
Bridging Machine Learning and Scientific Computing

mike.j.innes@gmail.com

A powerful, high level language with
high performance.

Pythonic, mathematical syntax that
looks like notation.

Performance consistently within 2x of
tuned C code.

Most of Julia is written in Julia!

function mandel(z)
 c = z
 maxiter = 80
 for n = 1:maxiter
 if abs(z) > 2
 return n-1
 end
 z = z^2 + c
 end
 return maxiter
end

Scientific Computing

Machine Learning MLJ

Machine Learning

High-level and flexible (Python)

High overhead, focus on tensor
operations and manual vectorisation

Relatively simple programs (network
architectures)

Mutation support considered
advanced/unusual.

Scientific Computing

Low-level and manual (Fortran)

Low overhead, focus on scalar
operations

Regularly run over millions of lines of
code.

Research on auto-vectorisation,
shared memory parallelism,
checkpointing etc.

Tapenade
Ruthless pragmatism and scalability.
Output can be highly optimised using
existing optimising compilers.

λ the Ultimate
Backpropagator

Elegant recursive formalism, including
nested AD (closure), convenience
(callee-derives) and bags of expressive
power.

function pow(x, n)
 r = 1
 while n > 0
 n -= 1
 r *= x
 end
 return r
end

User Function

1: (%2, %3)
 br 2 (%3, 1)
2: (%4, %5)
 %6 = %4 > 0
 br 4 unless %6
 br 3
3:
 %7 = %4 - 1
 %8 = %5 * %2
 br 2 (%7, %8)
4:
 return %5

Primal

1: (%1)
 br 2 (%1, 0)
2: (%2, %4)
 br 4 unless @6
 br 3
3:
 %10 = %2 * @2
 %11 = %2 * @5
 %14 = %4 + %11
 br 2 (%10, %14)
4:
 return (%4, 0)

Adjoint

pow(5, 3) == 125
gradient(pow, 5, 3) == (75, 0)

function foo(x)
 a = bar(x)
 b = baz(a)
 return b
end

function J(::typeof(foo), x)
 a, da = J(bar, x)
 b, db = J(baz, a)
 return b, function(b̄)
 ā = db(b̄)
 x̄ = da(ā)
 return x̄
 end
end

J(::typeof(sin), x) = sin(x), ȳ -> ȳ*cos(x)

@adjoint sin(x) = sin(x), ȳ -> ȳ*cos(x)

Core compiler pass is ~200 lines of code

All semantics added via custom adjoints –
mutation, data structures, checkpointing, etc.

nestlevel() = 0

@adjoint nestlevel() = nestlevel()+1, _ -> nothing

julia> function f(x)
 println(nestlevel(), " levels of nesting")
 return x
 end

julia> f(1);
0 levels of nesting

julia> grad(f, 1);
1 levels of nesting

julia> grad(x -> x*grad(f, x), 1);
2 levels of nesting

@adjoint checkpoint(f, x...) =

 f(x...), Δ -> J(f, x...)[2](Δ)

@adjoint hook(f, x) = x, Δ -> (f(Δ),)

hook(-, x) # reverse the gradient of x

@adjoint function forwarddiff(f, x)

 y, J = forward_jacobian(f, x)

 y, Δ -> (J’Δ,)

end

Differentiation á la Carte

● Mixed-mode AD (forward, reverse, Taylor series, …)
● Forward-over-reverse (Hessians)
● Cross-language AD
● Support for Complex and other number types
● Easy custom gradients
● Checkpointing
● Gradient hooks
● Custom types (colours!)
● Hardware backends: CPU, CUDA, TPU, …
● Deeply nested AD (WIP)

Deep learning in 5 lines.

Data Structures & Mutation

@adjoint function pycall(f, x...; kw...)

 x = map(py, x)

 y = pycall(f, x...; kw...)

 y.detach().numpy(), function (ȳ)

 y.backward(gradient = py(ȳ))

 (nothing, map(x -> x.grad.numpy(), x)...)

 end

end

Some Bonus Features

Future Challenges
● Mutation of values is hard

● Need adjoints to cover the entire standard library

● Compiler improvements
○ More functional-style optimisations

○ Better heuristics for AD-generated code

● Fast code vs. dynamic semantics

● Differentiating Julia’s concurrency and parallelism constructs

● Reducing overheads: currently ~50ns per operation
○ Great compared to ML frameworks but far from optimal

Differentiating
CartPole

{left, right}

CartPole State
Control Parameters Loss

Neural Network Environment

CartPole Controller

Backpropagation

angle = -3°
velocity = 0.5°/s angle2

Model-free RL Differentiable
Programming

~400
episodes to solve

6
episodes to solve

β = 0.56

Patient Data
(e.g. X-ray scans)

Simulation parameters
(e.g. drug half-life)

Treatment Outcome

Neural Network ODE Solver

Pharmacokinetics/Pharmacodynamics

Backpropagation

pumas.ai

Is Differentiable Programming a Thing?

Bona fide programming paradigm, or yet another rebranding of neural networks?

Programming Paradigms
A collection of design patterns and organising principles, built on a common abstraction. Answers

questions like: how do I manage complexity, implement data structures, build abstractions,

represent a domain, or encourage code reuse?

● Procedural programming – imperative procedures

● Object-oriented programming – objects

● Functional programming – pure functions

● Logic programming – predicates

● Concurrent programming – communicating processes

● Symbolic programming – rewrite rules

● Stack-oriented programming – stack operations

● Differentiable programming – ???

Layers
A lambda that closes over numerical parameters.

Data Structures: Attention

See also: Neural Turing Machine

Resources

● Julia Language: julialang.org

● Flux ML library: fluxml.ai

● Zygote AD: github.com/FluxML/Zygote.jl

● Differentiable Control fluxml.ai/blog/2019/03/05/dp-vs-rl.html

● Google Scholar for more papers and technical introductions

