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Time-optimal trajectories of control-affine systems

m
g=1i(q)+> ufi(q), |ul<1, qeM
i=1
M smooth n-dimensional manifold, u = (u1,..., umn)
fo, ..., fm € Vec(M) — smooth (i.e., C*) vector fields on M

Time optimal problem: q(0) =qo, ¢(T)=q1, T — min



Time-optimal trajectories of control-affine systems

m
g=1i(q)+> ufi(q), |ul<1, qeM
i=1
M smooth n-dimensional manifold, u = (u1,..., umn)
fo, ..., fm € Vec(M) — smooth (i.e., C*) vector fields on M

Time optimal problem: q(0) =qo, ¢(T)=q1, T — min

Regularity of a time-optimal trajectory q : [0, T] — M measured in
terms of maximal domain of smoothness

0= U w, £=[0,T]\O

w open, g|.,, smooth

Is ¥ empty? finite? countable? of finite measure? of empty
interior?



In general: No regularity

(SussMANN - 1986) for ANY t — u(t) € [-1,1] measurable and
any M, qo, there exist fy, fi € Vec(M) such that the admissible
trajectory driven by u and starting at qq is time-optimal for

q = fo(q) + ufi(q)



In general: No regularity Generically: Maybe

(SusSMANN - 1986) for ANY ¢t — u(t) € [—1,1] measurable and
any M, qo, there exist fy, fi € Vec(M) such that the admissible
trajectory driven by u and starting at qq is time-optimal for

q = fo(q) + ufi(q)

Natural question: generic properties, i.e., properties that hold for
all time-optimal trajectories of the control-affine system, provided
that (fo,....f,) belongs to an open and dense subset of
Vec(M)™+L for the C>° Whitney topology



Bang, singular, and Fuller

Definition (Bang and singular arcs)

An arc is a connected component of O. An arc w is said to be
bang if ||u|| =1 (a.e.) on w, and singular otherwise Two arcs are
concatenated if they are separated by a single point (an isolated
point of ¥) which is called a switching time

Definition (Fuller times)

Let X be the set of isolated points in X (switching times) The
elements of X \ ¥ are Fuller times
By recurrence, let

Y 4 set of isolated points of ¥ \ (UJ’-(:_(}ZJ-) k € NU {oco}

If t € X4 then tis a Fuller time of order k

> countable for all kK > 0.



Single-input case: previous results

m For n =2, ¥ is finite generically and for all analytic systems
LoBRY 1970, SUSSMANN 1982, 1987

m Finiteness of ¥ close to points at which some suitable
non-dependence condition between Lie brackets holds
(n=3,4) AGRACHEV, BRESSAN, GAMKRELIDZE,
KRENER, SCHATTLER, S., SUSSMANN,. . ..

m For n large enough time-extremal trajectories of generic
systems might exhibit Fuller phenomenon (#X = c0) Kurka
1990, ZELIKIN-BORISOV 1994, 2004, BORrIisov 1998,
2004

m Generically, for every extremal trajectory g : [0, T] — M, the
set O is dense in [0, T] AGRACHEV 1995

m Generically, for any extremal triple (g(-), u(-), A(-)) such that
(A(t),fi(q(t))) =0o0n [0, T], O is dense in [0, T]
BonNARD-KUPKA 1997 and also of full measure
CHITOUR—JEAN-TRELAT 2008



Main result in the single-input case

Theorem (Boarotto—Sigalotti, ANIHP, 2019)

There exists K(n) € N such that, for a generic pair (fy, f;), every
time-optimal trajectory of

4= fo(q) + ufi(a), qeM, uel-1,1]
has at most Fuller times of order K(n), i.e.,

ZZZOU”-UZK(,,).

m In particular, u can be taken smooth out of a finite union of
discrete sets (hence, out of a countable set)

m as a byproduct of the proof, for (fy, i) generic, for a
trajectory s. t. (A\(t), fi(q(t))) =0, [0, T]\ O countable.



Single-input time-extremal trajectories and the switching

function
By the Pontryagin maximum principle, if g : [0, T] = M is
time-optimal for
q=fo(q)+uh(q) vel-1,1]
then 3 extremal lift A: [0, T] — T*M \ {0} of g(-) such that
() =ho (A(£)) + u(t) b (\() ae. £ €0, T]

where hi(\) = (), fi(q)), i =0,1, and

u(t)(A(1), fila(t))) = [(A(t), A(q(t)))] ae te]0,T]



Single-input time-extremal trajectories and the switching

function

By the Pontryagin maximum principle, if g : [0, T] = M is
time-optimal for
g="folq) +uh(q) wvel-11]
then 3 extremal lift A: [0, T] — T*M \ {0} of g(-) such that
A(t) =ho (A(£)) + u(t) by (\(£)) ae. t€[0,T]

where hi(\) = (), fi(q)), i =0,1, and

u(t){A(t), f(q(t))) = [(A(2), A(q(t)))] a.e. t €0, T]
Equivalently, VX € VecM,
%(A(f%X(q(t)» = (A1), [fo + u(t)f1, X](q(1))) ae tel0,T]
and
() u(t) = sgn((\(t), fi(qg(t)))) a.e. t €0, T] s.t. (A(t), fi(q(t))) #0
(*) = First feedback expression of u(-) in terms of (fy, f1).



Switching function

Let fx = fo = f1 and, for | = (i1 - - - i) word with letters in
{+7_a07 1}

fi = [fi17 ) [fik—17 fi ] o ']7 hl(t) = <)‘(t): fl(q(t)»
The PMP implies

hi(t) = hoi(t) + u(t)hy(t)  ae te[0,T]



Switching function

Let fx = fo = f1 and, for | = (i1 - - - i) word with letters in
{+7_307 1}

fi = [fiv ) [fik—17 fi ] o ']7 hl(t) = <)‘(t): fl(q(t)»
The PMP implies
hi(t) = hoi(t) + u(t)hy(t)  ae te]0,T]

In particular, for
hi(t) = (A(t), fi(q(1))) switching function

we have
b (t) = ho1(t) vt € [0, T]
hi(t) = hoo1(t) + u(t)h1o1(t) ae tel0,T]

Bonnard—Kupka 1997: generically, if h; = 0, then h191(t) # 0 and
(*x) u(t) = —hoo1(t)/h101(t) a.e. t € O.

(**) = Second feedback expression of u(-) in terms of (fo, f1).
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m At switching times h; = 0 and more generally h;|y =0
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Strategy of the proof

m At switching times h; = 0 and more generally h;|y =0

m Points in X\ ¥ are accumulations of points where h; = 0
— hy = hop vanishes on ¥\ Xo (h; € CY)

m Higher order Fuller times are accumulations of accumulations
and new relations between A(t) and the brackets of f(q(t))
and f1(q(t)) can be derived
Initialization on X \ 20 (O =h =hp=.. )

Recursion ¥\ UlL,T; — ¥\ UIHIE;

m At high order Fuller times (\(t), (o, f1)( (t))) belongs to a
set of large codimension in T;(t)/\/l X Jq(t)M x J (t)l\/l where
N large and JYM is the bundle of N—jets of vector fields on M

m The projection 7(A) on Jq(t)M x J (t)l\/l of a set A of large
codimension has itself large codimension

m Fuller times of too large order can be ruled out by Thom's
transversality theorem

(fo, 1) generic = j"(fo, fi)(q) & n(A) Vg € M



Initialization: dependence conditions on X\ X

Proposition (No genericity assumption here)

Lett € ¥\ Xp.

Then hy1(t) = ho1(t) = 0 and, in addition, either hio1(t) =0 or
h_01(t) =0.




Initialization: dependence conditions on X\ X

Proposition (No genericity assumption here)

Lett € ¥\ Xp.
Then hi(t) = ho1(t) = 0 and, in addition, either hyo1(t) =0 or
h_01(t) =0.

m if a bang arc B is a concatenated to a singular arc S then

hyo1 or h_g1 vanishon BU S
h()l (T) = 0

ho1 =0 /\

51 / t \ 52

singular arc bang arc

m By this kind of reasoning we can reduce the problem to the
case where t is the limit of an infinite sequence of
concatenated bang arcs — next slide



Infinitely many concatenated bang arcs

Lemma

Assume 3 infinite sequence of concatenated bang arcs converging
toT € [0, T]. Then either hyo1(7) =0 or h_p1(7) = 0.

Lengths of subsequent bang arcs {7;};en. )
Proof by contradiction: if hio1(7)h-01(7) # 0, then |h| > Co > 0
on bang arcs because h; = ahyo1 + (1 — a)h_o1
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hi(ti) = O(7:), hi(ti +7;) = —hi(t;) + O(77)

B Tiy1 = O(T,')



Infinitely many concatenated bang arcs

Lemma

Assume 3 infinite sequence of concatenated bang arcs converging
toT € [0, T]. Then either hyo1(7) =0 or h_p1(7) = 0.

Lengths of subsequent bang arcs {7;}en.

Proof by contradiction: if hyo1(7)h_o1(7) # O, then |hy| > Co > 0
on bang arcs because h; = ahyor + (1 — a)h_p1

Then

m if (¢, t; + 7;) is a bang arc then

hi(ti) = O(7:), hi(ti +7;) = —hi(t;) + O(77)

B Tiy1 = O(T,')
BT =T+ O(T,-z)



Infinitely many concatenated bang arcs

Lemma

Assume 3 infinite sequence of concatenated bang arcs converging
toT € [0, T]. Then either hyo1(7) =0 or h_p1(7) = 0.

Lengths of subsequent bang arcs {7;}en.

Proof by contradiction: if hyo1(7)h_o1(7) # O, then |hy| > Co > 0
on bang arcs because h; = ahyor + (1 — a)h_p1

Then

m if (¢, t; + 7;) is a bang arc then

h(t;) = O(r), h(ti +7) = —h(t:) + O(77)
B Tiy1 = O(T,')

B T2 =1 + O(7?)

B T >3, 7 = 400, contradiction.



Recursion ¥\ UK Y, — ¥\ UG,

T\UKE oty » te T\ ULGY;
h, b words with letters in {—|— ,0,1}, length(h) <length(l),

h’l(tn) =0= h’z(tn) — h’l(t) =0= hlz(t)



Recursion ¥\ UK Y, — ¥\ UG,

T\UKE oty » te T\ ULGY;
h, b words with letters in {—|— ,0,1}, length() <length(l),
hy (tn) = 0 = hy,(ta) — hy,(t) =0 = hy(t)
Up to subsequences
1
t—t,
Then, for j =1,2,

hy(t) — hy(tn) [ (hoiy(s) + u(s)hiy(s))ds
t—t, N t—t,

/tu(s)ds—> iel-1,1].

0=

— h()/j(t)—i-L_lhl/j(t).



Recursion ¥\ UK Y, — ¥\ UG,

T\UKE oty » te T\ ULGY;
h, b words with letters in {—|— ,0,1}, length(h) <length(l),

h’l(tn) =0= h’z(tn) — h’l(t) =0= hlz(t)
Up to subsequences

1
t—t,
Then, for j =1,2,

hy () — hy(ta) Je.(hoiy(s) + u(s)hi(s))ds

/t u(s)ds — @ € [1, 1].

= hoy (t)+uhy(t).
0 t—t, t—t, = hoy (£)+Th1 ()

m |U] =1— new word J = £/ of longer length with h,(t) =0

B U] <1& bh=x%h, x€{+,—} — can replace h, = 0 with

2 indep. conditions hg;, = 0 = hyj, (as in initialization step)

_ B hon (t)  hu(t)\ _
m |U] <1 & length(/y)=length(lh) — det <h0,2(t) h1/2(t)) =0



Generating new conditions

hi, ... hy,

2 < length(I;;) > length(Z;),

h11-, sy hltﬁ»l

length(;y1) > length(Iy), ..., length(I)

h]17...,h]k+1

length(Iy, 1) = length(I;)

h/hv B h’Ik+1

length(Z;4+1) = length ()

hr, ..

'7h’k\2

length(Z;42) > length(ly), ..., length(lx1)

ho,, ..

Q1 = det ( hor,

i hItc«H 3 Ql

g,

h01k+1 hl[k+l

)




Generating more conditions

h117"'ah1k7Q17"'7Ql+1

hI17"'7hIk7Ql7"'7Ql Ql ) — det hOIk hllk
" {ho, Qi {ha, i}

hiyeo s b

hlly"'vhfklea"'le

h1k+1 - hOI}cv hlk+2 - hl[k




Generating more conditions

hI17"'ahIk7Q17"'7Ql+1

h117"'7h1k7Q17"'7Ql hOI hl]
:dt k k
Quia = de ({ho,Qz} {’n,Qz})

hiy ooy hi

hlly"'vhfklea"'7Ql

h1k+1 - hOIkv hIk+2 - hl[k

Two reasons for losing dependence:
m gy, = 0 = hyy: all determinants @y, ..., Q1 vanish
m fy A\ fi = 0: conditions on lower order jets
e.g., if fo(q) = 0 then [fo,[fo,- .., [fo, fi] - -](q) only depends
on fi(q) and Dfy(q)



Hoarding dependence conditions in {fy A f; # 0}

If hy =0,...,h,=0,Q =0,...,Q =0 are independent
conditions at A(t) then (\(t),jV(f, f1)(q(t))) is in a codimension

k + I set (N large enough).

generically nowhere satisfied on M.

For k + I larger than 2n — 1 we get a condition on jV(fy, 1) that is

Any higher Fuller order gives rise to one of the following moves

w (k,0) — (k+1,0)
w (k1) — (k[ +1)
m (k1) > (k +2,0)

To find K(n) we compute
the longest sequence of

moves staying in {k +/<2n—1}

1 +x2=2n—1
\

\ \
\ ' vy
\ \ vy
\ \ \ \ \
\ \ \ \
| \ \ \J \\
(3,0) (4,0) '




lterations along C = {fy A L = 0}

Let g : [0, T] — M trajectory associated with control u. Take

to € [0, T] such that fi(q(ts)) A [fo, 1](q(t0)) # 0. Let {ti}ien
converge to ts, and q(t;) € C for every i € N. Then there exists

0 = limjo0 g fo u(7)dT and fo(q(t0)) + Tf(q(tes)) = 0.



lterations along C = {fy A L = 0}

Lemma

Let g : [0, T] — M trajectory associated with control u. Take

tso € [0, T] such that fi(q(tso)) A [fo, fi](q(tx)) # 0. Let {ti}ien
converge to ts, and q(t;) € C for every i € N. Then there exists

U= limjs0 ﬁ tlt,°° u(T)dTt and fy(q(tss)) + U (q(tss)) = 0.

Q={te[0,T]|q(t) €C, m(t)=0}.
Qg isolated points of 2, Qy isolated points of Q\ (UJ’-‘:_O1 Q).

Lemma
If {ti}ien C Q\ (Ujlf:o ;) are such that ty, = lim;_ t; and

fi(q(te)) A [fo, Ail(4(teo)) # 0, then ad, (m)(A(tc)) = 0, for
every 0 < j < k+ 2. In particular, generically with respect to

(fE)’ﬁ.)rQ:QOU"'UQn—Z-

This concludes the proof of the single-input result

(K(n)=(n—1)?)



Multi-input case

g=rfo(q)+Y uifila) u=(u1,...,um) €U
i=1

m Switching studied for U ball in AGRACHEV-BI10LO 2018
and, in some particular cases, CAILLAU-DAOUD 2012,
ORIEUX—ROUSSARIE 2019

m Fuller phenomenon for U polytope structurally stable for
extremal trajectories
ZELIKIN-LOKUTSIEVSKIY-HILDEBRAND 2012, 2015

We focus on the case U= By = {u | ||u]| <1}



PMP multi-input

For g : [0, T] — M time-optimal there exists extremal lift
A: [0, T] = T*M such that

>y ui(t)(A(t), fi(q(t))) = maxuep, 327Lq ui{A(t), fi(q(t))) and

VX € Vec(M)
%(A(t),x(q(tm = (A1), [ﬂ),X](q(t))Hi_n: ui(t)(A(t), [fi, X](q(t)))
Define

8 hy = (hy,..., hm)™  hom = (hot,- .-, hom) "
B Hom = (hU)szl Goh matrix
PMP implies u(t) = hm(t)/||hm(t)|| when hyn(t) # 0 and

hm(t) = hom(t) — Hmm(t)u(t)  ae. t € [0, T]



Switching conditions

If t € X then hym(t) =0



Switching conditions

If t € X then hym(t) =0

AGRACHEV—BIOLO 2018:
mtex \ Yo = hOm(t) € Hmm(t)Bl



Switching conditions

If t € X then hym(t) =0
AGRACHEV-BIOLO 2018:
BteX\ Xy = hom(t) € Hum(t)B1
B hom(t) € (Hmm(t)B1) \ (Hmm(t)0B1) = t ¢ ¥

Corollary
t € X\ X, det(Hmm(t)) # 0 = hom(t) € Hmm(t)0B1

REMARK: is m is odd then the antisymmetric matrix Hpym is never
invertible, hence det(Hmm(t)) =0



Switching conditions

If t € X then hym(t) =0
AGRACHEV-BIOLO 2018:
BteEX\Xy = hom(t) € Ham(t)B1
B hom(t) € (Hmm(t)B1) \ (Hmm(t)0B1) = t ¢ ¥

Corollary
t € X\ X, det(Hmm(t)) # 0 = hom(t) € Hmm(t)0B1

REMARK: is m is odd then the antisymmetric matrix Hpym is never
invertible, hence det(Hmm(t)) =0

ASSUMPTION. m even



Main result in the multi-input case

Theorem (Boarotto—C.—Sigalotti, SICON 2020)

M smooth manifold of dimension n, m even, m+ 1 < n. There
exist K = K(n) € N and an open and dense set U of

{(for-. . fm) € Vec(M)™ |fo(q).. .., fin(q)
linearly independent Vq € M}

such that, if (fy,...,fm) € U, then every time-optimal trajectory of

g=folq) + Y uifi(a) ul <1
i=1

has at most Fuller times of order K, i.e.,

Y=%pU---Ukg



Comments on the proof

= Role played by the condition hyg1 =0 or h_p1 =0o0n X\ X
now played by

det(Ham(t)) =0  or  [[Hom(t) thom(t)][ =1  t€ X\
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Comments on the proof

= Role played by the condition hyg1 =0 or h_p1 =0o0n X\ X
now played by

det(Hum(t)) =0  or  [[Hmm(t) thom(t)[| =1  t€ X\

m on {t | det(Hmm(t)) # 0}, differentiate the relation
| Hmm (t) "*hom(t)|| = 1 and build up determinants as in
single-input case (each accumulation on ¥ — a
differentiation)

m on {t | det(Hmm(t)) = 0} we have further relation coming for
the annihilation of the minors. Apriori richer informations, but
computations more tricky (rank of Hmm(t) may change)

m Roughly: {t | det(Hmm(t)) = 0} split on sets where rank of
Hpmm is constant, and the Fuller order is estimated on each set

m use lower-semicontinuity of the rank to put together the Fuller
order estimates



Perspectives and open problems

SINGLE-INPUT

® What is the minimal K(n) (for time-extremal and
time-optimal trajectories)? We can show K(n) < (n—1)2.
Can we at least bound K(n) by a sub-quadratic function in n?

m Is optimality of (iterated) Fuller extremals structurally stable?
m What can be said for M, fy, fi analytic?

MULTI-INPUT

m case m even, u € By C R™: remove linearly independent
condition

m case modd, ue By C R™

m case u € [—1,1]™ C R™ or general polytopes



