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Time-optimal trajectories of control-affine systems

q̇ = f0(q) +
m∑

i=1
ui fi (q), ‖u‖ ≤ 1, q ∈ M

M smooth n-dimensional manifold, u = (u1, . . . , um)
f0, . . . , fm ∈ Vec(M) −→ smooth (i.e., C∞) vector fields on M

Time optimal problem: q(0) = q0, q(T ) = q1, T → min

Regularity of a time-optimal trajectory q : [0,T ]→ M measured in
terms of maximal domain of smoothness

O =
⋃

ω open, q|ω smooth
ω, Σ = [0,T ] \ O

Is Σ empty? finite? countable? of finite measure? of empty
interior?
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In general: No regularity

Generically: Maybe

(Sussmann - 1986) for ANY t 7→ u(t) ∈ [−1, 1] measurable and
any M, q0, there exist f0, f1 ∈ Vec(M) such that the admissible
trajectory driven by u and starting at q0 is time-optimal for
q̇ = f0(q) + uf1(q)

Natural question: generic properties, i.e., properties that hold for
all time-optimal trajectories of the control-affine system, provided
that (f0, . . . , fm) belongs to an open and dense subset of
Vec(M)m+1 for the C∞ Whitney topology
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Bang, singular, and Fuller

Definition (Bang and singular arcs)
An arc is a connected component of O. An arc ω is said to be
bang if ‖u‖ ≡ 1 (a.e.) on ω, and singular otherwise Two arcs are
concatenated if they are separated by a single point (an isolated
point of Σ) which is called a switching time

Definition (Fuller times)
Let Σ0 be the set of isolated points in Σ (switching times) The
elements of Σ \ Σ0 are Fuller times
By recurrence, let

Σk set of isolated points of Σ \ (∪k−1
j=0 Σj) k ∈ N ∪ {∞}

If t ∈ Σk then t is a Fuller time of order k

Σk countable for all k ≥ 0.



Single-input case: previous results

For n = 2, Σ is finite generically and for all analytic systems
Lobry 1970, Sussmann 1982, 1987
Finiteness of Σ close to points at which some suitable
non-dependence condition between Lie brackets holds
(n = 3, 4) Agrachev, Bressan, Gamkrelidze,
Krener, Schättler, S., Sussmann,. . . .
For n large enough time-extremal trajectories of generic
systems might exhibit Fuller phenomenon (#Σ =∞) Kupka
1990, Zelikin–Borisov 1994, 2004, Borisov 1998,
2004
Generically, for every extremal trajectory q : [0,T ]→ M, the
set O is dense in [0,T ] Agrachev 1995
Generically, for any extremal triple (q(·), u(·), λ(·)) such that
〈λ(t), f1(q(t))〉 ≡ 0 on [0,T ], O is dense in [0,T ]
Bonnard–Kupka 1997 and also of full measure
Chitour–Jean–Trélat 2008



Main result in the single-input case

Theorem (Boarotto–Sigalotti, ANIHP, 2019)
There exists K (n) ∈ N such that, for a generic pair (f0, f1), every
time-optimal trajectory of

q̇ = f0(q) + uf1(q), q ∈ M, u ∈ [−1, 1],

has at most Fuller times of order K (n), i.e.,

Σ = Σ0 ∪ · · · ∪ ΣK(n).

In particular, u can be taken smooth out of a finite union of
discrete sets (hence, out of a countable set)
as a byproduct of the proof, for (f0, f1) generic, for a
trajectory s. t. 〈λ(t), f1(q(t))〉 ≡ 0, [0,T ] \ O countable.



Single-input time-extremal trajectories and the switching
function

By the Pontryagin maximum principle, if q : [0,T ]→ M is
time-optimal for

q̇ = f0(q) + uf1(q) u ∈ [−1, 1]
then ∃ extremal lift λ : [0,T ]→ T ∗M \ {0} of q(·) such that

λ̇(t) =
→
h0 (λ(t)) + u(t)

→
h1 (λ(t)) a.e. t ∈ [0,T ]

where hi (λ) = 〈λ, fi (q)〉, i = 0, 1, and
u(t)〈λ(t), f1(q(t))〉 = |〈λ(t), f1(q(t))〉| a.e. t ∈ [0,T ]

Equivalently, ∀X ∈ VecM,
d
dt 〈λ(t),X (q(t))〉 = 〈λ(t), [f0 + u(t)f1,X ](q(t))〉 a.e. t ∈ [0,T ]

and
(∗) u(t) = sgn(〈λ(t), f1(q(t))〉) a.e. t ∈ [0,T ] s.t. 〈λ(t), f1(q(t))〉 6= 0
(*) = First feedback expression of u(·) in terms of (f0, f1).
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Switching function

Let f± = f0 ± f1 and, for I = (i1 · · · ik) word with letters in
{+,−, 0, 1}

fI = [fi1 , . . . , [fik−1 , fik ] · · · ], hI(t) = 〈λ(t), fI(q(t))〉
The PMP implies

ḣI(t) = h0I(t) + u(t)h1I(t) a.e. t ∈ [0,T ]

In particular, for
h1(t) = 〈λ(t), f1(q(t))〉 switching function

we have
ḣ1(t) = h01(t) ∀t ∈ [0,T ]
ḧ1(t) = h001(t) + u(t)h101(t) a.e. t ∈ [0,T ]

Bonnard–Kupka 1997: generically, if h1 ≡ 0, then h101(t) 6= 0 and
(∗∗) u(t) = −h001(t)/h101(t) a.e. t ∈ O.

(**) = Second feedback expression of u(·) in terms of (f0, f1).
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Strategy of the proof

At switching times h1 = 0 and more generally h1|Σ ≡ 0

Points in Σ \ Σ0 are accumulations of points where h1 = 0
−→ ḣ1 = h01 vanishes on Σ \ Σ0 (h1 ∈ C1)
Higher order Fuller times are accumulations of accumulations
and new relations between λ(t) and the brackets of f0(q(t))
and f1(q(t)) can be derived
Initialization on Σ \ Σ0 (0 = h1 = h01 = . . .)
Recursion Σ \ ∪k

j=0Σj −→ Σ \ ∪k+1
j=0 Σj

At high order Fuller times (λ(t), jN(f0, f1)(q(t))) belongs to a
set of large codimension in T ∗q(t)M × JN

q(t)M × JN
q(t)M, where

N large and JNM is the bundle of N-jets of vector fields on M
The projection π(A) on JN

q(t)M × JN
q(t)M of a set A of large

codimension has itself large codimension
Fuller times of too large order can be ruled out by Thom’s
transversality theorem

(f0, f1) generic =⇒ jN(f0, f1)(q) 6∈ π(A) ∀q ∈ M
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Initialization: dependence conditions on Σ \ Σ0

Proposition (No genericity assumption here)
Let t ∈ Σ \ Σ0.
Then h1(t) = h01(t) = 0 and, in addition, either h+01(t) = 0 or
h−01(t) = 0.

if a bang arc B is a concatenated to a singular arc S then
h+01 or h−01 vanish on B ∪ S

Initialization: dependence conditions on � \ �0

Proposition (No genericity assumption here)
Let t œ � \ �0. Then h1(t) = h01(t) = 0 and, in addition, either
h+01(t) = 0 or h≠01(t) = 0.

if a bang arc B is a concatenated to a singular arc S then
h+01 or h≠01 vanish on B fi S

s1 t s2

h01 ⌘ 0

h01(⌧) = 0

singular arc bang arc

By this kind of reasoning we can reduce the problem to the
case where t is the limit of an infinite sequence of
concatenated bang arcs ≠æ next slide

By this kind of reasoning we can reduce the problem to the
case where t is the limit of an infinite sequence of
concatenated bang arcs −→ next slide
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Infinitely many concatenated bang arcs

Lemma
Assume ∃ infinite sequence of concatenated bang arcs converging
to τ ∈ [0,T ]. Then either h+01(τ) = 0 or h−01(τ) = 0.

Lengths of subsequent bang arcs {τi}i∈N.
Proof by contradiction: if h+01(τ)h−01(τ) 6= 0, then |ḧ1| ≥ C0 > 0
on bang arcs because ḧ1 = αh+01 + (1− α)h−01

Then
if (ti , ti + τi ) is a bang arc then

ḣ1(ti ) = O(τi ), ḣ1(ti + τi ) = −ḣ1(ti ) + O(τ2
i )

τi+1 = O(τi )
τi+2 = τi + O(τ2

i )
T ≥∑∞i=1 τi = +∞, contradiction.
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on bang arcs because ḧ1 = αh+01 + (1− α)h−01
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on bang arcs because ḧ1 = αh+01 + (1− α)h−01
Then

if (ti , ti + τi ) is a bang arc then
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Recursion Σ \ ∪kj=0Σj −→ Σ \ ∪k+1
j=0 Σj

Σ \ ∪k
j=0Σj 3 tn → t ∈ Σ \ ∪k+1

j=0 Σj
I1, I2 words with letters in {+,−, 0, 1}, length(I1) ≤length(I2),

hI1(tn) = 0 = hI2(tn) −→ hI1(t) = 0 = hI2(t)

Up to subsequences
1

t − tn

ˆ t

tn
u(s)ds → ū ∈ [−1, 1].

Then, for j = 1, 2,

0 =
hIj (t)− hIj (tn)

t − tn
=
´ t

tn
(h0Ij (s) + u(s)h1Ij (s))ds

t − tn
→ h0Ij (t)+ūh1Ij (t).

|ū| = 1−→ new word J = ±I2 of longer length with hJ(t) = 0
|ū| < 1 & I2 = ?I1, ? ∈ {+,−} −→ can replace hI2 = 0 with
2 indep. conditions h0I1 = 0 = h1I1 (as in initialization step)
|ū| < 1 & length(I1)=length(I2) −→ det

(
h0I1 (t) h1I1 (t)
h0I2 (t) h1I2 (t)

)
= 0
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Generating more conditionsGenerating more conditions

Two reasons for losing dependence:
h0Ik = 0 = h1Ik : all determinants Q1, . . . , Ql+1 vanish

f0 · f1 = 0: conditions on lower order jets
e.g., if f0(q) = 0 then [f0, [f0, . . . , [f0, f1] · · · ](q) only depends
on f1(q) and Df0(q)
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Hoarding dependence conditions in {f0 ∧ f1 6= 0}

If hI1 = 0, . . . , hIk = 0,Q1 = 0, . . . ,Ql = 0 are independent
conditions at λ(t) then (λ(t), jN(f0, f1)(q(t))) is in a codimension
k + l set (N large enough).
For k + l larger than 2n− 1 we get a condition on jN(f0, f1) that is
generically nowhere satisfied on M.
Any higher Fuller order gives rise to one of the following moves

(k, 0) −→ (k + 1, 0)
(k, l) −→ (k, l + 1)
(k, l) 99K (k + 2, 0)

To find K (n) we compute
the longest sequence of
moves staying in {k + l ≤ 2n − 1}

Hoarding dependence conditions in {f0 · f1 ”= 0}

If hI1 = 0, . . . , hIk = 0, Q1 = 0, . . . , Ql = 0 are independent
conditions at ⁄(t) then (⁄(t), jN(f0, f1)(q(t))) is in a codimension
k + l set (N large enough).
For k + l larger than 2n ≠ 1 we get a condition on jN(f0, f1) that is
generically nowhere satisfied on M.
Any higher Fuller order gives rise to one of the following moves

(k, 0) ≠æ (k + 1, 0)
(k, l) ≠æ (k, l + 1)
(k, l) 99K (k + 2, 0)

To find K (n) we compute
the longest sequence of
moves staying in {k + l Æ 2n ≠ 1}

(3, 0) (4, 0)

x1 + x2 = 2n � 1



Iterations along C = {f0 ∧ f1 = 0}

Lemma
Let q : [0,T ]→ M trajectory associated with control u. Take
t∞ ∈ [0,T ] such that f1(q(t∞)) ∧ [f0, f1](q(t∞)) 6= 0. Let {ti}i∈N
converge to t∞ and q(ti ) ∈ C for every i ∈ N. Then there exists
ū = limi→∞ 1

t∞−ti

´ t∞
ti

u(τ)dτ and f0(q(t∞)) + ūf1(q(t∞)) = 0.

Ω = {t ∈ [0,T ] | q(t) ∈ C, h1(t) = 0}.
Ω0 isolated points of Ω, Ωk isolated points of Ω \ (⋃k−1

j=0 Ωj).

Lemma
If {ti}i∈N ⊂ Ω \ (⋃k

j=0 Ωj) are such that t∞ = limi→∞ ti and
f1(q(t∞)) ∧ [f0, f1](q(t∞)) 6= 0, then adj

hū
(h1)(λ(t∞)) = 0, for

every 0 ≤ j ≤ k + 2. In particular, generically with respect to
(f0, f1), Ω = Ω0 ∪ · · · ∪ Ωn−2.

This concludes the proof of the single-input result
(K (n) = (n − 1)2)
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Multi-input case

q̇ = f0(q) +
m∑

i=1
ui fi (q) u = (u1, . . . , um) ∈ U

Switching studied for U ball in Agrachev–Biolo 2018
and, in some particular cases, Caillau–Daoud 2012,
Orieux–Roussarie 2019

Fuller phenomenon for U polytope structurally stable for
extremal trajectories
Zelikin–Lokutsievskiy–Hildebrand 2012, 2015

We focus on the case U = B1 = {u | ‖u‖ ≤ 1}



PMP multi-input

For q : [0,T ]→ M time-optimal there exists extremal lift
λ : [0,T ]→ T ∗M such that∑m

i=1 ui (t)〈λ(t), fi (q(t))〉 = maxu∈B1
∑m

i=1 ui〈λ(t), fi (q(t))〉 and
∀X ∈ Vec(M)

d
dt 〈λ(t),X (q(t))〉 = 〈λ(t), [f0,X ](q(t))〉+

m∑
i=1

ui (t)〈λ(t), [fi ,X ](q(t))〉

Define
hI(t) = 〈λ(t), fI(q(t))〉 for I word in {0, . . . ,m}
hm = (h1, . . . , hm)T h0m = (h01, . . . , h0m)T

Hmm = (hij)m
i ,j=1 Goh matrix

PMP implies u(t) = hm(t)/‖hm(t)‖ when hm(t) 6= 0 and

ḣm(t) = h0m(t)− Hmm(t)u(t) a.e. t ∈ [0,T ]



Switching conditions

If t ∈ Σ then hm(t) = 0

Agrachev–Biolo 2018:
t ∈ Σ \ Σ0 =⇒ h0m(t) ∈ Hmm(t)B1

h0m(t) ∈ (Hmm(t)B1) \ (Hmm(t)∂B1) =⇒ t /∈ Σ

Corollary
t ∈ Σ \ Σ0, det(Hmm(t)) 6= 0 =⇒ h0m(t) ∈ Hmm(t)∂B1

Remark: is m is odd then the antisymmetric matrix Hmm is never
invertible, hence det(Hmm(t)) = 0
Assumption. m even
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Main result in the multi-input case

Theorem (Boarotto–C.–Sigalotti, SICON 2020)
M smooth manifold of dimension n, m even, m + 1 ≤ n. There
exist K = K (n) ∈ N and an open and dense set U of

{(f0, . . . , fm) ∈ Vec(M)m+1 |f0(q), . . . , fm(q)
linearly independent ∀q ∈ M}

such that, if (f0, . . . , fm) ∈ U , then every time-optimal trajectory of

q̇ = f0(q) +
m∑

i=1
ui fi (q) ‖u‖ ≤ 1

has at most Fuller times of order K, i.e.,

Σ = Σ0 ∪ · · · ∪ ΣK



Comments on the proof

Role played by the condition h+01 = 0 or h−01 = 0 on Σ \ Σ0
now played by

det(Hmm(t)) = 0 or ‖Hmm(t)−1h0m(t)‖ = 1 t ∈ Σ\Σ0

on {t | det(Hmm(t)) 6= 0}, differentiate the relation
‖Hmm(t)−1h0m(t)‖ = 1 and build up determinants as in
single-input case (each accumulation on Σ −→ a
differentiation)
on {t | det(Hmm(t)) = 0} we have further relation coming for
the annihilation of the minors. Apriori richer informations, but
computations more tricky (rank of Hmm(t) may change)
Roughly: {t | det(Hmm(t)) = 0} split on sets where rank of
Hmm is constant, and the Fuller order is estimated on each set
use lower-semicontinuity of the rank to put together the Fuller
order estimates
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Perspectives and open problems

Single-input

What is the minimal K (n) (for time-extremal and
time-optimal trajectories)? We can show K (n) ≤ (n − 1)2.
Can we at least bound K (n) by a sub-quadratic function in n?
Is optimality of (iterated) Fuller extremals structurally stable?
What can be said for M, f0, f1 analytic?

Multi-input

case m even, u ∈ B1 ⊂ Rm: remove linearly independent
condition
case m odd, u ∈ B1 ⊂ Rm

case u ∈ [−1, 1]m ⊂ Rm or general polytopes


