Dwell-time control sets and applications to the stability analysis of linear switched systems

Mario Sigalotti

Inria team CAGE & Laboratoire Jacques-Louis Lions

in collaboration with F. Boarotto (Università di Padova, Italy)

Journée CAGE-McTAO Inria Sophia Antipolis, 9/12/2019

- 1 Linear switched systems and their Lyapunov exponents
- 2 Invariant control sets of general nonlinear systems
- 3 Invariant control sets for projected linear switched systems and periodization
- 4 Dwell-time invariant control sets for general nonlinear systems
- 5 Dwell-time invariant control sets and linear switched systems with dwell-time

Linear switched systems and their Lyapunov exponents

Consider a switched system on \mathbb{R}^d of the type

$$\dot{x} = A(t)x, \qquad A(\cdot) \in \mathcal{S}$$
 (Σ)

 \mathcal{S} class of signals from \mathbb{R} to some set $S \subset M_d(\mathbb{R})$. Examples:

- $S_0 = \{A : \mathbb{R} \to S \mid A \text{ piecewise constant}\} \longrightarrow \text{arbitrary switching}$
- $\bullet S_{\tau} = \{A : \mathbb{R} \to S \mid$

A piecewise constant, discontinuities at distance $\geq \tau \} \longrightarrow$ switching with (guaranteed) dwell-time τ

 other classes can be introduced in terms of average dwell-time constraints, persistence of excitation, Lipschitz constraints,

Crucial property of switched systems: uniform asymptotic stability with respect to $A \in S$

Measures of stability of linear switched systems

 $A \in \mathcal{S} \longrightarrow$ fundamental matrix $\Phi_A(\cdot)$ solution to

$$rac{d}{dt} \Phi_A(t) = A(t) \Phi_A(t), \quad \Phi_A(0) = \mathrm{Id}_d$$

• S-attractive: $\Phi_A(t) \rightarrow 0$ for every $A \in S$

• S-uniform exponential stability: $\exists C, \lambda > 0 \text{ s.t. } \forall A \in S$

$$\|\Phi_A(t)\| \leq Ce^{-\lambda t}, \quad \forall t \geq 0$$
 (*)

Measures of stability of linear switched systems

 $A \in \mathcal{S} \longrightarrow$ fundamental matrix $\Phi_A(\cdot)$ solution to

$$\frac{d}{dt}\Phi_A(t) = A(t)\Phi_A(t), \quad \Phi_A(0) = \mathrm{Id}_d$$

• S-attractive: $\Phi_A(t) \rightarrow 0$ for every $A \in S$

• S-uniform exponential stability: $\exists C, \lambda > 0 \text{ s.t. } \forall A \in S$

$$\|\Phi_{\mathcal{A}}(t)\| \leq Ce^{-\lambda t}, \quad \forall t \geq 0$$
 (*)

uniform exponential rate:

$$\lambda(\mathcal{S}) = \limsup_{t \to +\infty} \sup_{A \in \mathcal{S}} \frac{\log(\|\Phi_A(t)\|)}{t} = \inf\{\lambda \mid \exists C \text{ s.t. } (\star) \forall A \in \mathcal{S}\}$$

• S-uniform exponential stability $\Leftrightarrow \lambda(S) < 0$

Measures of stability of linear switched systems

 $A \in \mathcal{S} \longrightarrow$ fundamental matrix $\Phi_A(\cdot)$ solution to

$$\frac{d}{dt}\Phi_A(t) = A(t)\Phi_A(t), \quad \Phi_A(0) = \mathrm{Id}_d$$

• S-attractive: $\Phi_A(t) \rightarrow 0$ for every $A \in S$

• S-uniform exponential stability: $\exists C, \lambda > 0 \text{ s.t. } \forall A \in S$

$$\|\Phi_{\mathcal{A}}(t)\| \leq Ce^{-\lambda t}, \quad \forall t \geq 0$$
 (*)

uniform exponential rate:

$$\lambda(\mathcal{S}) = \limsup_{t \to +\infty} \sup_{A \in \mathcal{S}} \frac{\log(\|\Phi_A(t)\|)}{t} = \inf\{\lambda \mid \exists C \text{ s.t. } (\star) \forall A \in \mathcal{S}\}$$

- S-uniform exponential stability $\Leftrightarrow \lambda(S) < 0$
- maximal Lyapunov exponent:

$$\widehat{\lambda}(\mathcal{S}) = \sup_{A \in \mathcal{S}} \limsup_{t \to +\infty} \frac{\log(\|\Phi_A(t)\|)}{t} = \inf\{\lambda \mid \forall A \in \mathcal{S}, \exists C \text{ s.t. } (\star) \}$$
$$\widehat{\lambda}(\mathcal{S}) \le \lambda(\mathcal{S})$$

Lemma (Fenichel)

Let $S = S_{\tau}$ for $\tau \ge 0$. Then (Σ) is S-attractive if and only if it is S-uniformly exponentially stable

Corollary

For every
$$au \geq 0$$
, $\lambda(\mathcal{S}_{ au}) = \widehat{\lambda}(\mathcal{S}_{ au})$

From now on

$$\lambda_{ au}(S) := \lambda(S_{ au})$$

OUR AIM: give a useful characterization of $\lambda_{ au}(S)$

Probabilistic Lyapunov exponents for Piecewise Deterministic Markov Processes (PDMP)

Let $S = \{1, ..., N\}$ and $Q = (q_{ij})_{i,j=1}^N$ be Markov transition matrix $(q_{ij} \ge 0, \sum_{j=1}^N q_{ij} = 1)$ A trajectory is a random variable, as well as its switching law $(i_k, t_k)_{k \in \mathbb{N}}$:

- the initial index *i*¹ in *S* is a random variable
- transition $A_{i_k} \rightarrow A_{i_{k+1}}$ at time t_k with probability $q_{i_k i_{k+1}}$

we can introduce a dwell-time:

$$P(\{t_{k+1} - t_k \le \theta\}) = \begin{cases} 0 & \text{if } \theta < \tau \\ \nu \int_{\tau}^{\theta} e^{-\nu(t-\tau)} dt & \text{if } \theta \ge \tau \end{cases}$$

duration of each interval between switching times:

$$P(\{t_{k+1}-t_k\leq\theta\})=\nu\int_0^\theta e^{-\nu t}dt$$

Furstenberg–Kesten theorem: if Q is strongly connected, then, with probability one $\exists \lim_{t\to\infty} \frac{1}{t} \|\Phi_A(t)\| = \chi_\tau(S, \nu, Q)$

Invariant control sets of general nonlinear systems

Invariant control sets

M manifold, *F* family of smooth complete vector fields on *M* $f(\cdot) \in \mathcal{F}_0$ piecewise constant with values in *F*, *q* initial condition \longrightarrow solution $t \mapsto \phi(t, q, f)$

Attainable set from $q \in M$: $A(q) = \{\phi(t, q, f) \mid t \ge 0, f \in \mathcal{F}_0\}$

Definition

 $\emptyset \neq D \subset M$ invariant control set (ICS) if $D = \overline{A(q)}$ for every $q \in D$

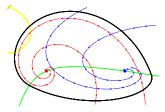
EXAMPLE:
$$A_1, \ldots, A_m \in M_d(\mathbb{R}), x_1, \ldots, x_m \in \mathbb{R}^d$$
.
If

 ẋ = A_{i(t)}x is asymptotically stable (with arbitrary switching)

then

$$\overline{A(x_1)} = \bigcap_{\Omega \neq \emptyset \text{ compact invariant }} \Omega$$

is a ICS for $\dot{x} = A_{i(t)}(x - x_{i(t)})$



Theorem (see, e.g., Colonius-Kliemann, 2000)

Let M be compact. For each $q \in M$ there exists a nonempty ICS D_q contained in $\overline{A(q)}$. Assume, moreover, that F has the Lie algebra rank condition (LARC). Then

- D_q has nonempty interior
- there exists $\mathfrak{C}_q \subset D_q$ open and dense in D_q such that $A(q') = \mathfrak{C}_q$ for every $q' \in \mathfrak{C}_q$
- there exist finitely many distinct ICS
- existence by Zorn lemma: $\overline{A(q')} \subset \overline{A(q)}$ if $q' \in \overline{A(q)}$

• nonempty interior by Krener theorem $(D_q = \overline{A(q')})$ for $q' \in D_q)$

Invariant control sets for projected linear switched systems and periodization

Some link between linear switched systems and invariant control sets

Interesting properties on the behavior of a linear switched system can be deduced from its angular component: $x(t) \longrightarrow (||x(t)||, [x(t)]) =: (r(t), s(t)) \in (0, +\infty) \times \mathbb{RP}^{d-1}$ Using local identification $[x] = \frac{x}{||x||}, \dot{x} = Ax$ can be rewritten as

$$\frac{\dot{r}}{r} = \langle s, As \rangle, \qquad \dot{s} = (A - \langle s, As \rangle \mathrm{Id}_d)s =: (\pi_*A)s$$

 $(\pi\Sigma)$ projected linear system on \mathbb{RP}^{d-1} associated with $F:=\pi_*S$

Some link between linear switched systems and invariant control sets

Interesting properties on the behavior of a linear switched system can be deduced from its angular component: $x(t) \longrightarrow (||x(t)||, [x(t)]) =: (r(t), s(t)) \in (0, +\infty) \times \mathbb{RP}^{d-1}$ Using local identification $[x] = \frac{x}{||x||}, \dot{x} = Ax$ can be rewritten as

$$\frac{r}{r} = \langle s, As \rangle, \qquad \dot{s} = (A - \langle s, As \rangle \mathrm{Id}_d)s =: (\pi_*A)s$$

 $(\pi\Sigma)$ projected linear system on \mathbb{RP}^{d-1} associated with $F := \pi_*S$

- [ARNOLD, KLIEMANN, OELJEKLAUS, 1986] \longrightarrow if *F* LARC on \mathbb{RP}^{d-1} , then $(\pi\Sigma)$ has a unique ICS *D* and $int(D) \neq \emptyset$
- [COLONIUS, KLIEMANN, 1993] \longrightarrow if F LARC on \mathbb{RP}^{d-1} , then $\lambda_0(S)$ is equal to

$$\lambda_0^{ ext{per}}(\mathcal{S}) := \sup\left\{\limsup_{t o +\infty} rac{\log(\|\Phi_\mathcal{A}(t)x_0\|)}{t} \mid \mathcal{A} \in \mathcal{S}_0, \; (\mathcal{A}(\cdot), \pi \Phi_\mathcal{A}(\cdot)x_0) \; ext{periodic}
ight\}$$

 For PDMP ICSs characterize support of invariant measures [BENAÏM, COLONIUS, LETTAU, 2017] The identity $\lambda_0(S) = \lambda_0^{\text{per}}(S)$:

- provides a monotone finite horizon approximation scheme
- proves the Gelfand-like formula

$$\lambda_0(\mathcal{S}) = \limsup_{t \to +\infty} \sup_{\mathcal{A} \in \mathcal{S}_0, \, x_0
eq 0} rac{\log(
ho(\Phi_{\mathcal{A}}(t)))}{t}$$

with ρ spectral radius

- can be used to show continuity of $S \mapsto \lambda_0(S)$
- first introduced to bound large deviations for Piecewise Deterministic Markov Processes [ARNOLD, KLIEMANN, 1987]

Periodization (proof by Colonius and Kliemann)

$$\begin{split} \lambda_0(S) &= \sup \left\{ \limsup_{t \to +\infty} \frac{\log(\|\Phi_A(t)x_0\|)}{t} \mid A \in \mathcal{S}_0, \; x_0 \neq 0 \right\} \\ \lambda_0^{\mathrm{per}}(S) &= \sup \left\{ \limsup_{t \to +\infty} \frac{\log(\|\Phi_A(t)x_0\|)}{t} \mid A \in \mathcal{S}_0, \; (A(\cdot), \pi \Phi_A(\cdot)x_0) \; \text{periodic} \right\} \\ \text{Let } x(t) &= \Phi_A(t)x_0 \; \text{be (quasi-)maximizing for } \lambda_0(S) \\ \text{In order to prove that } \lambda_0^{\mathrm{per}}(S) &\geq \lambda_0(S) - \varepsilon \; \text{we should be able to} \\ \text{close the loop and, for } t \; \text{large, use } (\pi \Sigma) \; \text{to go from } [x(t)] \; \text{to } [x_0] \end{split}$$

Periodization (proof by Colonius and Kliemann)

$$\lambda_{0}(S) = \sup \left\{ \limsup_{t \to +\infty} \frac{\log(\|\Phi_{A}(t)x_{0}\|)}{t} \mid A \in S_{0}, \ x_{0} \neq 0 \right\}$$
$$\lambda_{0}^{\mathrm{per}}(S) = \sup \left\{ \limsup_{t \to +\infty} \frac{\log(\|\Phi_{A}(t)x_{0}\|)}{t} \mid A \in S_{0}, \ (A(\cdot), \pi\Phi_{A}(\cdot)x_{0}) \text{ periodic} \right\}$$

Let $x(t) = \Phi_A(t)x_0$ be (quasi-)maximizing for $\lambda_0(S)$ In order to prove that $\lambda_0^{\text{per}}(S) \ge \lambda_0(S) - \varepsilon$ we should be able to close the loop and, for t large, use $(\pi\Sigma)$ to go from [x(t)] to $[x_0]$

- Step 1: Choose x₀ appropriately. Take D the unique ICS for (πΣ), fix v₁,..., v_d linearly independent in intD. Since ||M|| = max^d_{i=1} ||Mv_i|| is a norm on M_d(ℝ), we can take as x₀ one of the v_i
- Step 2: guarantee that there exist a uniform controllability time *T* for driving (πΣ) from any point in *D* to any of the v_i within time *T*

Dwell-time invariant control sets for general nonlinear systems

Goal: extend control sets analysis to the dwell-time case

- The definition of invariant control sets does not suit the dwell-time case (invariance fails to see dwell-time)
- Mathematically, the difficulty come from non-concatenability of the class of admissible signals
- Equivalently, the family of admissible flows is not a semigroup
- Idea: recover main geometric properties by looking not at attainable sets (built with entire trajectories issuing from a point) but only at points which are attainable in a concatenable manner

Dwell-time attainable set: $A_{\tau}(q) = \{\phi(T, q, f) \mid f|_{[0,T]} \in \mathcal{F}_{\tau}\}$ with

 $\mathcal{F}_{\tau} = \{f_1 \ast \cdots \ast f_m \mid m \in \mathbb{N}, \ f_i \text{ constant on a interval of length } \geq \tau \}$

Note: \mathcal{F}_{τ} not shift invariant!

Construction

Semigroups of concatenable flows

$$\mathfrak{S}_{ au} = \{ \phi(\mathsf{T},\cdot,f) \mid f|_{[\mathsf{0},\mathsf{T}]} \in \mathcal{F}_{ au} \}$$

Then $A_{\tau}(q) = \mathfrak{S}_{\tau}(q)$.

Definition

D is a *dwell-time invariant control set* $(\tau$ -ICS) if $D = \overline{A_{\tau}(q)}$ for every $q \in D$.

Remark

[SAN MARTIN, 1993] already studied control sets for orbits of not necessarily connected semigroups, in a setting which does not directly applies here (semigroup with nonempty interior in a Lie group G and action on some X/G)

Theorem

Let M be compact, $\tau \ge 0$. For each $q \in M$ there exists a τ -ICS D_q contained in $\overline{A_{\tau}(q)}$. If, moreover, F has the LARC, then $\operatorname{int} D_q \neq \emptyset$

Remark: if there exists \bar{q} such that $\bar{q} \in D_q$ for every $q \in M$, then there exists a unique τ -ICS $(=\overline{A_{\tau}(\bar{q})})$

Lemma

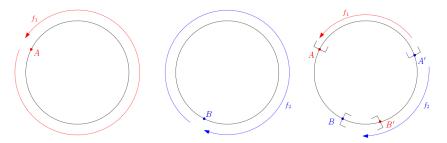
Let F satisfy LARC and assume that $D \subset M$ is a τ -ICS. Then

(i) $\overline{\operatorname{int}(D)} = D$

- (ii) $\Phi(\operatorname{int}(D)) \subset \operatorname{int}(D)$ for every $\Phi \in \mathfrak{S}_{\tau}$
- (iii) There exists an open and dense subset \mathfrak{C} of D such that $\mathfrak{C} = \mathfrak{S}_{\tau}(q)$ for all $q \in \mathfrak{C}$

Dwell-time invariant control sets and linear switched systems with dwell-time

Example of dwell-time control set for projected linear switched system



 f_1, f_2 vector fields on \mathbb{RP}^1 , conjugate to $\dot{x} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} x$ $A' := e^{\tau f_1}(B), \quad B' := e^{\tau f_2}(A)$

■ $D = \widehat{AA'} \cup \widehat{B'B}$ unique τ -ICS ■ if τ_* is such that $e^{\tau_* f_1}(B) = e^{\tau_* f_2}(A)$ then $\tau \leq \tau_* \longrightarrow D = \widehat{AB}; \quad \tau > \tau_* \longrightarrow D$ disconnected ■ $\mathfrak{C} = \operatorname{int}(\widehat{AA'}) \cup \operatorname{int}(\widehat{B'B}) \ (\neq \operatorname{int} D \text{ for } \tau = \tau_*)$

Theorem (F. Boarotto, M.S., JDE, to appear)

Let $S \subset M_d(\mathbb{R})$ and $\tau \ge 0$. Then $\lambda_{\tau}(S) = \lambda_{\tau}^{\mathrm{per}}(S)$

Idea: restrict the projected system to some orbit for the family π_*S $O([x_0]) = \{[x(t)] \mid \dot{x} = A(t)x, \ x(0) = x_0, \ A(t) \in S \cup -S\}$ $(M, F) = (O([x_0]), \pi_*S)$

Advantages

- O([x₀]) has the structure of smooth manifold (Orbit theorem)
- LARC of the system restricted to *M* is for free

Theorem (F. Boarotto, M.S., JDE, to appear)

Let $S \subset M_d(\mathbb{R})$ and $\tau \ge 0$. Then $\lambda_{\tau}(S) = \lambda_{\tau}^{\mathrm{per}}(S)$

Idea: restrict the projected system to some orbit for the family π_*S $O([x_0]) = \{[x(t)] \mid \dot{x} = A(t)x, \ x(0) = x_0, \ A(t) \in S \cup -S\}$ $(M, F) = (O([x_0]), \pi_*S)$

Advantages

- O([x₀]) has the structure of smooth manifold (Orbit theorem)
- LARC of the system restricted to *M* is for free

DIFFICULTIES

- we should guarantee that the orbit carries all informations about asymptotic behavior → reduction to irreducible case
- existence of τ -ICS requires compactness of orbits

Theorem

Let B be the group generated by $\{e^{tA_j} \mid t \in \mathbb{R}, j = 1, ..., m\}$ (any connected Lie subgroup of $GL(\mathbb{R}, d)$). Then the action

$$\varphi: B \times \mathbb{S}^{d-1} \to \mathbb{S}^{d-1}, \quad \varphi(b, x) = \frac{bx}{\|bx\|},$$

induced by B on the (d-1)-dimensional unit sphere $\mathbb{S}^{d-1} \subset \mathbb{R}^d$ admits at least one closed orbit in \mathbb{S}^{d-1} (and the same is true for \mathbb{RP}^{d-1})

Existence (and even uniqueness) of τ -ICS is obtained and Colonius–Kliemann's periodization argument can be performed, proving $\lambda_{\tau}(S) = \lambda_{\tau}^{\text{per}}(S)$

• We proved that the maximal Lyapunov exponent of linear switched systems with dwell-time can be characterized using only trajectories with periodic angular component (new also in the case $\tau = 0$ when the LARC does not hold)

- We proved that the maximal Lyapunov exponent of linear switched systems with dwell-time can be characterized using only trajectories with periodic angular component (new also in the case $\tau = 0$ when the LARC does not hold)
- this gives an alternative prove of the Gelfand formula and of the continuity of maximal Lyapunov exponent with respect to the family of matrices and the dwell-time [WIRTH, 2005]

- We proved that the maximal Lyapunov exponent of linear switched systems with dwell-time can be characterized using only trajectories with periodic angular component (new also in the case $\tau = 0$ when the LARC does not hold)
- this gives an alternative prove of the Gelfand formula and of the continuity of maximal Lyapunov exponent with respect to the family of matrices and the dwell-time [WIRTH, 2005]
- existence of a compact orbit for a projected linear system could be useful for other control problems

- We proved that the maximal Lyapunov exponent of linear switched systems with dwell-time can be characterized using only trajectories with periodic angular component (new also in the case $\tau = 0$ when the LARC does not hold)
- this gives an alternative prove of the Gelfand formula and of the continuity of maximal Lyapunov exponent with respect to the family of matrices and the dwell-time [WIRTH, 2005]
- existence of a compact orbit for a projected linear system could be useful for other control problems
- τ-ICS to characterizes support of the invariant measure for piecewise deterministic random process with dwell time

- We proved that the maximal Lyapunov exponent of linear switched systems with dwell-time can be characterized using only trajectories with periodic angular component (new also in the case $\tau = 0$ when the LARC does not hold)
- this gives an alternative prove of the Gelfand formula and of the continuity of maximal Lyapunov exponent with respect to the family of matrices and the dwell-time [WIRTH, 2005]
- existence of a compact orbit for a projected linear system could be useful for other control problems
- τ-ICS to characterizes support of the invariant measure for piecewise deterministic random process with dwell time
- Ongoing work: adapt our technique to a more abstract setting applying to other non-concatenable classes of switching signals