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A powerful, high level language with 
high performance.

Pythonic, mathematical syntax that 
looks like notation.

Performance consistently within 2x of 
tuned C code.

Most of Julia is written in Julia!

function mandel(z)
    c = z
    maxiter = 80
    for n = 1:maxiter
        if abs(z) > 2
            return n-1
        end
        z = z^2 + c
    end
    return maxiter
end



Scientific Computing



Machine Learning MLJ



Machine Learning

High-level and flexible (Python)

High overhead, focus on tensor 
operations and manual vectorisation

Relatively simple programs (network 
architectures)

Mutation support considered 
advanced/unusual.

Scientific Computing

Low-level and manual (Fortran)

Low overhead, focus on scalar 
operations

Regularly run over millions of lines of 
code.

Research on auto-vectorisation, 
shared memory parallelism, 
checkpointing etc.





Tapenade
Ruthless pragmatism and scalability.
Output can be highly optimised using 
existing optimising compilers.

λ the Ultimate 
Backpropagator

Elegant recursive formalism, including 
nested AD (closure), convenience 
(callee-derives) and bags of expressive 
power.





function pow(x, n)
  r = 1
  while n > 0
    n -= 1
    r *= x
  end
  return r
end

User Function

1: (%2, %3)
  br 2 (%3, 1)
2: (%4, %5)
  %6 = %4 > 0
  br 4 unless %6
  br 3
3:
  %7 = %4 - 1
  %8 = %5 * %2
  br 2 (%7, %8)
4:
  return %5

Primal

1: (%1)
  br 2 (%1, 0)
2: (%2, %4)
  br 4 unless @6
  br 3
3:
  %10 = %2 * @2
  %11 = %2 * @5
  %14 = %4 + %11
  br 2 (%10, %14)
4:
  return (%4, 0)

Adjoint

pow(5, 3) == 125
gradient(pow, 5, 3) == (75, 0)





function foo(x)
  a = bar(x)
  b = baz(a)
  return b
end

function J(::typeof(foo), x)
  a, da = J(bar, x)
  b, db = J(baz, a)
  return b, function(b̄)
    ā = db(b̄)
    x̄ = da(ā)
    return x̄
  end
end





J(::typeof(sin), x) = sin(x), ȳ -> ȳ*cos(x)

@adjoint sin(x) = sin(x), ȳ -> ȳ*cos(x)

Core compiler pass is ~200 lines of code

All semantics added via custom adjoints –
mutation, data structures, checkpointing, etc.



nestlevel() = 0

@adjoint nestlevel() = nestlevel()+1, _ -> nothing

julia> function f(x)
         println(nestlevel(), " levels of nesting")
         return x
       end

julia> f(1);
0 levels of nesting

julia> grad(f, 1);
1 levels of nesting

julia> grad(x -> x*grad(f, x), 1);
2 levels of nesting



@adjoint checkpoint(f, x...) =

  f(x...), Δ -> J(f, x...)[2](Δ)

@adjoint hook(f, x) = x, Δ -> (f(Δ),)

hook(-, x) # reverse the gradient of x

@adjoint function forwarddiff(f, x)

  y, J = forward_jacobian(f, x)

  y, Δ -> (J’Δ,)

end





Differentiation á la Carte

● Mixed-mode AD (forward, reverse, Taylor series, …)
● Forward-over-reverse (Hessians)
● Cross-language AD
● Support for Complex and other number types
● Easy custom gradients
● Checkpointing
● Gradient hooks
● Custom types (colours!)
● Hardware backends: CPU, CUDA, TPU, …
● Deeply nested AD (WIP)



Deep learning in 5 lines.



Data Structures & Mutation









@adjoint function pycall(f, x...; kw...)

 x = map(py, x)

 y = pycall(f, x...; kw...)

 y.detach().numpy(), function (ȳ)

   y.backward(gradient = py(ȳ))

   (nothing, map(x -> x.grad.numpy(), x)...)

 end

end



Some Bonus Features







Future Challenges
● Mutation of values is hard

● Need adjoints to cover the entire standard library

● Compiler improvements
○ More functional-style optimisations

○ Better heuristics for AD-generated code

● Fast code vs. dynamic semantics

● Differentiating Julia’s concurrency and parallelism constructs

● Reducing overheads: currently ~50ns per operation
○ Great compared to ML frameworks but far from optimal



Differentiating 
CartPole







{left, right}

CartPole State
Control Parameters Loss

Neural Network Environment

CartPole Controller

Backpropagation

angle = -3°
velocity = 0.5°/s angle2



Model-free RL Differentiable
Programming

~400
episodes to solve

6
episodes to solve





β = 0.56

Patient Data
(e.g. X-ray scans)

Simulation parameters
(e.g. drug half-life)

Treatment Outcome

Neural Network ODE Solver

Pharmacokinetics/Pharmacodynamics

Backpropagation

pumas.ai



Is Differentiable Programming a Thing?

Bona fide programming paradigm, or yet another rebranding of neural networks?



Programming Paradigms
A collection of design patterns and organising principles, built on a common abstraction. Answers 

questions like: how do I manage complexity, implement data structures, build abstractions, 

represent a domain, or encourage code reuse?

● Procedural programming – imperative procedures

● Object-oriented programming – objects

● Functional programming – pure functions

● Logic programming – predicates

● Concurrent programming – communicating processes

● Symbolic programming – rewrite rules

● Stack-oriented programming – stack operations

● Differentiable programming – ???



Layers
A lambda that closes over numerical parameters.



Data Structures: Attention

See also: Neural Turing Machine



Resources

● Julia Language: julialang.org

● Flux ML library: fluxml.ai

● Zygote AD: github.com/FluxML/Zygote.jl

● Differentiable Control fluxml.ai/blog/2019/03/05/dp-vs-rl.html

● Google Scholar for more papers and technical introductions


