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Linear switched systems and their Lyapunov
exponents




Linear switched systems

Consider a switched system on RY of the type
x = A(t)x, A()eS ()

S class of signals from R to some set S C My(R).
Examples:
m So={A:R — S| A piecewise constant} — arbitrary
switching
S, ={A:R—> S|
A piecewise constant, discontinuities at distance > 7} —
switching with (guaranteed) dwell-time 7

m other classes can be introduced in terms of average dwell-time
constraints, persistence of excitation, Lipschitz constraints,

Crucial property of switched systems: uniform asymptotic stability
with respect to A€ S



Measures of stability of linear switched systems

A €S — fundamental matrix ®4(+) solution to
d

Ech(t) = A(t)ch(t)’ cI)A(O) = Idqg

m S-attractive: ®4(t) — 0 for every A€ S
m S-uniform exponential stability: 3C,A > 0s.t. VAe S

|Pa(t)]| < Ce ™, Vt>0 (%)



Measures of stability of linear switched systems

A €S — fundamental matrix ®4(+) solution to
d
ad)A(t) = A(t)d)A(t), cDA(O) = Idy
m S-attractive: ®4(t) — 0 for every A€ S
m S-uniform exponential stability: 3C,A > 0s.t. VAe S
[Pa(t)| < Ce™™, Vt>0 (%)

m uniform exponential rate:

| O
A(S) = limsup sup log(l[®a()}) =inf{\ | 3C s.t. (x) VA € S}
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m S-uniform exponential stability < A(S) < 0



Measures of stability of linear switched systems

A €S — fundamental matrix ®4(+) solution to
d
ad)A(t) = A(t)d)A(t), cDA(O) = Idy
m S-attractive: ®4(t) — 0 for every A€ S
m S-uniform exponential stability: 3C,A > 0s.t. VAe S
[Pa(t)| < Ce™™, Vt>0 (%)

m uniform exponential rate:
I O
A(S) = limsup sup M =inf{\ | 3C s.t. (x) VA € S}
t—+oo AES t

m S-uniform exponential stability < A(S) < 0
m maximal Lyapunov exponent:

A(S) = sup limsup PBULAON ey vac s 3¢ st (1))
AES t—+00 t

= A(S) < A(S)



Equality between A\(S;) and A(S;)

Lemma (Fenichel)

Let S =S; for T > 0. Then (X) is S-attractive if and only if it is
S-uniformly exponentially stable

Corollary

For every 7 > 0, A(S7) = A(Sr)

|

From now on

OUR AIM: give a useful characterization of \-(S)



Probabilistic Lyapunov exponents for Piecewise

Deterministic Markov Processes (PDMP)

Let S={1,...,N} and Q = (qy)mzl be Markov transition matrix
(95 >0, YLy g5 =1)
A trajectory is a random variable, as well as its switching law
(ik, tk)ken:
m the initial index i1 in S is a random variable
m transition A; — A; _, at time t, with probability gj;, ,
m we can introduce a dwell-time:

0 ifo <t
v[le(t=T)dt if >

P({tir1 — t < 0}) = {
m duration of each interval between switching times:

0
P({ters — te < 0)) = v / Vit
0

Furstenberg—Kesten theorem: if Q is strongly connected, then,
with probability one Jlim¢ o 1| ®a(t)] = v+ (5.1, Q)



Invariant control sets of general nonlinear systems




Invariant control sets

M manifold, F family of smooth complete vector fields on M
f(-) € Fo piecewise constant with values in F, g initial condition
— solution t — ¢(t,q,f)

Attainable set from g € M: A(q) = {é(t,q,f) |t >0, f € Fo}

Definition
() # D C M invariant control set (ICS) if D = A(q) for every g € D

EXAMPLE: A, ...,Am € Mg(R), xq,...,xm € RY.
If

m x = Ajy)x is asymptotically stable
(with arbitrary switching)

then

A(Xl) = mQ;é(Z) compact invariant Q
is a ICS for x = A,-(t)(X — Xi(t))




Existence of invariant control sets

Theorem (see, e.g., Colonius—Kliemann, 2000)

Let M be compact. For each q € M there exists a nonempty ICS

D, contained in A(q). Assume, moreover, that F has the Lie
algebra rank condition (LARC). Then

m Dy has nonempty interior

m there exists €; C Dy open and dense in Dg such that
A(q') = &, for every ' € &4

m there exist finitely many distinct ICS

m existence by Zorn lemma: A(q’) C A(q) if ¢ € A(q)

m nonempty interior by Krener theorem (Dg = A(q’) for
q' € Dq)




Invariant control sets for projected linear
switched systems and periodization




Some link between linear switched systems and invariant

control sets

Interesting properties on the behavior of a linear switched system
can be deduced from its angular component:

x(t) — ([Ix(B)], [x()]) =: (r(t), s(£)) € (0, +00) x RP4~*

Using local identification [x] = ”i—” X = Ax can be rewritten as

; = (s, As), §=(A—(s,As)ldg)s =: (m.A)s

(7%) projected linear system on RP9~! associated with F := 7,S



Some link between linear switched systems and invariant

control sets

Interesting properties on the behavior of a linear switched system
can be deduced from its angular component:

x(t) — ([Ix(B)], [x()]) =: (r(t), s(£)) € (0, +00) x RP4~*

Using local identification [x] = ”i—” X = Ax can be rewritten as

; = (s, As), §=(A—(s,As)ldg)s =: (m.A)s

(7Y) projected linear system on RPY~! associated with F := 7, S

m [ARNOLD, KLIEMANN, OELJEKLAUS, 1986] — if F LARC
on RP9~1, then (7X) has a unique ICS D and int(D) # 0
m [CoroNIus, KLIEMANN, 1993] — if F LARC on RP91,
then X\o(S) is equal to
log(||Pa(t
A5 (S) == sup {Iim sup log(l[®a(t)xll)

t—+00

| A€ So, (A(), 70 a(-)0) periodic}

m For PDMP ICSs characterize support of invariant measures
[BENAIM, COLONIUS, LETTAU, 2017]



Interest of periodization

The identity Ao(S) = A7 (S):

m provides a monotone finite horizon approximation scheme
m proves the Gelfand-like formula

Ao(S) = limsup  sup M

t—+400 AESy, x0#0 t

with p spectral radius
m can be used to show continuity of S — Ao(S)

m first introduced to bound large deviations for Piecewise
Deterministic Markov Processes [ARNOLD, KLIEMANN,
1987]



Periodization (proof by Colonius and Kliemann)

Ao(S) = sup {Iim sup M

t—-+o00 t

|A€So, Xo#O}

| Da(t
AN(S) = sup {Iim sup M | A€ So, (A(-), 7Pa(-)x0) periodic}
t—+400
Let x(t) = ®a(t)xo be (quasi-)maximizing for Ag(S)
In order to prove that A§(S) > A\o(S) — € we should be able to
close the loop and, for t large, use (7X) to go from [x(t)] to [xo]



Periodization (proof by Colonius and Kliemann)

Ao(S) = sup {Iim sup M

t—-+o00 t

|A€So, Xo#O}

| Da(t
AN(S) = sup {Iim sup M | A€ So, (A(-), 7Pa(-)x0) periodic}
t—+400
Let x(t) = ®a(t)xo be (quasi-)maximizing for Ag(S)
In order to prove that A§(S) > A\o(S) — € we should be able to
close the loop and, for t large, use (7X) to go from [x(t)] to [xo]

m Step 1: Choose xg appropriately. Take D the unique ICS for
(7X), fix va,..., vq linearly independent in intD. Since
M| = max¢_; | Mv;|| is a norm on My(R), we can take as xp
one of the v;

m Step 2: guarantee that there exist a uniform controllability

time T for driving (7X) from any point in D to any of the v;
within time T



Dwell-time invariant control sets for general
nonlinear systems




Goal: extend control sets analysis to the dwell-time case

m The definition of invariant control sets does not suit the
dwell-time case (invariance fails to see dwell-time)

m Mathematically, the difficulty come from non-concatenability
of the class of admissible signals

m Equivalently, the family of admissible flows is not a semigroup

m Idea: recover main geometric properties by looking not at
attainable sets (built with entire trajectories issuing from a
point) but only at points which are attainable in a
concatenable manner

Dwell-time attainable set: A-(q) = {¢(T,q,f) | fljo,7] € Fr}
with

Fr = {fix - xfp | m € N, f; constant on a interval of length > 7}

Note: F. not shift invariant!



Semigroups of concatenable flows
G, = {¢(Ta K f) ’ f’[O,T] € ]:T}

Then A-(q) = &,(q).

D is a dwell-time invariant control set (7-1CS) if D = A-(q) for
every g € D.

Remark

[SAN MARTIN, 1993] already studied control sets for orbits of not
necessarily connected semigroups, in a setting which does not
directly applies here (semigroup with nonempty interior in a Lie
group G and action on some X/G)



Basic properties of dwell-time attainable and control sets

Theorem

Let M be compact, T > 0. For each q € M there exists a T-ICS Dy
contained in A;(q). If, moreover, F has the LARC, then intDg # ()

Remark: if there exists g such that g € Dy for every g € M, then
there exists a unique 7-ICS (= A,(g))

Lemma
Let F satisfy LARC and assume that D C M is a 7-ICS. Then
(i) int(D) = D
(ii) ®(int(D)) C int(D) for every ¢ € &,
(iii) There exists an open and dense subset € of D such that
C=6,(q) forallqge ¢



Dwell-time invariant control sets and linear
switched systems with dwell-time




Example of dwell-time control set for projected linear

switched system

[ \\\
\C/ f

fi, f» vector fields on RP!, conjugate to x = (8 (1)> )

A :=e"(B), B :=¢e"(A)

s D=AAUBB unique 7-1CS
m if 7, is such that e™1(B) = e™"(A) then

r<7.— D=AB; 1>7. — D disconnected
= ¢ = int(AA") Uint(B'B) (# intD for 7 = 7,)

| FUN—




Periodization without LARC condition

Theorem (F. Boarotto, M.S., JDE, to appear)
Let S C Myg(R) and 7 > 0. Then A-(S) = A2*(S)

Idea: restrict the projected system to some orbit for the family 7, S
O([x0]) = {[x(t)] | x = A(t)x, x(0) = xo, A(t) € SU -5}
(M, F) = (O([xo]), 75)
ADVANTAGES
m O([x0]) has the structure of smooth manifold (Orbit theorem)
m LARC of the system restricted to M is for free



Periodization without LARC condition

Theorem (F. Boarotto, M.S., JDE, to appear)
Let S C My(R) and 7 > 0. Then A-(S) = AL*(S)

Idea: restrict the projected system to some orbit for the family 7, S
O([x]) = {[x(8)] | X = A(t)x, x(0) = x0. A(t) € SU-S5}
(M, F) = (O([xo]), 75)
ADVANTAGES
m O([x0]) has the structure of smooth manifold (Orbit theorem)
m LARC of the system restricted to M is for free

DIFFICULTIES

m we should guarantee that the orbit carries all informations
about asymptotic behavior — reduction to irreducible case

m existence of 7-ICS requires compactness of orbits



Existence of a closed orbit

Theorem

Let B be the group generated by {e” |t € R, j=1,...,m} (any
connected Lie subgroup of GL(R, d)). Then the action

bx
@:BxSTl 5897 p(b,x) = 0\
|[6x]]

induced by B on the (d — 1)-dimensional unit sphere S9~1 ¢ RY
admits at least one closed orbit in S°~! (and the same is true for
R]Pd_l)

Existence (and even uniqueness) of 7-ICS is obtained and
Colonius—Kliemann's periodization argument can be performed,
proving A-(S) = A2¥(S)



Conclusions and perspectives

m We proved that the maximal Lyapunov exponent of linear
switched systems with dwell-time can be characterized using
only trajectories with periodic angular component (new also in
the case 7 = 0 when the LARC does not hold)
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Conclusions and perspectives

m We proved that the maximal Lyapunov exponent of linear
switched systems with dwell-time can be characterized using
only trajectories with periodic angular component (new also in
the case 7 = 0 when the LARC does not hold)

m this gives an alternative prove of the Gelfand formula and of
the continuity of maximal Lyapunov exponent with respect to
the family of matrices and the dwell-time [WirTH, 2005]

m existence of a compact orbit for a projected linear system
could be useful for other control problems

m 7-ICS to characterizes support of the invariant measure for
piecewise deterministic random process with dwell time

m Ongoing work: adapt our technique to a more abstract setting
applying to other non-concatenable classes of switching signals
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