2 + x_1 x_3$ $y_v := \varepsilon h'(x)g(x) = \varepsilon x_1$

- u: input
- d: (unknown) disturbance
- Objective: controlling x_1 while rejecting d

Still assume y_a and y_v are known with a $\mathcal{O}(\varepsilon^2)$ accuracy

- Controlling the system with PWM gives access to $y_v = \epsilon x_1$
- With y_v , the system is controllable with a linear controller

Endogenous signal injection - Scenario, results

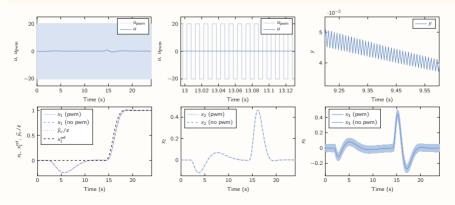
Scenario

- System at rest at t=0 ; step d=-0.25 at t=2 s
- Filtered unit step at t = 14 s
- PWM period $\epsilon = 10^{-3}$ s

Endogenous signal injection - Scenario, results

Scenario

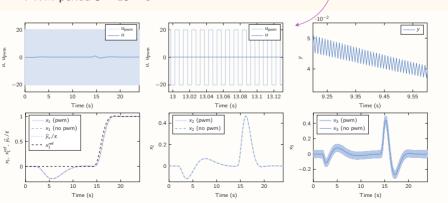
- System at rest at t = 0 ; step d = -0.25 at t = 2 s
- Filtered unit step at t = 14 s
- PWM period $\epsilon = 10^{-3}$ s



Recovery as good as in the exogenous scenario!

Endogenous signal injection - Scenario, results

- System at rest at t=0 ; step d=-0.25 at t=2 s
- Filtered unit step at t=14 s
- PWM period $\epsilon = 10^{-3}$ s



Introduction	Averaging	Endogenous injection	Synchronous detection	Experimental	Conclusion
Outline					
Outime					

Sensorless control of electric motors: principle (Exogenous) Signal injection technique

Higher-order averaging theory for exogenous signal injection Higher-order generic averaging theory Third-order theory – Exogenous injection, numerical validatior

- 3. Second-order averaging theory for endogenous signal injection Computation of the PWM-induced ripple Averaging theorem, numerical validation
- Synchronous detection over analog and ΣΔ outputs Design of the reconstruction kernels *A_k*-property, result and numerical validation Demodulation over ΣΔ modulators
- Sensorless position estimation of electric motors Virtual measurement extraction Numerical/Experimental recovery of the rotor positio
- 6. Conclusion

 Introduction
 Averaging
 Endogenous injection
 Synchronous detection
 Experimental
 Conclusion

 Demodulation procedure of multiplexed signals

 </t

Extraction of the coordinates z from the physical measurement y

$$y = \sum_{i=1}^{N} z_i s_i, \qquad z_i \in \mathbb{R}, s_i \in \mathbb{R}^N$$

 \rightarrow **Objective:** Recovery of each z_i with an arbitrary accuracy in $\mathcal{O}(\boldsymbol{\varepsilon}^k)$

- Simple projection using Gram-Schmidt orthogonalization process: exact recovery

oduction Averaging Endogenous

Endogenous injection

Synchronous detectio

etection

Cor

Demodulation procedure of multiplexed signals

Extraction of the coordinates z from the physical measurement y

$$y = \sum_{i=1}^{N} z_i s_i(rac{t}{\epsilon}), \qquad s_i \in L^2_{ ext{per}}$$
 1-periodic with zero mean

ightarrow **Objective:** Recovery of each z_i with an arbitrary accuracy in $\mathcal{O}(\boldsymbol{\varepsilon}^k)$

- Simple projection using $\mbox{Gram-Schmidt}$ orthogonalization process: exact recovery
- Projection (on L_{per}^2), still using G-S: exact recovery \rightarrow procedure for recovering the "exogenous" virtual measurements!

En

Endogenous injection

Synchronous detection

Experimen

Conclusion

Demodulation procedure of multiplexed signals

Extraction of the coordinates z from the physical measurement y

$$y = \sum_{i=1}^{N} z_i(t) s_i(\frac{t}{\epsilon}), \qquad s_i \in L^2_{\operatorname{per}}$$
 1-periodic with zero mean

ightarrow **Objective:** Recovery of each z_i with an arbitrary accuracy in $\mathcal{O}(\boldsymbol{\varepsilon}^k)$

- Simple projection using $\mbox{Gram-Schmidt}$ orthogonalization process: exact recovery
- Projection (on L_{per}^2), still using G-S: exact recovery \rightarrow procedure for recovering the "exogenous" virtual measurements!
- Projection (on L_{per}^2), but no guarantee on the extraction accuracy

Introduction Averaging Endogenous injection Synchronous detection Experimental Cor

Demodulation procedure of multiplexed signals

Extraction of the coordinates z from the physical measurement y

$$y = \sum_{i=1}^{N} z_i(t) s_i(u(t), \frac{t}{\varepsilon}), \qquad s_i(v, \cdot) \text{ 1-periodic with zero-mean}$$

 \rightarrow **Objective:** Recovery of each z_i with an arbitrary accuracy in $\mathcal{O}(\boldsymbol{\varepsilon}^k)$

- Simple projection using $\mbox{Gram-Schmidt}$ orthogonalization process: exact recovery
- Projection (on L^2_{per}), still using G-S: exact recovery \rightarrow procedure for recovering the "exogenous" virtual measurements!
- Projection (on L_{per}^2), but no guarantee on the extraction accuracy
- Carriers with a slow-time dependency: is it possible to design a uniform estimate...

End

Endogenous injection

Synchronous detection

Experimenta

Conclusion

Demodulation procedure of multiplexed signals

Extraction of the coordinates z from the physical measurement y

$$y = \sum_{i=1}^{N} z_i(t) s_i(u(t), \frac{t}{\varepsilon}) + \mathcal{O}(\varepsilon^{\rho}) + \nu + d(t, \frac{t}{\varepsilon})$$

ightarrow **Objective:** Recovery of each z_i with an arbitrary accuracy in $\mathcal{O}(\boldsymbol{\varepsilon}^k)$

- Simple projection using $\mbox{Gram-Schmidt}$ orthogonalization process: exact recovery
- Projection (on L_{per}^2), still using G-S: exact recovery \rightarrow procedure for recovering the "exogenous" virtual measurements!
- Projection (on L_{per}^2), but no guarantee on the extraction accuracy
- Carriers with a slow-time dependency: is it possible to design a uniform estimate...
- ...that also mitigates both the measurement noise ν and the physical disturbance d...

Introduction Averaging Endogenous injection Synchronous detection Experimental

Demodulation procedure of multiplexed signals

Extraction of the coordinates z from the physical measurement y

$$y = \sum \Delta \left[Z(t) S\left(u(t), rac{t}{arepsilon}
ight)^T + \mathcal{O}(arepsilon^
ho) + d\left(t, rac{t}{arepsilon}
ight)
ight] +
u_{\Sigma\Delta}$$

 \rightarrow **Objective:** Recovery of each z_i with an arbitrary accuracy in $\mathcal{O}(\boldsymbol{\varepsilon}^k)$

- Simple projection using $\mbox{Gram-Schmidt}$ orthogonalization process: exact recovery
- Projection (on L^2_{per}), still using G-S: exact recovery \rightarrow procedure for recovering the "exogenous" virtual measurements!
- Projection (on L_{per}^2), but no guarantee on the extraction accuracy
- Carriers with a slow-time dependency: is it possible to design a uniform estimate...
- ...that also mitigates both the measurement noise ν and the physical disturbance d...
- and still applies to a (multi-output) $\Sigma\Delta$ bitstream?

uction Averaging Endogenous injection

Synchronous detectio

detection

Demodulation procedure of multiplexed signals

Extraction of the coordinates z from the physical measurement y

$$y = \sum \Delta \left[Z(t) S\left(u(t), \frac{t}{\epsilon}
ight)^T + \mathcal{O}(\epsilon^{
ho}) + d\left(t, \frac{t}{\epsilon}
ight)
ight] +
u_{\Sigma\Delta}$$

ightarrow **Objective:** Recovery of each z_i with an arbitrary accuracy in $\mathcal{O}(\varepsilon^k)$

- Simple projection using Gram-Schmidt orthogonalization process: exact recovery
- Projection (on L^2_{per}), still using G-S: exact recovery \rightarrow procedure for recovering the "exogenous" virtual measurements!
- Projection (on $L^2_{\rm per}),$ but no guarantee on the extraction accuracy
- Carriers with a slow-time dependency: is it possible to design a uniform estimate...
- ...that also mitigates both the measurement noise ν and the physical disturbance d...
- and still applies to a (multi-output) $\Sigma\Delta$ bitstream?
- \rightarrow Synchronous detection problem on analog/ $\Sigma\Delta$ signals (with exotic considerations)

End

Endogenous injection

Synchronous detection

Conclusion

Demodulation procedure – Reconstruction kernel \widetilde{K}_k

(Without disturbance d = 0 nor slow dependency on $S(t, \frac{t}{\epsilon})$)

Definition of the kernel K_k

$${\mathcal K}_k = \left(rac{1}{{arepsilon}} 1_{[0,{arepsilon}]}
ight)^{*k} = rac{1}{{{arepsilon}^k}} 1_{[0,{arepsilon}]} * \ldots * 1_{[0,{arepsilon}]}$$

 $\rightarrow k = 2$: triangle/Bartlett window; k = 4: Parzen/de la Vallée Poussin

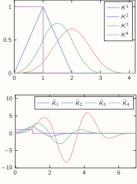
 $\textbf{Modified kernels } \widetilde{K}_k \rightarrow \boxed{\widetilde{K}_k \ast \varphi = \varphi + \mathcal{O}(\boldsymbol{\varepsilon}^k)}$

$$egin{aligned} &\widetilde{\mathcal{K}}_1(t) := \mathcal{K}_1(t) \ &\widetilde{\mathcal{K}}_2(t) := 2\mathcal{K}_2(t) - 1\mathcal{K}_2(t-arepsilon), \ &\widetilde{\mathcal{K}}_3(t) := rac{17}{4}\mathcal{K}_3(t) - 5\mathcal{K}_3(t-arepsilon) + rac{7}{4}\mathcal{K}_3(t-2arepsilon) \end{aligned}$$

Extraction of the vector Z (with
$$R = S$$
)

$$P_{k}[y](t) := \left(\widetilde{K}_{k} * \left(yR_{\varepsilon}^{T}\right)\right)(t) \times \left(\widetilde{K}_{k} * \left(S_{\varepsilon}R_{\varepsilon}^{T}\right)\right)^{-1}(t)$$

$$= Z^{T}(t) + O(\varepsilon^{k})$$



Demodulation procedure – Main result

In presence of disturbances, one technique consists in **windowing** the location of the perturbation:

$$ightarrow c(t, rac{t}{\epsilon}) := 0$$
 when d is active, 1 otherwise

```
\rightarrow R = S \times c
```

```
With the slow-time dependency on S, we assume SR^{T}(v, \sigma) are \mathcal{A}^{k}
```

Definition (A_k property)

Let $g(t, \sigma)$ be 1-periodic with zero mean. It is said to be \mathcal{A}_k , $k \ge 1$, if $g^{(-k)}$ is k-1 times differentiable in the first variable, with bounded derivatives at all orders, and $\partial_1^{k-1}g^{(-k)}$ Lipschitz. Example: $g(v, t) := \operatorname{sign}(v + t) \leftarrow \operatorname{PWM}$ signal; $g^{(-1)} = |v + t|$

Demodulation of the components of Z

The following estimator recovers z_k with an accuracy in ε^k

$$P_k[y](t) := \left(\widetilde{K}_k * \left(y R_{arepsilon}^{\mathsf{T}}
ight)
ight)(t) imes \left(\widetilde{K}_k * \left(S_{arepsilon} R_{arepsilon}^{\mathsf{T}}
ight)
ight)^{-1}(t).$$

In other words, $Z^{T}(t) = P_{k}[y](t) + \mathcal{O}(\varepsilon^{k}).$

Same result as before using a modified vector R (with a trickier proof though)

Introduction		Synchronous detection	
Domodul	lation mused w		

Demodulation procedure

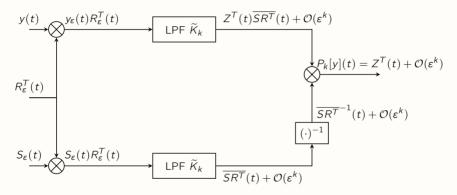
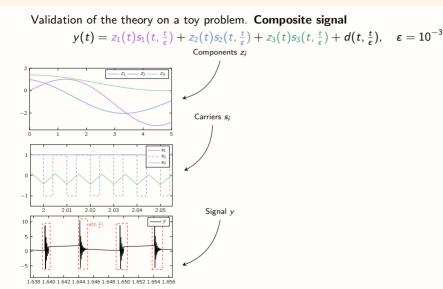


Diagram of the demodulation procedure

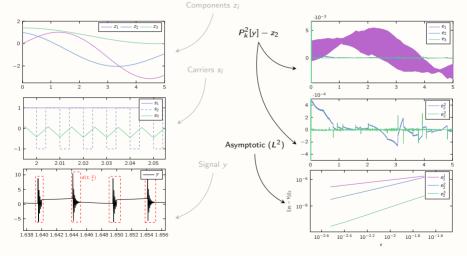
Numerical validation of the demodulation procedure



Numerical validation of the demodulation procedure

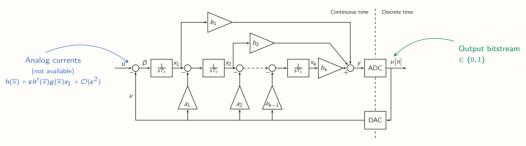
Validation of the theory on a toy problem. Composite signal

 $y(t) = z_1(t)s_1(t, \frac{t}{\varepsilon}) + z_2(t)s_2(t, \frac{t}{\varepsilon}) + z_3(t)s_3(t, \frac{t}{\varepsilon}) + d(t, \frac{t}{\varepsilon}), \quad \varepsilon = 10^{-3}$



Synchronous detection over Sigma-Delta modulators

 \rightarrow Modern Variable-Frequency Drives embedd Sigma-Delta ADC



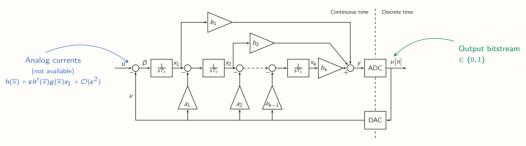
State-space model $i = 1, \ldots, k - 1$

$$\frac{1}{N}\dot{x}_{1}(\tau) = u(\tau) - \nu(N\tau)$$
$$\frac{1}{N}\dot{x}_{i+1}(\tau) = x_{i}(\tau) - a_{i}\nu(N\tau)$$
$$y(\tau) = \sum_{i=1}^{k} b_{i}x_{i}(\tau)$$

- Input: $u(t/\varepsilon)$, ε : PWM period
- Sampling time T_s (15 MHz)
- Normalized time au := t/arepsilon
- Oversampling ratio $N := \epsilon/T_s$ (= 3750 for the actual implementation)

Synchronous detection over Sigma-Delta modulators

 \rightarrow Modern Variable-Frequency Drives embedd Sigma-Delta ADC



State-space model $i = 1, \ldots, k - 1$

$$\frac{1}{N}\dot{x}_{1}(\tau) = u(\tau) - \nu(N\tau)$$
$$\frac{1}{N}\dot{x}_{i+1}(\tau) = x_{i}(\tau) - a_{i}\nu(N\tau)$$
$$y(\tau) = \sum_{i=1}^{k} b_{i}x_{i}(\tau)$$

- Input: $u(t/\varepsilon)$, ε : PWM period
- Sampling time T_s (15 MHz)
- Normalized time au := t/arepsilon
- Oversampling ratio $N := \epsilon/T_s$ (= 3750 for the actual implementation)
- \rightarrow (Filtered) input-ouput estimate?

Synchronous detection over continuous $\Sigma\Delta$ modulators – Theorem

Assumptions:

- the input *u* is selected such that the modulator is stable, *i.e.* the states $x_{1,...,k}$ are bounded. In particular, $||u||_{\infty} < 1$.
- $-k^{th}$ -order continuous $\Sigma\Delta$ modulator in pure feedforward form: $a_1 = ... = a_{k-1} = 0$

Definition: f p-times differentiable + $f^{(p)}$ absolutely continuous (resp. piecewise) = $f AC^{p}$ (resp. piecewise).

Synchronous detection over continuous $\Sigma\Delta$ modulators – Theorem

Assumptions:

- the input *u* is selected such that the modulator is stable, *i.e.* the states $x_{1,...,k}$ are bounded. In particular, $||u||_{\infty} < 1$.
- k^{th} -order continuous $\Sigma\Delta$ modulator in pure feedforward form: $a_1 = ... = a_{k-1} = 0$

Definition: f p-times differentiable + $f^{(p)}$ absolutely continuous (resp. piecewise) = $f AC^{p}$ (resp. piecewise).

Theorem (Error estimate for $k^t h$ -order CT- $\Sigma\Delta$ modulators, SCMR21)

Consider $\beta \in L^{\infty}[0, +\infty)$ such that the zero-mean primitive $\beta^{(-j)}$ of $\beta^{(-j+1)}$ exists $(j = 0, \ldots, k-1)$. Consider as well K^k a $(k-1)^{th}$ -times differentiable kernel with support in [0, k], and such that $K^k(0) = K^k(k) = (K^k)^{(j)}(0) = (K^k)^{(j)}(k) = 0$ $(j = 0, \ldots, k-1)$. If s is AC^{k-1} , then for $t \ge 0$,

$$I(t) := \beta s * K^k(t) = o(1/N^k)$$

If s is only piecewise AC^{k-1} , then for $t \ge 0$, $I(t) = \mathcal{O}(1/N^k)$.

 $\begin{array}{l} \textbf{Hypotheses on } \beta \ \leftarrow \ \textbf{Output-input difference of a } \Sigma\Delta \ \textbf{CT-MOD} \\ \mathcal{K}^k \leftarrow \ \textbf{satisfied by the previous kernels} \end{array}$

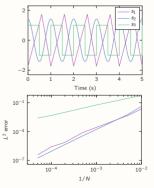
Synchronous detection - Numerical results

(Filtered) Output-Input difference, second-order CT-MOD2 in pure FF form

$$I(t) := \beta s * K^{k}(t) = o(1/N^{2}), \qquad s AC^{1}$$
$$= O(1/N^{2}) \qquad s \text{ piecewise } AC^{2}$$
$$= O(1/N) \qquad s \text{ discontinuous}$$

Input $u_i(t) := z(t)s_i(t)$ with $z(t) := 0.04 \cos(t/12) + 0.06 \sin(t/4\pi)$. **Expression** for the different signals *s*

$$\begin{split} s_1(t) &:= \frac{1}{\sqrt{0.03}} \left(\tau \mathbf{1}_{[0,0.6]}(\tau) + 1.5(1-\tau) \mathbf{1}_{]0.6,1]}(\tau) - 0.3 \right), \\ s_2(t) &:= \sqrt{2} \cos(2\pi\tau), \qquad s_3(t) := \mathbf{1}_{[0,0.5]}(\tau) - \mathbf{1}_{]0.5,1]}(\tau), \\ \text{with } \tau &= \mod(t,\varepsilon)/\varepsilon \text{ and } \varepsilon = 1. \\ - s_1 : \text{ piecewise } AC^1, s_2 AC^1, \\ s_3 \text{ discontinuous} \end{split}$$

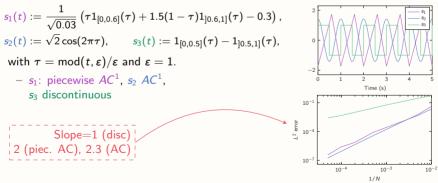


Synchronous detection – Numerical results

(Filtered) Output-Input difference, second-order CT-MOD2 in pure FF form

$$I(t) := \beta s * K^{k}(t) = o(1/N^{2}), \qquad s AC^{1}$$
$$= O(1/N^{2}) \qquad s \text{ piecewise } AC^{1}$$
$$= O(1/N) \qquad s \text{ discontinuous}$$

Input $u_i(t) := z(t)s_i(t)$ with $z(t) := 0.04 \cos(t/12) + 0.06 \sin(t/4\pi)$. **Expression** for the different signals *s*



Introduction	Averaging	Endogenous injection	Synchronous detection	Experimental	Conclusion
Outling					
Untrine					

1. Introduction

Sensorless control of electric motors: principle (Exogenous) Signal injection technique

Higher-order averaging theory for exogenous signal injection Higher-order generic averaging theory Third-order theory – Exogenous injection, numerical validatior

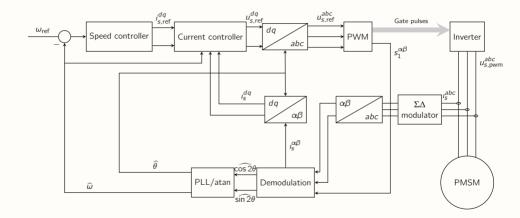
3. Second-order averaging theory for endogenous signal injection Computation of the PWM-induced ripple Averaging theorem, numerical validation

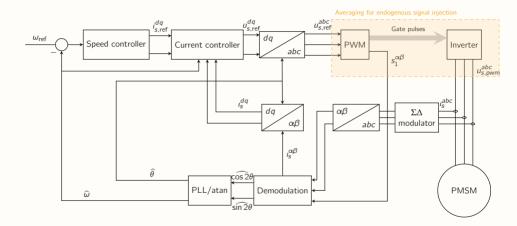
Synchronous detection over analog and ΣΔ outputs Design of the reconstruction kernels A_k-property, result and numerical validation Demodulation over ΣΔ modulators

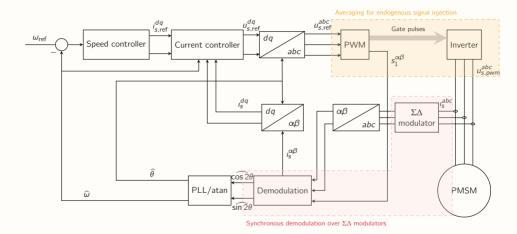
5. Sensorless position estimation of electric motors

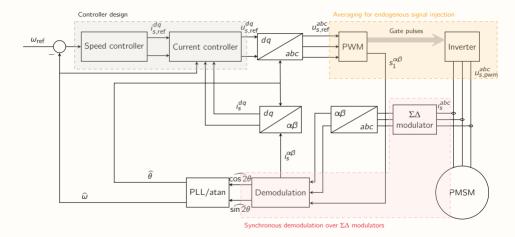
Virtual measurement extraction Numerical/Experimental recovery of the rotor position

6. Conclusion









ing

Endogenous injection

synchronous detection

Experimental

Conclusion

Model and virtual measurements for a PWM-controlled PMSM

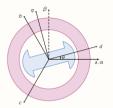
State-space model of a PMSM in the dq-frame

 $\frac{d\phi_s^{dq}}{dt} = u_s^{dq} - R_s l_s^{dq} - \omega \mathcal{J}\phi_s^{dq}$ $\frac{J}{n} \frac{d\omega}{dt} = n l_s^{dq^T} \mathcal{J}\phi_s^{dq} - T_l$ $\frac{d\theta}{dt} = \omega$

We assume there is no magnetic saturation

$$-L_d \iota_s^d = \phi_s^d - \phi_m$$
$$-L_q \iota_s^q = \phi_s^q$$

Inputs: voltages in *abc*: $u_s^{abc} \rightarrow u_{s,pwm}^{abc}$ **Outputs**: currents in $\alpha\beta$: $i_s^{\alpha\beta} := \mathcal{R}(\theta) l_s^{dq}$



ing

Endogenous injection

synchronous detection

Experiment

 $\in \mathcal{M}_2$

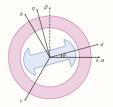
Conclusion

Model and virtual measurements for a PWM-controlled PMSM

State-space model of a PMSM in the dq-frame

$\frac{d\phi_s^{dq}}{dt} = u_s^{dq} - R_s u_s^{dq} - \omega \mathcal{J} \phi_s^{dq}$	
$\frac{J}{n}\frac{d\omega}{dt} = n I_s^{dq^T} \mathcal{J} \phi_s^{dq} - T_l$	
$rac{d heta}{dt}=\omega$	

We assume there is no magnetic saturation $- L_{d} \iota_{s}^{d} = \phi_{s}^{d} - \phi_{m}$ $- L_{q} \iota_{s}^{q} = \phi_{s}^{q}$ Inputs: voltages in *abc*: $u_{s}^{abc} \rightarrow u_{s,pwm}^{abc}$ Outputs: currents in $\alpha\beta$: $i_{s}^{\alpha\beta} := \mathcal{R}(\theta) \iota_{s}^{dq}$



Set of **virtual measurements** for the PWM-controlled PMSM \rightarrow Owing to the **endogenous injection**)

$$l_{s}^{\alpha\beta} = \overline{l_{s}^{\alpha\beta}} + \varepsilon dh_{\overline{x}} \big(g(\overline{x}) s_{1} \big) + \mathcal{O}(\varepsilon^{2}) \Rightarrow y_{v}(t) = \varepsilon \mathcal{S} \big(\overline{\theta}(t) \big) \overline{s_{1}^{\alpha\beta} s_{1}^{\alpha\beta}}$$

Where $S(\theta)$ is the so-called saliency matrix

$$\mathcal{S}(\theta) := \frac{L_d + L_q}{2L_d L_q} \begin{pmatrix} 1 + \frac{L_q - L_d}{L_d + L_q} \cos 2\theta & \frac{L_q - L_d}{L_d + L_q} \sin 2\theta \\ \frac{L_q - L_d}{L_d + L_q} \sin 2\theta & 1 - \frac{L_q - L_d}{L_d + L_q} \cos 2\theta \end{pmatrix}$$

ng

Endogenous injection

ynchronous detection

Experimental

 $\in M_2$

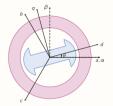
Conclusion

Model and virtual measurements for a PWM-controlled PMSM

State-space model of a PMSM in the dq-frame

$\frac{d\phi_s^{dq}}{dt} = u_s^{dq} - R_s v_s^{dq} - \omega \mathcal{J}\phi_s^{dq}$,
$\frac{J}{n}\frac{d\omega}{dt} = n I_s^{dq^T} \mathcal{J} \phi_s^{dq} - T_l$	
dθ	
$\frac{dt}{dt} = \omega$	

We assume there is no magnetic saturation $- L_{d} l_{s}^{d} = \phi_{s}^{d} - \phi_{m}$ $- L_{q} l_{s}^{q} = \phi_{s}^{q}$ Inputs: voltages in *abc*: $u_{s}^{abc} \rightarrow u_{s,pwm}^{abc}$ Outputs: currents in $\alpha\beta$: $i_{s}^{\alpha\beta} := \mathcal{R}(\theta) l_{s}^{dq}$



Set of **virtual measurements** for the PWM-controlled PMSM \rightarrow Owing to the **endogenous injection**)

$$l_{s}^{\alpha\beta} = \overline{l_{s}^{\alpha\beta}} + \varepsilon dh_{\overline{x}}(g(\overline{x})s_{1}) + \mathcal{O}(\varepsilon^{2}) \Rightarrow y_{v}(t) = \varepsilon S(\overline{\theta}(t)) \overline{s_{1}^{\alpha\beta}s_{1}^{\alpha\beta}}$$

Where $S(\theta)$ is the so-called **saliency matrix**

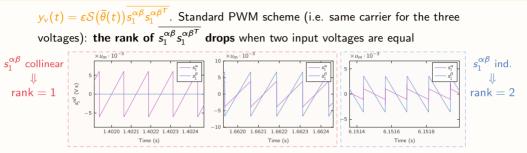
$$\mathcal{S}(\theta) := \frac{L_d + L_q}{2L_d L_q} \begin{pmatrix} 1 + \frac{L_q - L_d}{L_d + L_q} \cos 2\theta & \frac{L_q - L_d}{L_d + L_q} \sin 2\theta \\ \frac{L_q - L_d}{L_d + L_q} \sin 2\theta & 1 - \frac{L_q - L_d}{L_d + L_q} \cos 2\theta \end{pmatrix}$$

 \rightarrow y_v is made available by the previous demodulation method!

Recovery of the position – LSQ on the virtual measurement

 $y_{\nu}(t) = \varepsilon S(\bar{\theta}(t)) \overline{s_1^{\alpha\beta} s_1^{\alpha\beta^{T}}}$. Standard PWM scheme (i.e. same carrier for the three voltages): **the rank of** $\overline{s_1^{\alpha\beta} s_1^{\alpha\beta^{T}}}$ **drops** when two input voltages are equal

Recovery of the position – LSQ on the virtual measurement



P

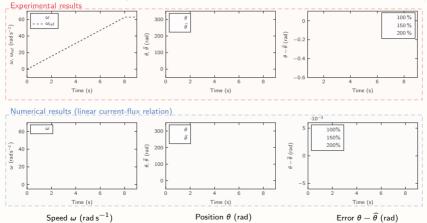
Recovery of the position – LSQ on the virtual measurement

 $y_{\nu}(t) = \varepsilon S(\bar{\theta}(t)) s_1^{\alpha\beta} s_1^{\alpha\beta^{T}}$. Standard PWM scheme (i.e. same carrier for the three voltages): the rank of $\overline{s_1^{\alpha\beta}s_1^{\alpha\beta^{T}}}$ drops when two input voltages are equal $\times u_m \cdot 10^{-3}$ $\times u_m \cdot 10$ $\times u_m \cdot 10^{-1}$ $s_1^{\alpha\beta}$ collinear $s_1^{\alpha\beta}$ ind. β (V s) rank = 1rank = 20 _5 -10 1 4020 1 4021 1 4022 1 4023 1 4024 1 6620 1 6621 1 6622 1 6623 1 6624 Time (s) Time (s) Time (s)

Least-squares method to estimate $\cos 2\theta$ and $\sin 2\theta$. Writing

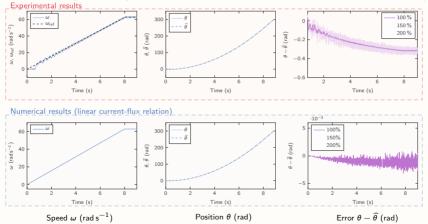
Sensorless position estimation - Numerical and experimental results

Scenario: Salient PMSM $L_d = 43.25 \text{ mH}$, $L_q = 69.05 \text{ mH}$ Speed ramp: 0 - 10 Hz in 8 s; $T_l = 100, 150, 200\%$ of the rated torque



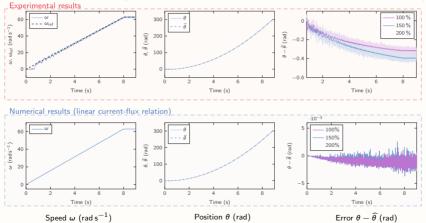
Sensorless position estimation – Numerical and experimental results

Scenario: Salient PMSM $L_d = 43.25 \text{ mH}$, $L_q = 69.05 \text{ mH}$ Speed ramp: 0 - 10 Hz in 8s; $T_l = 100, 150, 200\%$ of the rated torque



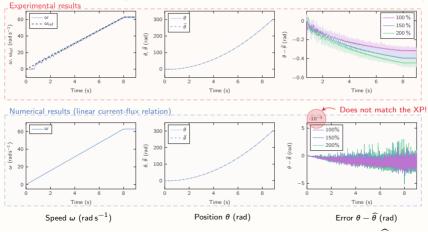
Sensorless position estimation - Numerical and experimental results

Scenario: Salient PMSM $L_d = 43.25 \text{ mH}$, $L_q = 69.05 \text{ mH}$ Speed ramp: 0 - 10 Hz in 8s; $T_l = 100, 150, 200\%$ of the rated torque



Sensorless position estimation - Numerical and experimental results

Scenario: Salient PMSM $L_d = 43.25 \text{ mH}$, $L_q = 69.05 \text{ mH}$ Speed ramp: 0 - 10 Hz in 8 s; $T_l = 100, 150, 200\%$ of the rated torque



- Discrepancy between the numerical and experimental values for $\theta - \widehat{\theta}$?

End

Endogenous injection

Conclusion

Sensorless position estimation – Saturation model – Results

Energy-based modelling (*p_{ij}*: magnetic parameters)

$$\mathcal{H}^{dq}_{m}(\phi^{dq}_{s}) := p_{10}\phi^{d}_{s} + p_{20}(\phi^{d}_{s})^{2} + p_{30}(\phi^{d}_{s})^{3} + p_{40}(\phi^{d}_{s})^{4} + p_{02}(\phi^{q}_{s})^{2} + p_{04}(\phi^{q}_{s})^{4} + p_{12}\phi^{d}_{s}(\phi^{q}_{s})^{2} + p_{22}(\phi^{d}_{s})^{2}(\phi^{q}_{s})^{2}$$

Linear current-flux relation

$$u_s^d = rac{\phi_s^d - \phi_m}{L_d}, \quad u_s^q = rac{\phi_s^q}{L_q}$$

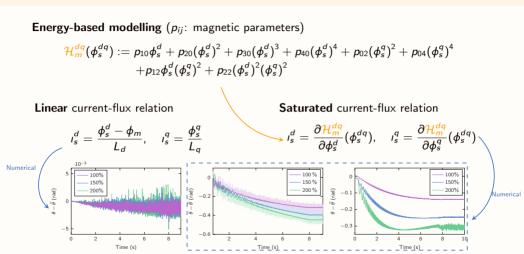
Saturated current-flux relation

$$ightarrow extsf{l} egin{aligned} & & \mathcal{H}^{d}_{s} = rac{\partial \mathcal{H}^{dq}_{m}}{\partial \phi^{d}_{s}}(\phi^{dq}_{s}), \quad extsf{l}^{q}_{s} = rac{\partial \mathcal{H}^{dq}_{m}}{\partial \phi^{q}_{s}}(\phi^{dq}_{s}). \end{aligned}$$

Enc

Endogenous injection

Sensorless position estimation – Saturation model – Results

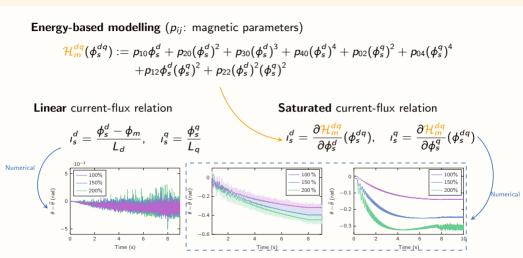


Enc

Endogenous injection

Conclusion

Sensorless position estimation – Saturation model – Results



- Behavior of the error wrt. numerically reproduced thanks to the magnetic model!

Introduction	Averaging	Endogenous injection	Synchronous detection	Experimental	Conclusion
O d'as					
Outline					

Sensorless control of electric motors: principle (Exogenous) Signal injection technique

Higher-order averaging theory for exogenous signal injection Higher-order generic averaging theory Third-order theory – Exogenous injection, numerical validatior

3. Second-order averaging theory for endogenous signal injection Computation of the PWM-induced ripple Averaging theorem, numerical validation

Synchronous detection over analog and ΣΔ outputs Design of the reconstruction kernels A_k-property, result and numerical validation

Demodulation over $\Sigma\Delta$ modulators

5. Sensorless position estimation of electric motors Virtual measurement extraction

Numerical/Experimental recovery of the rotor position

6. Conclusion

			Conclusion
C 1 1			
Conclusion			

Summary

- Higher-order averaging theory for exogenous/endogenous signal injection: external HF probing signals or PWM harmonics induce nonlinear responses carrying additional knowledge on the system
- Generic demodulation procedure for extracting the so-called virtual measurements with an arbitrary accuracy in $\mathcal{O}(\varepsilon^p)$
- Several error estimates for k^{th} -order CT- $\Sigma\Delta$ MOD: "the demodulation process commutes with the $\Sigma\Delta$ modulator"
- Experimental validations on a PMSM: successful sensorless position estimation from the $\Sigma\Delta$ current bitstreams

			Conclusion
Conclusion			
CONCLUSION			

Summary

- Higher-order averaging theory for exogenous/endogenous signal injection: external HF probing signals or PWM harmonics induce nonlinear responses carrying additional knowledge on the system
- Generic demodulation procedure for extracting the so-called virtual measurements with an arbitrary accuracy in $\mathcal{O}(\varepsilon^{p})$
- Several error estimates for k^{th} -order CT- $\Sigma\Delta$ MOD: "the demodulation process commutes with the $\Sigma\Delta$ modulator"
- Experimental validations on a PMSM: successful sensorless position estimation from the $\Sigma\Delta$ current bitstreams

In the near future

- Third/Higher-order averaging theory for endogenous signal injection
- Generalization of the $\Sigma\Delta$ estimates on various architectures (MASH, CIFB, etc.)
- Experimental implementation of a closed-loop sensorless scheme based on the PWM excitation

			Conclusion
Conclusion			

Summary

- Higher-order averaging theory for exogenous/endogenous signal injection: external HF probing signals or PWM harmonics induce nonlinear responses carrying additional knowledge on the system
- Generic demodulation procedure for extracting the so-called virtual measurements with an arbitrary accuracy in $\mathcal{O}(\varepsilon^{p})$
- Several error estimates for k^{th} -order CT- $\Sigma\Delta$ MOD: "the demodulation process commutes with the $\Sigma\Delta$ modulator"
- Experimental validations on a PMSM: successful sensorless position estimation from the $\Sigma\Delta$ current bitstreams

In the near future

- Third/Higher-order averaging theory for endogenous signal injection
- Generalization of the $\Sigma\Delta$ estimates on various architectures (MASH, CIFB, etc.)
- Experimental implementation of a closed-loop sensorless scheme based on the PWM excitation

Thank you! \end{presentation}