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Motivation

• Autonomous navigation

• Visual Servoing - PBVS

• Autonomous landing

• Station keeping

• Augmented Reality

• Visual Odometry and
Visual SLAM
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Computer Vision Algorithms for Pose Estimation

• Homography matrix

• Observed Planar Scene.
• Pose (up to a scalar) retrieved by

decomposing the Homography matrix.

• Essential Matrix

• General 3D Scene.
• Pose (up to a scalar) retrieved by

decomposing the Essential matrix.

• Perspective-n-Point

• General 3D Scene.
• Points location known in an inertial frame.
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Vision-aided inertial navigation

Algebraic approaches and iterative algorithms based on gradient descent:

• No filtering.

• No temporal correlation for the video sequence.

• No dynamics.

Observers:

• Constructive observer design methods that exploit invariance and
equivariance

• Kinematic Observer
• Rely on group velocity measurements

• EKF, UKF and Particle Filters

• Kinematic or dynamic systems
• Limitations in terms of robustness

Novelty: Riccati observer framework that generalises the MEKF for vision-aided
navigation.
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Riccati Framework (Hamel and Samson 2017)

Consider the following class of nonlinear systemsẋ = A(x1, t)x +

[
u1

u2

]
+ O(|x1|2) + O(|x1||u1|), A =

[
A11(t) 0n1×n2

A21(x1, t) A22(t)

]
y = C1(x1, x̂2, t)x1 + C2(x1, x̂2, t)x2 + O(|x1|2) + O(|x1||x̃2) + O(|x̃2|2).

with x1 ∈ Bn1
r and x2 ∈ Rn2 . Let x̂2 be an estimate of x2 and consider the

following observer
u1 = −K1(y − C2x̂2)
˙̂x2 = A22x̂2 + u2 + K2(y − C2x̂2)

Ṗ = AP + PA> − PC>Q(t)CP + V (t)

K = k(t)PC>Q.

(1)

Then the origin is locally exponentially stable if Q(t) and V (t) are both larger
than some positive matrix and the pair (A(0, t),C(0, x2, t)) is uniformly
observable.
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Uniform Observability Condition

• LTV System {
ẋ = Ā(t)x + B̄(t)u

y = C̄(t)x

• The Riccati observability Gramian associated with the triplet
(Ā := A(0, t), C̄ := C(0, x2, t),Q) is the non-negative definite
matrix-valued function defined by

W Ā,C̄
Q (t, t + δ) :=

1

δ

∫ t+δ

t

Φ>(s, t)C̄>(s)Q(s)C̄(s)Φ(s, t)ds

where Φ(t, t0) is the transition matrix associated with Ā(t).

• If Ā(t) and C̄(t) are bounded and if there exists δ > 0 and ε > 0 such

that W Ā,C̄
In

(t, t + δ) > εIn for all t ≥ 0, then we say that the pair (Ā, C̄) is
uniformly observable.
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Observer equation and model adaptation

Equations of motion of the camera and the proposed observer:{
Ṙ = RΩ×

ξ̇ = −Ω×ξ + V

{
˙̂R = R̂Ω× − R̂σR×
˙̂ξ = −Ω×ξ̂ + V − σξ

where:

• R ∈ SO(3) : {B} → {I}, ξ = R>ξ̊ ∈ {B},
• Ω,V ∈ R3, the rotational and translational velocities, expressed in {B}
• σR , σξ ∈ R3 the innovation terms,
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Observer equation and model adaptation

Define the attitude error matrix

R̃ := R̂>R = I3 + λ̃× + O(|λ̃|2)

with λ̃ ∈ B3
1 equal to twice the vector part of the quaternion associated with the attitude

error matrix R̃, and whose convergence to zero ’implies’ the convergence of R̂ to R.
One then deduces that:

˙̃λ = −Ω×λ̃+ σR + O(|λ̃|2) + O(|λ̃||σR |)

By setting x = [x>1 , x
>
2 ]> := [λ̃>, ξ>]>, u1 := σR and u2(t) := V , one obtains:

ẋ = A(x1, t)x +

[
u1

u2

]
+ O(|x1|2) + O(|x1||u1|),A = A(0, t) :=

[
−Ω× 03

03 −Ω×

]
y = C1(x1, x̂2, t)x1 + C2(x1, x̂2, t)x2 + O(|x1|2) + O(|x1||x̃2) + O(|x̃2|2).
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System output associated with the PnP problem

• Source points P̊i are known, the bearing

pi :=
R>(P̊i − ξ̊)

|P̊i − ξ̊|
=

R>P̊i − ξ
|R>P̊i − ξ|

∈ S2 are measured.

Using the fact the fact that Πpi pi = 0, one has:

0 = −|P̊i − ξ̊|Πpi pi
= Πpi ξ − Πpi R̂

>P̊i − Πpi (R̂
>P̊i )×λ̃+ O(|λ̃|2)

• By setting yi := Πpi R̂
>P̊i :

yi = Πpi ξ − Πpi (R̂
>P̊i )×λ̃+ O(|λ̃|2)

and by defining y := [y>1 , . . . , y
>
n ]>, one gets:

C1 =

−Πp1 (R̂>P̊1)×
...

−Πpn (R̂>P̊n)×

 , C2 =

Πp1

...
Πpn


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Observability issues for the PnP problem

The system is not uniformly observable if:

• The number of source points is less than or equal
to two.

• All source points are aligned (n ≥ 3).

• In case of three non-aligned source points:

• Static Case: The camera lies on the
dangerous cylinder.

• Moving Case: The camera moves along a
straight line orthogonal to the plane
containing the source points and passing
through a source point.

• In case of four and more non-aligned source points
(n ≥ 4):

• Static Case: The source points are located
on a horopter curve and the camera frame
lies at the origin of this curve.
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System output when using Epipolar Constraints

• Source points P̊i are unknown, the bearing pi ∈ S2

are measured.
Using the epipolar constraint p̊>i Rξ×pi = 0, one has:

0 = −p̊>i R̂R̃ξ×pi
= p̊>i R̂(ξ̂ × pi )×λ̃+ p̊>i R̂pi×ξ + O(|λ̃|2)

+O(|ξ̃||λ̃|)

• By defining y as the vector in Rn with zero entries,
one gets:

C1 =

p̊
>
1 R̂(ξ̂ × p1)×

...

p̊>n R̂(ξ̂ × pn)×

 , C2 =

p̊
>
1 R̂p1×

...

p̊>n R̂pn×


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Observability condition when epipolar constraints are involved

Consider a robotic vehicle equipped with a monocular
camera observing n (n ≥ 3) source points with unknown
3D coordinates.
Consider the most difficult case of n = 3 and assume
that the bearings of the 3 observed source points are
linearly independent. Assume that the camera transla-
tional motion is sufficiently exciting in the sense that for
all time there exist δ, β > 0 such that ∀i = 1, 2, 3

Πi (t, t + δ) :=
1

δ

∫ t+δ

t

ξ̊(s)ξ̊>(s)

|P̊i − ξ̊(s)|2
ds ≥ βI3 (2)

Assume also that ξ̊, Ω and V remain uniformly bounded
for all time. Then, the pair (Ā, C̄) is uniformly observable
and hence the equilibrium (R̃, ξ̃) = (I3, 0) of the error
system is locally exponentially stable.
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Observer design for pose and linear velocity (PnP problem)

The camera second order kinematics equation are
Ṙ = RΩ×

ξ̇ = −Ω×ξ + V

V̇ = −Ω×V + aB + gR>eg

where:

• aB specific acceleration expressed in the camera
frame {B}.

• g gravitational acceleration.

• eg ∈ S2 gravitational direction expressed in the
inertial frame.
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Measurements

• Bearings Measurements:

pi :=
pp
i

|pp
i |

= −R> ξ̊ − P̊i

|ξ̊ − P̊i |

• Gyrometer:
Ωm = Ω + µw

• Accelerometer:

amB = aB − ba + µa

where:

• µw , µa denote stochastic additive noises.

• ba denotes a constant or slowly time-varying bias
in the inertial frame (ḃa = −Ω×ba).
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Riccati Observer Design


˙̂R = R̂Ω× − R̂σR×
˙̂ξ = −Ω×ξ̂ + V̂ − σξ
˙̂V = −Ω×V̂ + ˆ̄ba + gR̂>eg + aB − σV

˙̄̂
bg = −Ω×

ˆ̄ba + (R̂>amg )×σR − σb

where ˆ̄ba is the estimate of a new bias b̄a (b̄a = ba, when R̃ = I3)
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Riccati Observer Design

By transforming the system in Hamel-Samson Form,ẋ = A(x1, t)x +

[
u1

u2

]
+ O(|x1|2) + O(|x1||u1|)

y = C1(x1, x̂2, t)x1 + C2(x1, x̂2, t)x2 + O(|x1|2) + O(|x1||x̃2) + O(|x̃2|2).

one gets: 

A11 = −Ω×, A21 = 03×9, u1 = σR

A22 =

−Ω× I3 03

03 −Ω× I3

03 03 −Ω×

 , u2 =

 03×1

R̂>amg + aB

(R̂>amg )×σR



C1 =


−Πp1 (R̂>P̊1)×

...

−Πpn (R̂>P̊n)×

 , C2 =


Πp1 03 03

...
...

...

Πpn 03 03


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Experimental Setup

• Low Cost IMU myAHRS+ at 100Hz

• oCam Camera:

• Resolution of 640× 480.
• Image acquisition at 30 frames per

second.

• Point detection is performed with the
ArUco library (OpenCV).

• Optitrack Motion Capture system
(ground truth).
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Experimental Result - Position
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Experimental Result - Attitude
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Observer design for linear velocity, gravity direction and depth estimation

The camera second order kinematics equation are
Ṙ = RΩ×

V̇ = −Ω×V + gR>eg + aB

ṡ = φ⊥s


˙̂R = R̂Ω× − σR×R̂
˙̂V = −Ω×V̂ + gR̂>eg + aB − σV

˙̂s = φ⊥ŝ − σs

with:

• aB specific acceleration expressed in the camera frame {B},
• g gravitational acceleration,

• eg ∈ S2 gravitational direction expressed in the inertial frame,

• s = 1/d inverse of the depth,

• φ⊥ = −ḋ/d flow divergence, and y = φ = V /d = sV

The same framework is exploited. A persistent excitation condition on the trans-
lational motion is sufficient to ensure the uniform observability of the matrix pair
(A(0, t),C(0, x2(t), t) and therefore the exponential stability of the observer.
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Experimental Result - Attitude
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Concluding remarks

• Presented a Deterministic Riccati observer design framework for a generic
class of nonlinear system and pointed out an adequate uniform
observability condition,

• Explained how to exploit this framework to different estimation problems,

• Showed the efficiency of the proposed observers via experimental results,

• Apply the methodology to many other problems such as Visual Odometry
and Visual SLAM,

• Derive simple and sufficient observability conditions.
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