

Deterministic observer design for vision-aided inertial navigation

T. Hamel, M-D. Hua and C. Samson

<ロト <回ト < 注ト < 注ト = 注

Outline

Motivation

Observer design framework and observability condition

Observer Design for Kinematic Systems involving Monocular Vision

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Observer design for dynamic systems

Experimental results

Concluding remarks

Notivation	Observer	design	frai
	00		
)			

Kinematic Systems

Dynamic systems

Experimental results O Concluding remarks

3/23

Motivation

- Autonomous navigation
- Visual Servoing PBVS
- Autonomous landing
- Station keeping
- Augmented Reality
- Visual Odometry and Visual SLAM

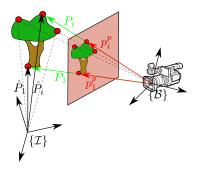
A D > A D > A D > A D >

Motivation	Observer design framework	Kinematic Systems	Dynamic systems	Experimental results	Conc
0	00	000000	00	0	0
0			00000		

Computer Vision Algorithms for Pose Estimation

Homography matrix

- Observed Planar Scene.
- Pose (up to a scalar) retrieved by decomposing the Homography matrix.
- Essential Matrix
 - General 3D Scene.
 - Pose (up to a scalar) retrieved by decomposing the Essential matrix.
- Perspective-n-Point
 - General 3D Scene.
 - Points location known in an inertial frame.



Motivation Observer design framework Kinematic Systems Dynamic systems Ex 0 00 00 00 0 <t< th=""><th>perimental results Concluding rem O</th></t<>	perimental results Concluding rem O
--	--

Vision-aided inertial navigation

Algebraic approaches and iterative algorithms based on gradient descent:

- No filtering.
- No temporal correlation for the video sequence.
- No dynamics.

Observers:

- Constructive observer design methods that exploit invariance and equivariance
 - Kinematic Observer
 - Rely on group velocity measurements
- EKF, UKF and Particle Filters
 - Kinematic or dynamic systems
 - Limitations in terms of robustness

Novelty: Riccati observer framework that generalises the MEKF for vision-aided navigation.

Motivation	Observer design framework	Kinematic Systems	Dynamic systems	Experimental results	Concluding remarks
0	•0	000000	00	0	0
0			00000		
0			0		

Consider the following class of nonlinear systems

$$\begin{cases} \dot{\mathbf{x}} = \mathbf{A}(\mathbf{x}_1, t)\mathbf{x} + \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{bmatrix} + \mathbf{O}(|\mathbf{x}_1|^2) + \mathbf{O}(|\mathbf{x}_1||\mathbf{u}_1|), \ A = \begin{bmatrix} A_{11}(t) & \mathbf{0}_{n_1 \times n_2} \\ A_{21}(\mathbf{x}_1, t) & A_{22}(t) \end{bmatrix} \\ y = C_1(\mathbf{x}_1, \hat{\mathbf{x}}_2, t)\mathbf{x}_1 + C_2(\mathbf{x}_1, \hat{\mathbf{x}}_2, t)\mathbf{x}_2 + \mathbf{O}(|\mathbf{x}_1|^2) + \mathbf{O}(|\mathbf{x}_1||\tilde{\mathbf{x}}_2) + \mathbf{O}(|\tilde{\mathbf{x}}_2|^2). \end{cases}$$

with $x_1 \in \mathcal{B}_r^{n_1}$ and $x_2 \in \mathbb{R}^{n_2}$. Let \hat{x}_2 be an estimate of x_2 and consider the following observer

$$\begin{cases}
u_1 = -K_1(y - C_2 \hat{x}_2) \\
\dot{\hat{x}}_2 = A_{22} \hat{x}_2 + u_2 + K_2(y - C_2 \hat{x}_2) \\
\dot{P} = AP + PA^{\top} - PC^{\top}Q(t)CP + V(t) \\
K = k(t)PC^{\top}Q.
\end{cases}$$
(1)

Motivation Observer design framework	Kinematic Systems	Dynamic systems	Experimental results	Concluding remarks
0 00	000000	00	0	0
0		00000		
0		0		

Consider the following class of nonlinear systems

$$\begin{cases} \dot{x} = A(x_1, t)x + \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + O(|x_1|^2) + O(|x_1||u_1|), \ A = \begin{bmatrix} A_{11}(t) & 0_{n_1 \times n_2} \\ A_{21}(x_1, t) & A_{22}(t) \end{bmatrix} \\ y = C_1(x_1, \hat{x}_2, t)x_1 + C_2(x_1, \hat{x}_2, t)x_2 + O(|x_1|^2) + O(|x_1||\tilde{x}_2) + O(|\tilde{x}_2|^2). \end{cases}$$

with $x_1 \in \mathcal{B}_r^{n_1}$ and $x_2 \in \mathbb{R}^{n_2}$. Let \hat{x}_2 be an estimate of x_2 and consider the following observer

$$\begin{cases}
u_1 = -K_1(y - C_2 \hat{x}_2) \\
\dot{\hat{x}}_2 = A_{22} \hat{x}_2 + u_2 + K_2(y - C_2 \hat{x}_2) \\
\dot{P} = AP + PA^{\top} - PC^{\top}Q(t)CP + V(t) \\
K = k(t)PC^{\top}Q.
\end{cases}$$
(1)

Motivation	Observer design framework	Kinematic Systems	Dynamic systems	Experimental results	Concluding remarks
0	•0	000000	00	0	0
0			00000		
0			0		

Consider the following class of nonlinear systems

$$\begin{cases} \dot{x} = A(x_1, t)x + \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + O(|x_1|^2) + O(|x_1||u_1|), \ A = \begin{bmatrix} A_{11}(t) & 0_{n_1 \times n_2} \\ A_{21}(x_1, t) & A_{22}(t) \end{bmatrix} \\ y = C_1(x_1, \hat{x}_2, t)x_1 + C_2(x_1, \hat{x}_2, t)x_2 + O(|x_1|^2) + O(|x_1||\tilde{x}_2) + O(|\tilde{x}_2|^2). \end{cases}$$

with $x_1 \in \mathcal{B}_r^{n_1}$ and $x_2 \in \mathbb{R}^{n_2}$. Let \hat{x}_2 be an estimate of x_2 and consider the following observer

$$\begin{cases}
u_1 = -K_1(y - C_2 \hat{x}_2) \\
\dot{\hat{x}}_2 = A_{22} \hat{x}_2 + u_2 + K_2(y - C_2 \hat{x}_2) \\
\dot{P} = AP + PA^{\top} - PC^{\top}Q(t)CP + V(t) \\
K = k(t)PC^{\top}Q.
\end{cases}$$
(1)

Motivation Observer design framework	Kinematic Systems	Dynamic systems	Experimental results	Concluding remarks
0 0	000000	00	0	0
0		00000		
0		0		

Consider the following class of nonlinear systems

$$\begin{cases} \dot{x} = A(x_1, t)x + \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + O(|x_1|^2) + O(|x_1||u_1|), \ A = \begin{bmatrix} A_{11}(t) & 0_{n_1 \times n_2} \\ A_{21}(x_1, t) & A_{22}(t) \end{bmatrix} \\ y = C_1(x_1, \hat{x}_2, t)x_1 + C_2(x_1, \hat{x}_2, t)x_2 + O(|x_1|^2) + O(|x_1||\tilde{x}_2) + O(|\tilde{x}_2|^2). \end{cases}$$

with $x_1 \in \mathcal{B}_r^{n_1}$ and $x_2 \in \mathbb{R}^{n_2}$. Let \hat{x}_2 be an estimate of x_2 and consider the following observer

$$\begin{cases} u_{1} = -K_{1}(y - C_{2}\hat{x}_{2}) \\ \dot{\hat{x}}_{2} = A_{22}\hat{x}_{2} + u_{2} + K_{2}(y - C_{2}\hat{x}_{2}) \\ \dot{P} = AP + PA^{\top} - PC^{\top}Q(t)CP + V(t) \\ K = k(t)PC^{\top}Q. \end{cases}$$
(1)

Motivation	Observer design framework	Kinematic Systems	Dynamic systems	Experimental results	Concluding remarks
0	0.	000000	00	0	0
0			00000		
0			0		

Uniform Observability Condition

LTV System

$$\begin{cases} \dot{x} = \bar{A}(t)x + \bar{B}(t)u\\ y = \bar{C}(t)x \end{cases}$$

 The Riccati observability Gramian associated with the triplet (\$\bar{A}\$:= \$A(0, t)\$, \$\bar{C}\$:= \$C(0, \$x_2, t)\$, \$Q\$) is the non-negative definite matrix-valued function defined by

4

$$W^{ar{A},ar{C}}_Q(t,t+\delta) := rac{1}{\delta} \int_t^{t+\delta} \Phi^ op(s,t)ar{C}^ op(s)Q(s)ar{C}(s)\Phi(s,t)ds$$

where $\Phi(t, t_0)$ is the transition matrix associated with $\overline{A}(t)$.

• If $\bar{A}(t)$ and $\bar{C}(t)$ are bounded and if there exists $\delta > 0$ and $\epsilon > 0$ such that $W_{I_n}^{\bar{A},\bar{C}}(t,t+\delta) > \epsilon I_n$ for all $t \ge 0$, then we say that the pair (\bar{A},\bar{C}) is uniformly observable.

Motivation	Observer design framework	Kinematic Systems	Dynamic systems	Experimental results	Concluding remarks
0000	00	00000	00 00000 0	0	0

Observer equation and model adaptation

Equations of motion of the camera and the proposed observer:

$$\begin{cases} \dot{R} = R\Omega_{\times} \\ \dot{\xi} = -\Omega_{\times}\xi + V \end{cases} \qquad \begin{cases} \dot{\hat{R}} = \hat{R}\Omega_{\times} - \hat{R}\sigma_{R\times} \\ \dot{\hat{\xi}} = -\Omega_{\times}\hat{\xi} + V - \sigma_{\xi} \end{cases}$$

・ロト ・日 ・ モー・ モー・ つくぐ

8 / 23

where:

- $R \in \mathrm{SO}(3) : \{\mathcal{B}\} \to \{\mathcal{I}\}, \ \xi = R^{\top} \mathring{\xi} \in \{\mathcal{B}\},$
- $\Omega, V \in \mathbb{R}^3$, the rotational and translational velocities, expressed in $\{\mathcal{B}\}$
- $\sigma_{\mathsf{R}}, \sigma_{\xi} \in \mathbb{R}^3$ the innovation terms,

Motivation	Observer design framework	Kinematic Systems	Dynamic systems	Experimental results	Concluding remarks
0	00	00000	00	0	0
0			00000		

Observer equation and model adaptation

Define the attitude error matrix

$$ilde{\mathsf{R}} := \hat{\mathsf{R}}^{ op} \mathsf{R} = \mathsf{I}_3 + ilde{\lambda}_{ imes} + O(| ilde{\lambda}|^2)$$

with $\tilde{\lambda} \in \mathcal{B}_1^3$ equal to twice the vector part of the quaternion associated with the attitude error matrix \tilde{R} , and whose convergence to zero 'implies' the convergence of \hat{R} to R. One then deduces that:

$$\dot{ ilde{\lambda}} = -\Omega_{ imes} ilde{\lambda} + \sigma_{R} + O(| ilde{\lambda}|^{2}) + O(| ilde{\lambda}||\sigma_{R}|)$$

By setting $x = [x_1^{\top}, x_2^{\top}]^{\top} := [\tilde{\lambda}^{\top}, \xi^{\top}]^{\top}$, $u_1 := \sigma_R$ and $u_2(t) := V$, one obtains:

$$\begin{cases} \dot{x} = A(x_1, t)x + \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + O(|x_1|^2) + O(|x_1||u_1|), A = A(0, t) := \begin{bmatrix} -\Omega_{\times} & 0_3 \\ 0_3 & -\Omega_{\times} \end{bmatrix} \\ y = C_1(x_1, \hat{x}_2, t)x_1 + C_2(x_1, \hat{x}_2, t)x_2 + O(|x_1|^2) + O(|x_1||\tilde{x}_2) + O(|\tilde{x}_2|^2). \end{cases}$$

Motivation	Observer design framework	Kinematic Systems	Dynamic systems	Experimental results	Concluding remarks
0	00	00000	00	0	0
0			00000		

Observer equation and model adaptation

Define the attitude error matrix

$$ilde{\mathsf{R}} := \hat{\mathsf{R}}^{ op} \mathsf{R} = \mathsf{I}_3 + ilde{\lambda}_{ imes} + O(| ilde{\lambda}|^2)$$

with $\tilde{\lambda} \in \mathcal{B}_1^3$ equal to twice the vector part of the quaternion associated with the attitude error matrix \tilde{R} , and whose convergence to zero 'implies' the convergence of \hat{R} to R. One then deduces that:

$$\dot{ ilde{\lambda}} = -\Omega_{ imes} ilde{\lambda} + \sigma_{R} + O(| ilde{\lambda}|^{2}) + O(| ilde{\lambda}||\sigma_{R}|)$$

By setting $x = [x_1^{\top}, x_2^{\top}]^{\top} := [\tilde{\lambda}^{\top}, \xi^{\top}]^{\top}$, $u_1 := \sigma_R$ and $u_2(t) := V$, one obtains:

$$\begin{cases} \dot{x} = A(x_1, t)x + \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + O(|x_1|^2) + O(|x_1||u_1|), A = A(0, t) := \begin{bmatrix} -\Omega_{\times} & 0_3 \\ 0_3 & -\Omega_{\times} \end{bmatrix} \\ y = C_1(x_1, \hat{x}_2, t)x_1 + C_2(x_1, \hat{x}_2, t)x_2 + O(|x_1|^2) + O(|x_1||\tilde{x}_2) + O(|\tilde{x}_2|^2). \end{cases}$$

Motivation	Observer design framework	Kinematic Systems	Dynamic systems	Experimental results	Concluding remarks
0	00	00000	00000	0	0

System output associated with the PnP problem

• Source points
$$\mathring{P}_i$$
 are known, the bearing
 $p_i := \frac{R^{\top}(\mathring{P}_i - \mathring{\xi})}{|\mathring{P}_i - \mathring{\xi}|} = \frac{R^{\top}\mathring{P}_i - \xi}{|R^{\top}\mathring{P}_i - \xi|} \in \mathbb{S}^2$ are measured.

Using the fact the fact that $\Pi_{p_i} p_i = 0$, one has:

$$0 = -|\mathring{P}_{i} - \mathring{\xi}|\Pi_{\rho_{i}}p_{i}$$

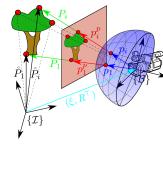
= $\Pi_{\rho_{i}}\xi - \Pi_{\rho_{i}}\hat{R}^{\top}\mathring{P}_{i} - \Pi_{\rho_{i}}(\hat{R}^{\top}\mathring{P}_{i})_{\times}\tilde{\lambda} + O(|\tilde{\lambda}|^{2})$

• By setting $y_i := \prod_{p_i} \hat{R}^\top \mathring{P}_i$:

$$y_i = \prod_{p_i} \xi - \prod_{p_i} (\hat{R}^\top \mathring{P}_i)_{\times} \widetilde{\lambda} + O(|\widetilde{\lambda}|^2)$$

and by defining $y := [y_1^\top, \dots, y_n^\top]^\top$, one gets:

$$C_{1} = \begin{bmatrix} -\Pi_{p_{1}}(\hat{R}^{\top} \mathring{P}_{1})_{\times} \\ \vdots \\ -\Pi_{p_{n}}(\hat{R}^{\top} \mathring{P}_{n})_{\times} \end{bmatrix}, \quad C_{2} = \begin{bmatrix} \Pi_{p_{1}} \\ \vdots \\ \Pi_{p_{n}} \end{bmatrix}$$

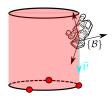


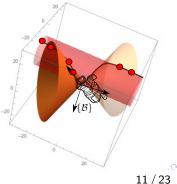
▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 のへで

10/23

Motivation Observer design framework Kinematic Systems Dynamic systems Experimental results 0 00 00 00 00 0 <td< th=""><th>Co</th></td<>	Co
--	----

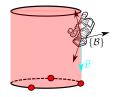
- The number of source points is less than or equal to two.
- All source points are aligned $(n \ge 3)$.
- In case of three non-aligned source points:
 - Static Case: The camera lies on the dangerous cylinder.
 - Moving Case: The camera moves along a straight line orthogonal to the plane containing the source points and passing through a source point.
- In case of four and more non-aligned source point (n ≥ 4):
 - Static Case: The source points are located on a horopter curve and the camera frame lies at the origin of this curve.

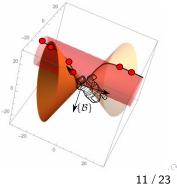




Motivation Observer O OO O	r design framework Kinemat 00000		c systems Experiment O O	al results:
----------------------------------	-------------------------------------	--	--------------------------------	-------------

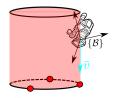
- The number of source points is less than or equal to two.
- All source points are aligned $(n \ge 3)$.
- In case of three non-aligned source points:
 - Static Case: The camera lies on the dangerous cylinder.
 - Moving Case: The camera moves along a straight line orthogonal to the plane containing the source points and passing through a source point.
- In case of four and more non-aligned source point (n ≥ 4):
 - Static Case: The source points are located on a horopter curve and the camera frame lies at the origin of this curve.

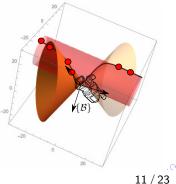




Motivation Obse O OO O		Kinematic Systems 000●00	Dynamic systems OO OOOOO O	Experimental results O
------------------------------	--	-----------------------------	-------------------------------------	---------------------------

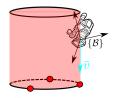
- The number of source points is less than or equal to two.
- All source points are aligned $(n \ge 3)$.
- In case of three non-aligned source points:
 - Static Case: The camera lies on the dangerous cylinder.
 - Moving Case: The camera moves along a straight line orthogonal to the plane containing the source points and passing through a source point.
- In case of four and more non-aligned source point (n ≥ 4):
 - Static Case: The source points are located on a horopter curve and the camera frame lies at the origin of this curve.

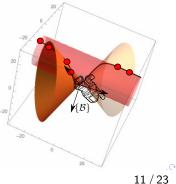




Motivation Observer design framework O OO O	Kinematic Systems 000€00	Dynamic systems 00 00000 0	Experimental results O
---	-----------------------------	-------------------------------------	---------------------------

- The number of source points is less than or equal to two.
- All source points are aligned $(n \ge 3)$.
- In case of three non-aligned source points:
 - Static Case: The camera lies on the dangerous cylinder.
 - Moving Case: The camera moves along a straight line orthogonal to the plane containing the source points and passing through a source point.
- In case of four and more non-aligned source point (n ≥ 4):
 - Static Case: The source points are located on a horopter curve and the camera frame lies at the origin of this curve.





Motivation	Observer design framework	Kinematic Systems	Dynamic systems
0	00	000000	00
0			00000

Experimental results O Concluding remarks O

System output when using Epipolar Constraints

• Source points \mathring{P}_i are unknown, the bearing $p_i \in \mathbb{S}^2$ are measured.

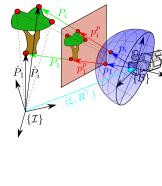
Using the epipolar constraint $p_i^{\top} R \xi_{\times} p_i = 0$, one has:

$$D = -\hat{p}_i^\top \hat{R} \tilde{R} \xi_{\times} p_i$$

= $\hat{p}_i^\top \hat{R} (\hat{\xi} \times p_i)_{\times} \tilde{\lambda} + \hat{p}_i^\top \hat{R} p_{i \times} \xi + O(|\tilde{\lambda}|^2)$
+ $O(|\tilde{\xi}||\tilde{\lambda}|)$

• By defining y as the vector in \mathbb{R}^n with zero entries, one gets:

$$C_{1} = \begin{bmatrix} \mathring{p}_{1}^{\top} \hat{R} (\hat{\xi} \times p_{1})_{\times} \\ \vdots \\ \mathring{p}_{n}^{\top} \hat{R} (\hat{\xi} \times p_{n})_{\times} \end{bmatrix}, \quad C_{2} = \begin{bmatrix} \mathring{p}_{1}^{\top} \hat{R} p_{1\times} \\ \vdots \\ \mathring{p}_{n}^{\top} \hat{R} p_{n\times} \end{bmatrix}$$



12/23

Motivation O	Observer design framework OO	Kinematic Systems	Dynamic systems 00 00000	Experimental results O	Concluding remarks O
0			00000		

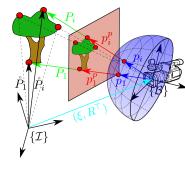
Observability condition when epipolar constraints are involved

Consider a robotic vehicle equipped with a monocular camera observing n ($n \ge 3$) source points with unknown 3D coordinates.

Consider the most difficult case of n = 3 and assume that the bearings of the 3 observed source points are linearly independent. Assume that the camera translational motion is sufficiently exciting in the sense that for all time there exist $\delta, \beta > 0$ such that $\forall i = 1, 2, 3$

$$\Pi_i(t,t+\delta) := \frac{1}{\delta} \int_t^{t+\delta} \frac{\dot{\xi}(s)\dot{\xi}^\top(s)}{|\dot{P}_i - \dot{\xi}(s)|^2} ds \ge \beta I_3 \qquad (2$$

Assume also that $\dot{\xi}$, Ω and V remain uniformly bounded for all time. Then, the pair (\bar{A}, \bar{C}) is uniformly observable and hence the equilibrium $(\tilde{R}, \tilde{\xi}) = (I_3, 0)$ of the error system is locally exponentially stable.



イロン 不通 とうほ とうせい

13/23

Motivation	Observer design framework	Kinematic Systems	Dynamic systems	Experimental results	Concluding remarks
0	00	000000	•0	0	0
0			00000		
0			0		

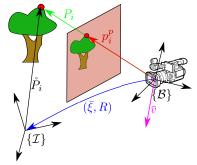
Observer design for pose and linear velocity (PnP problem)

The camera second order kinematics equation are

$$\begin{cases} \dot{R} = R\Omega_{\times} \\ \dot{\xi} = -\Omega_{\times}\xi + V \\ \dot{V} = -\Omega_{\times}V + \mathsf{a}_{B} + gR^{\top}\mathsf{e}_{g} \end{cases}$$

where:

- *a_B* specific acceleration expressed in the camera frame {*B*}.
- g gravitational acceleration.
- $e_g \in S^2$ gravitational direction expressed in the inertial frame.



ヘロト ヘロト ヘヨト ヘヨト

≡ ∽ 14 / 23

Motivation	Observer design framework	Kinematic Systems	Dynamic systems	Experimental results	Concluding remarks
0	00	000000	OO 00000 0	0	0

Measurements

Bearings Measurements:

$$p_i := \frac{p_i^p}{|p_i^p|} = -R^\top \frac{\mathring{\xi} - \mathring{P}_i}{|\mathring{\xi} - \mathring{P}_i|}$$

• Gyrometer:

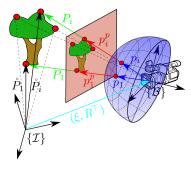
 $\Omega^m = \Omega + \mu_w$

Accelerometer:

$$a_B^m = a_B - b_a + \mu_a$$

where:

- μ_w , μ_a denote stochastic additive noises.
- b_a denotes a constant or slowly time-varying bias in the inertial frame $(\dot{b}_a = -\Omega_{\times} b_a)$.



ヘロト ヘロト ヘヨト ヘヨト

≡ ∽ 15 / 23

Motivation	Observer design framework	Kinematic Systems	Dynamic systems	Experimental results	Concluding remarks
0	00	000000	00	0	0
0			0000		
0			0		

Riccati Observer Design

$$\begin{cases} \dot{\hat{R}} = \hat{R}\Omega_{\times} - \hat{R}\sigma_{R\times} \\ \dot{\hat{\xi}} = -\Omega_{\times}\hat{\xi} + \hat{V} - \sigma_{\xi} \\ \dot{\hat{V}} = -\Omega_{\times}\hat{V} + \hat{b}_{a} + g\hat{R}^{\top}e_{g} + a_{B} - \sigma_{V} \\ \dot{\hat{b}}_{g} = -\Omega_{\times}\hat{b}_{a} + (\hat{R}^{\top}a_{g}^{m})_{\times}\sigma_{R} - \sigma_{b} \end{cases}$$

where $\hat{ar{b}}_a$ is the estimate of a new bias $ar{b}_a$ ($ar{b}_a=b_a$, when $ilde{R}=I_3$)

Motivation	Observer design framework	Kinematic Systems	Dynamic systems	Experimental results	Concluding remarks
0	00	000000		0	0
0			00000		
0			0		

Riccati Observer Design

By transforming the system in Hamel-Samson Form,

$$\begin{cases} \dot{x} = A(x_1, t)x + \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + O(|x_1|^2) + O(|x_1||u_1|) \\ y = C_1(x_1, \hat{x}_2, t)x_1 + C_2(x_1, \hat{x}_2, t)x_2 + O(|x_1|^2) + O(|x_1||\tilde{x}_2) + O(|\tilde{x}_2|^2). \end{cases}$$

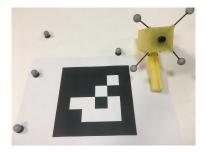
one gets:

$$\begin{cases} A_{11} = -\Omega_{\times}, & A_{21} = 0_{3 \times 9}, & u_{1} = \sigma_{R} \\ A_{22} = \begin{bmatrix} -\Omega_{\times} & I_{3} & 0_{3} \\ 0_{3} & -\Omega_{\times} & I_{3} \\ 0_{3} & 0_{3} & -\Omega_{\times} \end{bmatrix}, & u_{2} = \begin{bmatrix} 0_{3 \times 1} \\ \hat{R}^{\top} a_{g}^{m} + a_{B} \\ (\hat{R}^{\top} a_{g}^{m}) \times \sigma_{R} \end{bmatrix} \\ C_{1} = \begin{bmatrix} -\Pi_{\rho_{1}}(\hat{R}^{\top} \mathring{P}_{1})_{\times} \\ \vdots \\ -\Pi_{\rho_{n}}(\hat{R}^{\top} \mathring{P}_{n})_{\times} \end{bmatrix}, & C_{2} = \begin{bmatrix} \Pi_{\rho_{1}} & 0_{3} & 0_{3} \\ \vdots & \vdots \\ \Pi_{\rho_{n}} & 0_{3} & 0_{3} \end{bmatrix}$$

Motivation	Observer design framework	Kinematic Systems	Dynamic systems	Experimental results	Concludi
0	00	000000	00	0	0
0			00000		

Experimental Setup

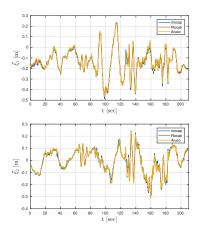
- Low Cost IMU myAHRS+ at 100Hz
- oCam Camera:
 - Resolution of 640×480 .
 - Image acquisition at 30 frames per second.
- Point detection is performed with the ArUco library (OpenCV).
- Optitrack Motion Capture system (ground truth).

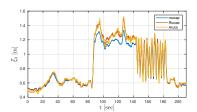


18/23

0 00 00000 00 0 0	
0 00000	
0 0	

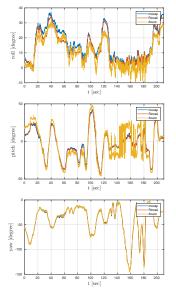
Experimental Result - Position





Motivation Observer design framework Kinematic Systems	Dynamic systems Experimental results C
O OOOOOO	○○ ○ ○
O	○○○○●
O	○

Experimental Result - Attitude



Motivation Observer design framework Kinematic Systems Dynamic systems E	Experimental results	Concluding remarks
	0	0

Observer design for linear velocity, gravity direction and depth estimation

The camera second order kinematics equation are

$$\begin{cases} \dot{R} = R\Omega_{\times} \\ \dot{V} = -\Omega_{\times}V + gR^{\top}e_{g} + a_{\mathcal{B}} \\ \dot{s} = \phi^{\perp}s \end{cases} \qquad \begin{cases} \dot{\hat{R}} = \hat{R}\Omega_{\times} - \sigma_{R\times}\hat{R} \\ \dot{\hat{V}} = -\Omega_{\times}\hat{V} + g\hat{R}^{\top}e_{g} + a_{\mathcal{B}} - \sigma_{V} \\ \dot{\hat{s}} = \phi^{\perp}\hat{s} - \sigma_{s} \end{cases}$$

with:

- a_B specific acceleration expressed in the camera frame $\{B\}$,
- g gravitational acceleration,
- $e_g \in S^2$ gravitational direction expressed in the inertial frame,
- s = 1/d inverse of the depth,
- $\phi^{\perp} = -\dot{d}/d$ flow divergence, and $y = \phi = V/d = sV$

The same framework is exploited. A persistent excitation condition on the translational motion is sufficient to ensure the uniform observability of the matrix pair $(A(0, t), C(0, x_2(t), t))$ and therefore the exponential stability of the observer.

Motivation Observer design framework Kinematic Systems Dynan 0 00 000000 00 0000000 000000 000000 000000 0000000 0000000 0000000 00000000 0000000000 000000	ic systems Experimental results Concluding remarks O O
--	---

Experimental Result - Attitude

Motivation	Observer design framework	Kinematic Systems	Dynamic systems	Experimental results	Concluding remarks
0	00	000000	00 00000 0	0	•

Concluding remarks

- Presented a Deterministic Riccati observer design framework for a generic class of nonlinear system and pointed out an adequate uniform observability condition,
- Explained how to exploit this framework to different estimation problems,
- Showed the efficiency of the proposed observers via experimental results,
- Apply the methodology to many other problems such as Visual Odometry and Visual SLAM,

23 / 23

• Derive simple and sufficient observability conditions.

Motivation	Observer design framework	Kinematic Systems	Dynamic systems	Experimental results	Concluding remarks
0	00	000000	00 00000 0	0	•

Concluding remarks

- Presented a Deterministic Riccati observer design framework for a generic class of nonlinear system and pointed out an adequate uniform observability condition,
- Explained how to exploit this framework to different estimation problems,
- Showed the efficiency of the proposed observers via experimental results,
- Apply the methodology to many other problems such as Visual Odometry and Visual SLAM,

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ クタマ

23 / 23

• Derive simple and sufficient observability conditions.