A bound on the iteration order of Fuller singularities for generic control-affine time-optimal systems

Yacine Chitour
Laboratoire des signaux et systèmes, Université Paris-Saclay, CentralSupelec

in collaboration with
F. Boarotto (LIST S.p.A., Trieste, Italy) M. Sigalotti (Inria, France)

Math Seminar Université Côte d'Azur
November 24, 2020

Time-optimal trajectories of control-affine systems

$$
\dot{q}=f_{0}(q)+\sum_{i=1}^{m} u_{i} f_{i}(q), \quad\|u\| \leq 1, \quad q \in M
$$

M smooth n-dimensional manifold, $u=\left(u_{1}, \ldots, u_{m}\right)$
$f_{0}, \ldots, f_{m} \in \operatorname{Vec}(M) \longrightarrow$ smooth (i.e., C^{∞}) vector fields on M
Time optimal problem: $q(0)=q_{0}, \quad q(T)=q_{1}, \quad T \rightarrow \min$

Time-optimal trajectories of control-affine systems

$$
\dot{q}=f_{0}(q)+\sum_{i=1}^{m} u_{i} f_{i}(q), \quad\|u\| \leq 1, \quad q \in M
$$

M smooth n-dimensional manifold, $u=\left(u_{1}, \ldots, u_{m}\right)$
$f_{0}, \ldots, f_{m} \in \operatorname{Vec}(M) \longrightarrow$ smooth (i.e., C^{∞}) vector fields on M
Time optimal problem: $q(0)=q_{0}, \quad q(T)=q_{1}, \quad T \rightarrow \min$
Regularity of a time-optimal trajectory $q:[0, T] \rightarrow M$ measured in terms of maximal domain of smoothness

$$
O=\bigcup_{\omega \text { open, }\left.q\right|_{\omega} \text { smooth }} \omega, \quad \Sigma=[0, T] \backslash O
$$

Is \sum empty? finite? countable? of finite measure? of empty interior?

In general: No regularity

(Sussmann - 1986) for ANY $t \mapsto u(t) \in[-1,1]$ measurable and any M, q_{0}, there exist $f_{0}, f_{1} \in \operatorname{Vec}(M)$ such that the admissible trajectory driven by u and starting at q_{0} is time-optimal for $\dot{q}=f_{0}(q)+u f_{1}(q)$

In general: No regularity Generically: Maybe

(Sussmann - 1986) for ANY $t \mapsto u(t) \in[-1,1]$ measurable and any M, q_{0}, there exist $f_{0}, f_{1} \in \operatorname{Vec}(M)$ such that the admissible trajectory driven by u and starting at q_{0} is time-optimal for $\dot{q}=f_{0}(q)+u f_{1}(q)$

Natural question: generic properties, i.e., properties that hold for all time-optimal trajectories of the control-affine system, provided that $\left(f_{0}, \ldots, f_{m}\right)$ belongs to an open and dense subset of $\operatorname{Vec}(M)^{m+1}$ for the C^{∞} Whitney topology

Bang, singular, and Fuller

Definition (Bang and singular arcs)

An arc is a connected component of O. An arc ω is said to be bang if $\|u\| \equiv 1$ (a.e.) on ω, and singular otherwise Two arcs are concatenated if they are separated by a single point (an isolated point of Σ) which is called a switching time

Definition (Fuller times)

Let Σ_{0} be the set of isolated points in Σ (switching times) The elements of $\Sigma \backslash \Sigma_{0}$ are Fuller times
By recurrence, let

$$
\Sigma_{k} \text { set of isolated points of } \Sigma \backslash\left(\cup_{j=0}^{k-1} \Sigma_{j}\right) \quad k \in \mathbb{N} \cup\{\infty\}
$$

If $t \in \Sigma_{k}$ then t is a Fuller time of order k
Σ_{k} countable for all $k \geq 0$.

Single-input case: previous results

■ For $n=2, \Sigma$ is finite generically and for all analytic systems Lobry 1970, Sussmann 1982, 1987

- Finiteness of Σ close to points at which some suitable non-dependence condition between Lie brackets holds $(n=3,4)$ Agrachev, Bressan, Gamkrelidze, Krener, Schättler, S., Sussmann,....
- For n large enough time-extremal trajectories of generic systems might exhibit Fuller phenomenon $(\# \Sigma=\infty)$ Kupka 1990, Zelikin-Borisov 1994, 2004, Borisov 1998, 2004
■ Generically, for every extremal trajectory $q:[0, T] \rightarrow M$, the set O is dense in [0, T] Agrachev 1995
- Generically, for any extremal triple $(q(\cdot), u(\cdot), \lambda(\cdot))$ such that $\left\langle\lambda(t), f_{1}(q(t))\right\rangle \equiv 0$ on $[0, T], O$ is dense in $[0, T]$ Bonnard-Kupka 1997 and also of full measure Chitour-Jean-Trélat 2008

Main result in the single-input case

Theorem (Boarotto-Sigalotti, ANIHP, 2019)

There exists $K(n) \in \mathbb{N}$ such that, for a generic pair $\left(f_{0}, f_{1}\right)$, every time-optimal trajectory of

$$
\dot{q}=f_{0}(q)+u f_{1}(q), \quad q \in M, u \in[-1,1]
$$

has at most Fuller times of order $K(n)$, i.e.,

$$
\Sigma=\Sigma_{0} \cup \cdots \cup \Sigma_{K(n)} .
$$

- In particular, u can be taken smooth out of a finite union of discrete sets (hence, out of a countable set)
- as a byproduct of the proof, for $\left(f_{0}, f_{1}\right)$ generic, for a trajectory s. t. $\left\langle\lambda(t), f_{1}(q(t))\right\rangle \equiv 0, \quad[0, T] \backslash O$ countable.

By the Pontryagin maximum principle, if $q:[0, T] \rightarrow M$ is time-optimal for

$$
\dot{q}=f_{0}(q)+u f_{1}(q) \quad u \in[-1,1]
$$

then \exists extremal lift $\lambda:[0, T] \rightarrow T^{*} M \backslash\{0\}$ of $q(\cdot)$ such that

$$
\dot{\lambda}(t)=\overrightarrow{h_{0}}(\lambda(t))+u(t) \overrightarrow{h_{1}}(\lambda(t)) \quad \text { a.e. } t \in[0, T]
$$

where $h_{i}(\lambda)=\left\langle\lambda, f_{i}(q)\right\rangle, i=0,1$, and

$$
u(t)\left\langle\lambda(t), f_{1}(q(t))\right\rangle=\left|\left\langle\lambda(t), f_{1}(q(t))\right\rangle\right| \quad \text { a.e. } t \in[0, T]
$$

By the Pontryagin maximum principle, if $q:[0, T] \rightarrow M$ is time-optimal for

$$
\dot{q}=f_{0}(q)+u f_{1}(q) \quad u \in[-1,1]
$$

then \exists extremal lift $\lambda:[0, T] \rightarrow T^{*} M \backslash\{0\}$ of $q(\cdot)$ such that

$$
\dot{\lambda}(t)=\overrightarrow{h_{0}}(\lambda(t))+u(t) \overrightarrow{h_{1}}(\lambda(t)) \quad \text { a.e. } t \in[0, T]
$$

where $h_{i}(\lambda)=\left\langle\lambda, f_{i}(q)\right\rangle, i=0,1$, and

$$
u(t)\left\langle\lambda(t), f_{1}(q(t))\right\rangle=\left|\left\langle\lambda(t), f_{1}(q(t))\right\rangle\right| \quad \text { a.e. } t \in[0, T]
$$

Equivalently, $\forall X \in \operatorname{Vec} M$,

$$
\frac{d}{d t}\langle\lambda(t), X(q(t))\rangle=\left\langle\lambda(t),\left[f_{0}+u(t) f_{1}, X\right](q(t))\right\rangle \quad \text { a.e. } t \in[0, T]
$$ and

$(*) u(t)=\operatorname{sgn}\left(\left\langle\lambda(t), f_{1}(q(t))\right\rangle\right)$ a.e. $t \in[0, T]$ s.t. $\left\langle\lambda(t), f_{1}(q(t))\right\rangle \neq 0$
$\left(^{*}\right)=$ First feedback expression of $u(\cdot)$ in terms of $\left(f_{0}, f_{1}\right)$.

Switching function

Let $f_{ \pm}=f_{0} \pm f_{1}$ and, for $I=\left(i_{1} \cdots i_{k}\right)$ word with letters in $\{+,-, 0,1\}$

$$
f_{l}=\left[f_{i_{1}}, \ldots,\left[f_{i_{k-1}}, f_{i_{k}}\right] \cdots\right], \quad h_{l}(t)=\left\langle\lambda(t), f_{l}(q(t))\right\rangle
$$

The PMP implies

$$
\dot{h}_{l}(t)=h_{0 \prime}(t)+u(t) h_{1 \prime}(t) \quad \text { a.e. } t \in[0, T]
$$

Switching function

Let $f_{ \pm}=f_{0} \pm f_{1}$ and, for $I=\left(i_{1} \cdots i_{k}\right)$ word with letters in $\{+,-, 0,1\}$

$$
f_{l}=\left[f_{i_{1}}, \ldots,\left[f_{i_{k-1}}, f_{i_{k}}\right] \cdots\right], \quad h_{l}(t)=\left\langle\lambda(t), f_{l}(q(t))\right\rangle
$$

The PMP implies

$$
\dot{h}_{l}(t)=h_{0 \prime}(t)+u(t) h_{1 \prime}(t) \quad \text { a.e. } t \in[0, T]
$$

In particular, for

$$
h_{1}(t)=\left\langle\lambda(t), f_{1}(q(t))\right\rangle \quad \text { switching function }
$$

we have

$$
\begin{array}{lr}
\dot{h}_{1}(t)=h_{01}(t) & \forall t \in[0, T] \\
\ddot{h}_{1}(t)=h_{001}(t)+u(t) h_{101}(t) & \text { a.e. } t \in[0, T]
\end{array}
$$

Bonnard-Kupka 1997: generically, if $h_{1} \equiv 0$, then $h_{101}(t) \neq 0$ and

$$
(* *) u(t)=-h_{001}(t) / h_{101}(t) \text { a.e. } t \in O .
$$

$(* *)=$ Second feedback expression of $u(\cdot)$ in terms of $\left(f_{0}, f_{1}\right)$.

Strategy of the proof

- At switching times $h_{1}=0$ and more generally $\left.h_{1}\right|_{\Sigma} \equiv 0$

Strategy of the proof

- At switching times $h_{1}=0$ and more generally $\left.h_{1}\right|_{\Sigma} \equiv 0$
- Points in $\Sigma \backslash \Sigma_{0}$ are accumulations of points where $h_{1}=0$ $\longrightarrow \dot{h}_{1}=h_{01}$ vanishes on $\Sigma \backslash \Sigma_{0}\left(h_{1} \in \mathcal{C}^{1}\right)$

Strategy of the proof

■ At switching times $h_{1}=0$ and more generally $\left.h_{1}\right|_{\Sigma} \equiv 0$

- Points in $\Sigma \backslash \Sigma_{0}$ are accumulations of points where $h_{1}=0$ $\longrightarrow \dot{h}_{1}=h_{01}$ vanishes on $\Sigma \backslash \Sigma_{0}\left(h_{1} \in \mathcal{C}^{1}\right)$
■ Higher order Fuller times are accumulations of accumulations and new relations between $\lambda(t)$ and the brackets of $f_{0}(q(t))$ and $f_{1}(q(t))$ can be derived Initialization on $\Sigma \backslash \Sigma_{0}\left(0=h_{1}=h_{01}=\ldots\right)$ Recursion $\Sigma \backslash \cup_{j=0}^{k} \Sigma_{j} \longrightarrow \Sigma \backslash \cup_{j=0}^{k+1} \Sigma_{j}$

Strategy of the proof

■ At switching times $h_{1}=0$ and more generally $\left.h_{1}\right|_{\Sigma} \equiv 0$

- Points in $\Sigma \backslash \Sigma_{0}$ are accumulations of points where $h_{1}=0$ $\longrightarrow \dot{h}_{1}=h_{01}$ vanishes on $\Sigma \backslash \Sigma_{0}\left(h_{1} \in \mathcal{C}^{1}\right)$
- Higher order Fuller times are accumulations of accumulations and new relations between $\lambda(t)$ and the brackets of $f_{0}(q(t))$ and $f_{1}(q(t))$ can be derived Initialization on $\Sigma \backslash \Sigma_{0}\left(0=h_{1}=h_{01}=\ldots\right)$
Recursion $\Sigma \backslash \cup_{j=0}^{k} \Sigma_{j} \longrightarrow \Sigma \backslash \cup_{j=0}^{k+1} \Sigma_{j}$
- At high order Fuller times $\left(\lambda(t), j^{N}\left(f_{0}, f_{1}\right)(q(t))\right)$ belongs to a set of large codimension in $T_{q(t)}^{*} M \times J_{q(t)}^{N} M \times J_{q(t)}^{N} M$, where N large and $J^{N} M$ is the bundle of N-jets of vector fields on M

Strategy of the proof

- At switching times $h_{1}=0$ and more generally $\left.h_{1}\right|_{\Sigma} \equiv 0$

■ Points in $\Sigma \backslash \Sigma_{0}$ are accumulations of points where $h_{1}=0$ $\longrightarrow \dot{h}_{1}=h_{01}$ vanishes on $\Sigma \backslash \Sigma_{0}\left(h_{1} \in \mathcal{C}^{1}\right)$
■ Higher order Fuller times are accumulations of accumulations and new relations between $\lambda(t)$ and the brackets of $f_{0}(q(t))$ and $f_{1}(q(t))$ can be derived Initialization on $\Sigma \backslash \Sigma_{0}\left(0=h_{1}=h_{01}=\ldots\right)$
Recursion $\Sigma \backslash \cup_{j=0}^{k} \Sigma_{j} \longrightarrow \Sigma \backslash \cup_{j=0}^{k+1} \Sigma_{j}$

- At high order Fuller times $\left(\lambda(t), j^{N}\left(f_{0}, f_{1}\right)(q(t))\right)$ belongs to a set of large codimension in $T_{q(t)}^{*} M \times J_{q(t)}^{N} M \times J_{q(t)}^{N} M$, where N large and $J^{N} M$ is the bundle of N-jets of vector fields on M
- The projection $\pi(A)$ on $J_{q(t)}^{N} M \times J_{q(t)}^{N} M$ of a set A of large codimension has itself large codimension
- Fuller times of too large order can be ruled out by Thom's transversality theorem

$$
\left(f_{0}, f_{1}\right) \text { generic } \Longrightarrow j^{N}\left(f_{0}, f_{1}\right)(q) \notin \pi(A) \forall q \in M
$$

Initialization: dependence conditions on $\Sigma \backslash \Sigma_{0}$

Proposition (No genericity assumption here)
Let $t \in \Sigma \backslash \Sigma_{0}$.
Then $h_{1}(t)=h_{01}(t)=0$ and, in addition, either $h_{+01}(t)=0$ or $h_{-01}(t)=0$.

Initialization: dependence conditions on $\Sigma \backslash \Sigma_{0}$

Proposition (No genericity assumption here)

Let $t \in \Sigma \backslash \Sigma_{0}$.
Then $h_{1}(t)=h_{01}(t)=0$ and, in addition, either $h_{+01}(t)=0$ or $h_{-01}(t)=0$.

■ if a bang arc B is a concatenated to a singular arc S then h_{+01} or h_{-01} vanish on $B \cup S$

- By this kind of reasoning we can reduce the problem to the case where t is the limit of an infinite sequence of concatenated bang arcs \longrightarrow next slide

Infinitely many concatenated bang arcs

Lemma

Assume \exists infinite sequence of concatenated bang arcs converging to $\tau \in[0, T]$. Then either $h_{+01}(\tau)=0$ or $h_{-01}(\tau)=0$.

Lengths of subsequent bang arcs $\left\{\tau_{i}\right\}_{i \in \mathbb{N}}$. Proof by contradiction: if $h_{+01}(\tau) h_{-01}(\tau) \neq 0$, then $\left|\ddot{h}_{1}\right| \geq C_{0}>0$ on bang arcs because $\ddot{h}_{1}=\alpha h_{+01}+(1-\alpha) h_{-01}$

Infinitely many concatenated bang arcs

Lemma

Assume \exists infinite sequence of concatenated bang arcs converging to $\tau \in[0, T]$. Then either $h_{+01}(\tau)=0$ or $h_{-01}(\tau)=0$.

Lengths of subsequent bang arcs $\left\{\tau_{i}\right\}_{i \in \mathbb{N}}$.
Proof by contradiction: if $h_{+01}(\tau) h_{-01}(\tau) \neq 0$, then $\left|\ddot{h}_{1}\right| \geq C_{0}>0$ on bang arcs because $\ddot{h}_{1}=\alpha h_{+01}+(1-\alpha) h_{-01}$
Then
■ if $\left(t_{i}, t_{i}+\tau_{i}\right)$ is a bang arc then

$$
\dot{h}_{1}\left(t_{i}\right)=O\left(\tau_{i}\right), \quad \dot{h}_{1}\left(t_{i}+\tau_{i}\right)=-\dot{h}_{1}\left(t_{i}\right)+O\left(\tau_{i}^{2}\right)
$$

- $\tau_{i+1}=O\left(\tau_{i}\right)$

Infinitely many concatenated bang arcs

Lemma

Assume \exists infinite sequence of concatenated bang arcs converging to $\tau \in[0, T]$. Then either $h_{+01}(\tau)=0$ or $h_{-01}(\tau)=0$.

Lengths of subsequent bang arcs $\left\{\tau_{i}\right\}_{i \in \mathbb{N}}$.
Proof by contradiction: if $h_{+01}(\tau) h_{-01}(\tau) \neq 0$, then $\left|\ddot{h}_{1}\right| \geq C_{0}>0$ on bang arcs because $\ddot{h}_{1}=\alpha h_{+01}+(1-\alpha) h_{-01}$
Then
■ if $\left(t_{i}, t_{i}+\tau_{i}\right)$ is a bang arc then

$$
\dot{h}_{1}\left(t_{i}\right)=O\left(\tau_{i}\right), \quad \dot{h}_{1}\left(t_{i}+\tau_{i}\right)=-\dot{h}_{1}\left(t_{i}\right)+O\left(\tau_{i}^{2}\right)
$$

- $\tau_{i+1}=O\left(\tau_{i}\right)$
- $\tau_{i+2}=\tau_{i}+O\left(\tau_{i}^{2}\right)$

Infinitely many concatenated bang arcs

Lemma

Assume \exists infinite sequence of concatenated bang arcs converging to $\tau \in[0, T]$. Then either $h_{+01}(\tau)=0$ or $h_{-01}(\tau)=0$.

Lengths of subsequent bang arcs $\left\{\tau_{i}\right\}_{i \in \mathbb{N}}$.
Proof by contradiction: if $h_{+01}(\tau) h_{-01}(\tau) \neq 0$, then $\left|\ddot{h}_{1}\right| \geq C_{0}>0$ on bang arcs because $\ddot{h}_{1}=\alpha h_{+01}+(1-\alpha) h_{-01}$
Then
■ if $\left(t_{i}, t_{i}+\tau_{i}\right)$ is a bang arc then

$$
\dot{h}_{1}\left(t_{i}\right)=O\left(\tau_{i}\right), \quad \dot{h}_{1}\left(t_{i}+\tau_{i}\right)=-\dot{h}_{1}\left(t_{i}\right)+O\left(\tau_{i}^{2}\right)
$$

- $\tau_{i+1}=O\left(\tau_{i}\right)$
- $\tau_{i+2}=\tau_{i}+O\left(\tau_{i}^{2}\right)$
- $T \geq \sum_{i=1}^{\infty} \tau_{i}=+\infty$, contradiction.

Recursion $\Sigma \backslash \cup_{j=0}^{k} \Sigma_{j} \longrightarrow \Sigma \backslash \cup_{j=0}^{k+1} \Sigma_{j}$

$\Sigma \backslash \cup_{j=0}^{k} \Sigma_{j} \ni t_{n} \rightarrow t \in \Sigma \backslash \cup_{j=0}^{k+1} \Sigma_{j}$
l_{1}, l_{2} words with letters in $\{+,-, 0,1\}$, length $\left(l_{1}\right) \leq \operatorname{length}\left(I_{2}\right)$,

$$
h_{l_{1}}\left(t_{n}\right)=0=h_{l_{2}}\left(t_{n}\right) \longrightarrow h_{l_{1}}(t)=0=h_{l_{2}}(t)
$$

Recursion $\Sigma \backslash \cup_{j=0}^{k} \Sigma_{j}$

$\Sigma \backslash \cup_{j=0}^{k} \Sigma_{j} \ni t_{n} \rightarrow t \in \Sigma \backslash \cup_{j=0}^{k+1} \Sigma_{j}$
I_{1}, I_{2} words with letters in $\{+,-, 0,1\}$, length $\left(I_{1}\right) \leq$ length $\left(I_{2}\right)$,

$$
h_{l_{1}}\left(t_{n}\right)=0=h_{l_{2}}\left(t_{n}\right) \longrightarrow h_{l_{1}}(t)=0=h_{l_{2}}(t)
$$

Up to subsequences

$$
\frac{1}{t-t_{n}} \int_{t_{n}}^{t} u(s) d s \rightarrow \bar{u} \in[-1,1] .
$$

Then, for $j=1,2$,

$$
0=\frac{h_{l_{j}}(t)-h_{l_{j}}\left(t_{n}\right)}{t-t_{n}}=\frac{\int_{t_{n}}^{t}\left(h_{0 l_{j}}(s)+u(s) h_{1 l_{j}}(s)\right) d s}{t-t_{n}} \rightarrow h_{0 l_{j}}(t)+\bar{u} h_{1 l_{j}}(t)
$$

Recursion $\Sigma \backslash \cup_{j=0}^{k} \Sigma_{j} \longrightarrow \Sigma \backslash \cup_{j=0}^{k+1} \Sigma_{j}$

$\Sigma \backslash \cup_{j=0}^{k} \Sigma_{j} \ni t_{n} \rightarrow t \in \Sigma \backslash \cup_{j=0}^{k+1} \Sigma_{j}$
I_{1}, I_{2} words with letters in $\{+,-, 0,1\}$, length $\left(I_{1}\right) \leq$ length $\left(I_{2}\right)$,

$$
h_{l_{1}}\left(t_{n}\right)=0=h_{l_{2}}\left(t_{n}\right) \longrightarrow h_{l_{1}}(t)=0=h_{l_{2}}(t)
$$

Up to subsequences

$$
\frac{1}{t-t_{n}} \int_{t_{n}}^{t} u(s) d s \rightarrow \bar{u} \in[-1,1] .
$$

Then, for $j=1,2$,

$$
0=\frac{h_{l_{j}}(t)-h_{l_{j}}\left(t_{n}\right)}{t-t_{n}}=\frac{\int_{t_{n}}^{t}\left(h_{0 l_{j}}(s)+u(s) h_{1 l_{j}}(s)\right) d s}{t-t_{n}} \rightarrow h_{0 l_{j}}(t)+\bar{u} h_{1 l_{j}}(t)
$$

■ $|\bar{u}|=1 \longrightarrow$ new word $J= \pm I_{2}$ of longer length with $h_{J}(t)=0$

- $|\bar{u}|<1 \& I_{2}=\star I_{1}, \star \in\{+,-\} \longrightarrow$ can replace $h_{I_{2}}=0$ with 2 indep. conditions $h_{01_{1}}=0=h_{11_{1}}$ (as in initialization step)
$\square|\bar{u}|<1$ \& length $\left(I_{1}\right)=\operatorname{length}\left(I_{2}\right) \longrightarrow \operatorname{det}\left(\begin{array}{ll}h_{01_{1}}(t) & h_{11_{1}}(t) \\ h_{0 I_{2}}(t) & h_{11_{2}}(t)\end{array}\right)=0$

Generating new conditions

Generating more conditions

Generating more conditions

Two reasons for losing dependence:

- $h_{0 I_{k}}=0=h_{1 l_{k}}$: all determinants Q_{1}, \ldots, Q_{I+1} vanish
- $f_{0} \wedge f_{1}=0$: conditions on lower order jets e.g., if $f_{0}(q)=0$ then $\left[f_{0},\left[f_{0}, \ldots,\left[f_{0}, f_{1}\right] \cdots\right](q)\right.$ only depends on $f_{1}(q)$ and $D f_{0}(q)$

Hoarding dependence conditions in $\left\{f_{0} \wedge f_{1} \neq 0\right\}$

If $h_{l_{1}}=0, \ldots, h_{l_{k}}=0, Q_{1}=0, \ldots, Q_{l}=0$ are independent conditions at $\lambda(t)$ then $\left(\lambda(t), j^{N}\left(f_{0}, f_{1}\right)(q(t))\right)$ is in a codimension $k+l$ set (N large enough).
For $k+l$ larger than $2 n-1$ we get a condition on $j^{N}\left(f_{0}, f_{1}\right)$ that is generically nowhere satisfied on M.
Any higher Fuller order gives rise to one of the following moves

$$
\begin{aligned}
& \square(k, 0) \longrightarrow(k+1,0) \\
& \square(k, l) \longrightarrow(k, l+1) \\
& \square(k, l) \longrightarrow(k+2,0)
\end{aligned}
$$

To find $K(n)$ we compute the longest sequence of moves staying in $\{k+I \leq 2 n-1\}$

Iterations along $\mathcal{C}=\left\{f_{0} \wedge f_{1}=0\right\}$

Lemma

Let $q:[0, T] \rightarrow M$ trajectory associated with control u. Take $t_{\infty} \in[0, T]$ such that $f_{1}\left(q\left(t_{\infty}\right)\right) \wedge\left[f_{0}, f_{1}\right]\left(q\left(t_{\infty}\right)\right) \neq 0$. Let $\left\{t_{i}\right\}_{i \in \mathbb{N}}$ converge to t_{∞} and $q\left(t_{i}\right) \in \mathcal{C}$ for every $i \in \mathbb{N}$. Then there exists $\bar{u}=\lim _{i \rightarrow \infty} \frac{1}{t_{\infty}-t_{i}} \int_{t_{i}}^{t_{\infty}} u(\tau) d \tau$ and $f_{0}\left(q\left(t_{\infty}\right)\right)+\bar{u} f_{1}\left(q\left(t_{\infty}\right)\right)=0$.

Iterations along $\mathcal{C}=\left\{f_{0} \wedge f_{1}=0\right\}$

Lemma

Let $q:[0, T] \rightarrow M$ trajectory associated with control u. Take $t_{\infty} \in[0, T]$ such that $f_{1}\left(q\left(t_{\infty}\right)\right) \wedge\left[f_{0}, f_{1}\right]\left(q\left(t_{\infty}\right)\right) \neq 0$. Let $\left\{t_{i}\right\}_{i \in \mathbb{N}}$ converge to t_{∞} and $q\left(t_{i}\right) \in \mathcal{C}$ for every $i \in \mathbb{N}$. Then there exists $\bar{u}=\lim _{i \rightarrow \infty} \frac{1}{t_{\infty}-t_{i}} \int_{t_{i}}^{t_{\infty}} u(\tau) d \tau$ and $f_{0}\left(q\left(t_{\infty}\right)\right)+\bar{u} f_{1}\left(q\left(t_{\infty}\right)\right)=0$.
$\Omega=\left\{t \in[0, T] \mid q(t) \in \mathcal{C}, h_{1}(t)=0\right\}$.
Ω_{0} isolated points of Ω, Ω_{k} isolated points of $\Omega \backslash\left(\bigcup_{j=0}^{k-1} \Omega_{j}\right)$.

Lemma

If $\left\{t_{i}\right\}_{i \in \mathbb{N}} \subset \Omega \backslash\left(\bigcup_{j=0}^{k} \Omega_{j}\right)$ are such that $t_{\infty}=\lim _{i \rightarrow \infty} t_{i}$ and $f_{1}\left(q\left(t_{\infty}\right)\right) \wedge\left[f_{0}, f_{1}\right]\left(q\left(t_{\infty}\right)\right) \neq 0$, then $\operatorname{ad}_{h_{\bar{u}}}^{j}\left(h_{1}\right)\left(\lambda\left(t_{\infty}\right)\right)=0$, for every $0 \leq j \leq k+2$. In particular, generically with respect to $\left(f_{0}, f_{1}\right), \Omega=\Omega_{0} \cup \cdots \cup \Omega_{n-2}$.

This concludes the proof of the single-input result $\left(K(n)=(n-1)^{2}\right)$

Multi-input case

$$
\dot{q}=f_{0}(q)+\sum_{i=1}^{m} u_{i} f_{i}(q) \quad u=\left(u_{1}, \ldots, u_{m}\right) \in U
$$

- Switching studied for U ball in Agrachev-Biolo 2018 and, in some particular cases, Caillau-DaOUd 2012, Orieux-Roussarie 2019

■ Fuller phenomenon for U polytope structurally stable for extremal trajectories Zelikin-Lokutsievskiy-Hildebrand 2012, 2015

We focus on the case $U=B_{1}=\{u \mid\|u\| \leq 1\}$

PMP multi-input

For $q:[0, T] \rightarrow M$ time-optimal there exists extremal lift
$\lambda:[0, T] \rightarrow T^{*} M$ such that
$\sum_{i=1}^{m} u_{i}(t)\left\langle\lambda(t), f_{i}(q(t))\right\rangle=\max _{u \in B_{1}} \sum_{i=1}^{m} u_{i}\left\langle\lambda(t), f_{i}(q(t))\right\rangle$ and $\forall X \in \operatorname{Vec}(M)$

$$
\frac{d}{d t}\langle\lambda(t), X(q(t))\rangle=\left\langle\lambda(t),\left[f_{0}, X\right](q(t))\right\rangle+\sum_{i=1}^{m} u_{i}(t)\left\langle\lambda(t),\left[f_{i}, X\right](q(t))\right\rangle
$$

Define
■ $h_{l}(t)=\left\langle\lambda(t), f_{l}(q(t))\right\rangle$ for I word in $\{0, \ldots, m\}$
■ $h_{\mathbf{m}}=\left(h_{1}, \ldots, h_{m}\right)^{T} \quad h_{0 \mathbf{m}}=\left(h_{01}, \ldots, h_{0 m}\right)^{T}$
■ $H_{\mathbf{m m}}=\left(h_{i j}\right)_{i, j=1}^{m}$ Goh matrix
PMP implies $u(t)=h_{\mathbf{m}}(t) /\left\|h_{\mathbf{m}}(t)\right\|$ when $h_{\mathbf{m}}(t) \neq 0$ and

$$
\dot{h}_{\mathbf{m}}(t)=h_{0 \mathbf{m}}(t)-H_{\mathbf{m}}(t) u(t) \quad \text { a.e. } t \in[0, T]
$$

Switching conditions

If $t \in \Sigma$ then $h_{\mathbf{m}}(t)=0$

Switching conditions

If $t \in \Sigma$ then $h_{\mathbf{m}}(t)=0$
Agrachev-Biolo 2018:
$\square t \in \Sigma \backslash \Sigma_{0} \Longrightarrow h_{0 \mathbf{m}}(t) \in H_{\mathbf{m m}}(t) B_{1}$

Switching conditions

If $t \in \Sigma$ then $h_{\mathbf{m}}(t)=0$
Agrachev-Biolo 2018:
■ $t \in \Sigma \backslash \Sigma_{0} \Longrightarrow h_{0 \mathbf{m}}(t) \in H_{\mathbf{m m}}(t) B_{1}$
$\square h_{0 \mathbf{m}}(t) \in\left(H_{\mathbf{m m}}(t) B_{1}\right) \backslash\left(H_{\mathbf{m m}}(t) \partial B_{1}\right) \Longrightarrow t \notin \Sigma$

Corollary

$t \in \Sigma \backslash \Sigma_{0}, \operatorname{det}\left(H_{\mathbf{m m}}(t)\right) \neq 0 \Longrightarrow h_{0 \mathbf{m}}(t) \in H_{\mathbf{m m}}(t) \partial B_{1}$
REMARK: is m is odd then the antisymmetric matrix $H_{m m}$ is never invertible, hence $\operatorname{det}\left(H_{\mathbf{m m}}(t)\right)=0$

Switching conditions

If $t \in \Sigma$ then $h_{\mathbf{m}}(t)=0$
Agrachev-Biolo 2018:
■ $t \in \Sigma \backslash \Sigma_{0} \Longrightarrow h_{0 \mathbf{m}}(t) \in H_{\mathbf{m m}}(t) B_{1}$
$\square h_{0 \mathbf{m}}(t) \in\left(H_{\mathbf{m m}}(t) B_{1}\right) \backslash\left(H_{\mathbf{m m}}(t) \partial B_{1}\right) \Longrightarrow t \notin \Sigma$

Corollary

$t \in \Sigma \backslash \Sigma_{0}, \operatorname{det}\left(H_{\mathbf{m m}}(t)\right) \neq 0 \Longrightarrow h_{0 \mathbf{m}}(t) \in H_{\mathbf{m m}}(t) \partial B_{1}$
Remark: is m is odd then the antisymmetric matrix $H_{m m}$ is never invertible, hence $\operatorname{det}\left(H_{\mathbf{m m}}(t)\right)=0$

Assumption. m even

Main result in the multi-input case

Theorem (Boarotto-C.-Sigalotti, SICON 2020)

M smooth manifold of dimension n, m even, $m+1 \leq n$. There exist $K=K(n) \in \mathbb{N}$ and an open and dense set \mathcal{U} of

$$
\begin{aligned}
\left\{\left(f_{0}, \ldots, f_{m}\right) \in \operatorname{Vec}(M)^{m+1} \mid\right. & f_{0}(q), \ldots, f_{m}(q) \\
& \quad \text { linearly independent } \forall q \in M\}
\end{aligned}
$$

such that, if $\left(f_{0}, \ldots, f_{m}\right) \in \mathcal{U}$, then every time-optimal trajectory of

$$
\dot{q}=f_{0}(q)+\sum_{i=1}^{m} u_{i} f_{i}(q) \quad\|u\| \leq 1
$$

has at most Fuller times of order K, i.e.,

$$
\Sigma=\Sigma_{0} \cup \cdots \cup \Sigma_{K}
$$

Comments on the proof

■ Role played by the condition $h_{+01}=0$ or $h_{-01}=0$ on $\Sigma \backslash \Sigma_{0}$ now played by

$$
\operatorname{det}\left(H_{\mathbf{m m}}(t)\right)=0 \quad \text { or } \quad\left\|H_{\mathbf{m m}}(t)^{-1} h_{0 \mathbf{m}}(t)\right\|=1 \quad t \in \Sigma \backslash \Sigma_{0}
$$

Comments on the proof

- Role played by the condition $h_{+01}=0$ or $h_{-01}=0$ on $\Sigma \backslash \Sigma_{0}$ now played by
$\operatorname{det}\left(H_{\mathbf{m m}}(t)\right)=0 \quad$ or $\quad\left\|H_{\mathbf{m m}}(t)^{-1} h_{0 \mathbf{m}}(t)\right\|=1 \quad t \in \Sigma \backslash \Sigma_{0}$
- on $\left\{t \mid \operatorname{det}\left(H_{\mathrm{mm}}(t)\right) \neq 0\right\}$, differentiate the relation $\left\|H_{\mathbf{m m}}(t)^{-1} h_{0 \mathbf{m}}(t)\right\|=1$ and build up determinants as in single-input case (each accumulation on $\Sigma \longrightarrow a$ differentiation)

Comments on the proof

■ Role played by the condition $h_{+01}=0$ or $h_{-01}=0$ on $\Sigma \backslash \Sigma_{0}$ now played by
$\operatorname{det}\left(H_{\mathbf{m m}}(t)\right)=0 \quad$ or $\quad\left\|H_{\mathbf{m m}}(t)^{-1} h_{0 \mathbf{m}}(t)\right\|=1 \quad t \in \Sigma \backslash \Sigma_{0}$
■ on $\left\{t \mid \operatorname{det}\left(H_{\mathrm{mm}}(t)\right) \neq 0\right\}$, differentiate the relation $\left\|H_{\mathbf{m m}}(t)^{-1} h_{0 \mathbf{m}}(t)\right\|=1$ and build up determinants as in single-input case (each accumulation on $\Sigma \longrightarrow a$ differentiation)

- on $\left\{t \mid \operatorname{det}\left(H_{\mathrm{mm}}(t)\right)=0\right\}$ we have further relation coming for the annihilation of the minors. Apriori richer informations, but computations more tricky (rank of $H_{\mathrm{mm}}(t)$ may change)

Comments on the proof

■ Role played by the condition $h_{+01}=0$ or $h_{-01}=0$ on $\Sigma \backslash \Sigma_{0}$ now played by
$\operatorname{det}\left(H_{\mathbf{m m}}(t)\right)=0 \quad$ or $\quad\left\|H_{\mathbf{m m}}(t)^{-1} h_{0 \mathbf{m}}(t)\right\|=1 \quad t \in \Sigma \backslash \Sigma_{0}$
■ on $\left\{t \mid \operatorname{det}\left(H_{\mathrm{mm}}(t)\right) \neq 0\right\}$, differentiate the relation $\left\|H_{\mathbf{m m}}(t)^{-1} h_{0 \mathbf{m}}(t)\right\|=1$ and build up determinants as in single-input case (each accumulation on $\Sigma \longrightarrow a$ differentiation)

- on $\left\{t \mid \operatorname{det}\left(H_{\mathrm{mm}}(t)\right)=0\right\}$ we have further relation coming for the annihilation of the minors. Apriori richer informations, but computations more tricky (rank of $H_{\mathrm{mm}}(t)$ may change)
- Roughly: $\left\{t \mid \operatorname{det}\left(H_{\mathrm{mm}}(t)\right)=0\right\}$ split on sets where rank of H_{mm} is constant, and the Fuller order is estimated on each set

Comments on the proof

■ Role played by the condition $h_{+01}=0$ or $h_{-01}=0$ on $\Sigma \backslash \Sigma_{0}$ now played by
$\operatorname{det}\left(H_{\mathbf{m m}}(t)\right)=0 \quad$ or $\quad\left\|H_{\mathbf{m m}}(t)^{-1} h_{0 \mathbf{m}}(t)\right\|=1 \quad t \in \Sigma \backslash \Sigma_{0}$
■ on $\left\{t \mid \operatorname{det}\left(H_{\mathrm{mm}}(t)\right) \neq 0\right\}$, differentiate the relation $\left\|H_{\mathbf{m m}}(t)^{-1} h_{0 \mathbf{m}}(t)\right\|=1$ and build up determinants as in single-input case (each accumulation on $\Sigma \longrightarrow a$ differentiation)

- on $\left\{t \mid \operatorname{det}\left(H_{\mathrm{mm}}(t)\right)=0\right\}$ we have further relation coming for the annihilation of the minors. Apriori richer informations, but computations more tricky (rank of $H_{\mathrm{mm}}(t)$ may change)
- Roughly: $\left\{t \mid \operatorname{det}\left(H_{\mathrm{mm}}(t)\right)=0\right\}$ split on sets where rank of H_{mm} is constant, and the Fuller order is estimated on each set
- use lower-semicontinuity of the rank to put together the Fuller order estimates

Perspectives and open problems

Single-input

- What is the minimal $K(n)$ (for time-extremal and time-optimal trajectories)? We can show $K(n) \leq(n-1)^{2}$.
Can we at least bound $K(n)$ by a sub-quadratic function in n ?
■ Is optimality of (iterated) Fuller extremals structurally stable?
$■$ What can be said for M, f_{0}, f_{1} analytic?

Multi-Input

- case m even, $u \in B_{1} \subset \mathbb{R}^{m}$: remove linearly independent condition
- case m odd, $u \in B_{1} \subset \mathbb{R}^{m}$
- case $u \in[-1,1]^{m} \subset \mathbb{R}^{m}$ or general polytopes

