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Linear switched systems and their Lyapunov
exponents



Linear switched systems

Consider a switched system on Rd of the type

ẋ = A(t)x , A(·) ∈ S (Σ)

S class of signals from R to some set S ⊂ Md (R).
Examples:

S0 = {A : R→ S | A piecewise constant} −→ arbitrary
switching
Sτ = {A : R→ S |
A piecewise constant, discontinuities at distance ≥ τ} −→
switching with (guaranteed) dwell-time τ
other classes can be introduced in terms of average dwell-time
constraints, persistence of excitation, Lipschitz constraints,
. . .

Crucial property of switched systems: uniform asymptotic stability
with respect to A ∈ S



Measures of stability of linear switched systems

A ∈ S −→ fundamental matrix ΦA(·) solution to
d
dt ΦA(t) = A(t)ΦA(t), ΦA(0) = Idd

S-attractive: ΦA(t)→ 0 for every A ∈ S
S-uniform exponential stability: ∃C , λ > 0 s.t. ∀A ∈ S

‖ΦA(t)‖ ≤ Ce−λt , ∀t ≥ 0 (?)

uniform exponential rate:

λ(S) = lim sup
t→+∞

sup
A∈S

log(‖ΦA(t)‖)
t = inf{λ | ∃C s.t. (?) ∀A ∈ S}

S-uniform exponential stability ⇔ λ(S) < 0
maximal Lyapunov exponent:

λ̂(S) = sup
A∈S

lim sup
t→+∞

log(‖ΦA(t)‖)
t = inf{λ | ∀A ∈ S, ∃C s.t. (?) }

λ̂(S) ≤ λ(S)
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Equality between λ(Sτ) and λ̂(Sτ)

Lemma (Fenichel)

Let S = Sτ for τ ≥ 0. Then (Σ) is S-attractive if and only if it is
S-uniformly exponentially stable

Corollary
For every τ ≥ 0, λ(Sτ ) = λ̂(Sτ )

From now on
λτ (S) := λ(Sτ )

Our aim: give a useful characterization of λτ (S)



Probabilistic Lyapunov exponents for Piecewise
Deterministic Markov Processes (PDMP)

Let S = {1, . . . ,N} and Q = (qij)N
i ,j=1 be Markov transition matrix

(qij ≥ 0,
∑N

j=1 qij = 1)
A trajectory is a random variable, as well as its switching law
(ik , tk)k∈N:

the initial index i1 in S is a random variable
transition Aik → Aik+1 at time tk with probability qik ik+1

we can introduce a dwell-time:

P({tk+1 − tk ≤ θ}) =
{
0 if θ < τ

ν
´ θ
τ e−ν(t−τ)dt if θ ≥ τ

duration of each interval between switching times:

P({tk+1 − tk ≤ θ}) = ν

ˆ θ

0
e−νtdt

Furstenberg–Kesten theorem: if Q is strongly connected, then,
with probability one ∃ limt→∞

1
t ‖ΦA(t)‖ = χτ (S, ν,Q)



Invariant control sets of general nonlinear systems



Invariant control sets

M manifold, F family of smooth complete vector fields on M
f (·) ∈ F0 piecewise constant with values in F , q initial condition
−→ solution t 7→ φ(t, q, f )
Attainable set from q ∈ M: A(q) = {φ(t, q, f ) | t ≥ 0, f ∈ F0}

Definition
∅ 6= D ⊂ M invariant control set (ICS) if D = A(q) for every q ∈ D

Example: A1, . . . ,Am ∈ Md (R), x1, . . . , xm ∈ Rd .
If

ẋ = Ai(t)x is asymptotically stable
(with arbitrary switching)

then

A(x1) =
⋂

Ω6=∅ compact invariant Ω

is a ICS for ẋ = Ai(t)(x − xi(t))



Existence of invariant control sets

Theorem (see, e.g., Colonius–Kliemann, 2000)

Let M be compact. For each q ∈ M there exists a nonempty ICS
Dq contained in A(q). Assume, moreover, that F has the Lie
algebra rank condition (LARC). Then

Dq has nonempty interior
there exists Cq ⊂ Dq open and dense in Dq such that
A(q′) = Cq for every q′ ∈ Cq

there exist finitely many distinct ICS

existence by Zorn lemma: A(q′) ⊂ A(q) if q′ ∈ A(q)
nonempty interior by Krener theorem (Dq = A(q′) for
q′ ∈ Dq)



Invariant control sets for projected linear
switched systems and periodization



Some link between linear switched systems and invariant
control sets

Interesting properties on the behavior of a linear switched system
can be deduced from its angular component:
x(t) −→ (‖x(t)‖, [x(t)]) =: (r(t), s(t)) ∈ (0,+∞)× RPd−1

Using local identification [x ] = x
‖x‖ , ẋ = Ax can be rewritten as

ṙ
r = 〈s,As〉, ṡ = (A− 〈s,As〉Idd )s =: (π∗A)s

(πΣ) projected linear system on RPd−1 associated with F := π∗S

[Arnold, Kliemann, Oeljeklaus, 1986] −→ if F LARC
on RPd−1, then (πΣ) has a unique ICS D and int(D) 6= ∅
[Colonius, Kliemann, 1993] −→ if F LARC on RPd−1,
then λ0(S) is equal to

λper
0 (S) := sup

{
lim sup
t→+∞

log(‖ΦA(t)x0‖)
t | A ∈ S0, (A(·), πΦA(·)x0) periodic

}
For PDMP ICSs characterize support of invariant measures
[Benaïm, Colonius, Lettau, 2017]
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Interest of periodization

The identity λ0(S) = λper
0 (S):

provides a monotone finite horizon approximation scheme
proves the Gelfand-like formula

λ0(S) = lim sup
t→+∞

sup
A∈S0, x0 6=0

log(ρ(ΦA(t)))
t

with ρ spectral radius
can be used to show continuity of S 7→ λ0(S)
first introduced to bound large deviations for Piecewise
Deterministic Markov Processes [Arnold, Kliemann,
1987]



Periodization (proof by Colonius and Kliemann)

λ0(S) = sup
{
lim sup
t→+∞

log(‖ΦA(t)x0‖)
t | A ∈ S0, x0 6= 0

}

λper
0 (S) = sup

{
lim sup
t→+∞

log(‖ΦA(t)x0‖)
t | A ∈ S0, (A(·), πΦA(·)x0) periodic

}
Let x(t) = ΦA(t)x0 be (quasi-)maximizing for λ0(S)
In order to prove that λper

0 (S) ≥ λ0(S)− ε we should be able to
close the loop and, for t large, use (πΣ) to go from [x(t)] to [x0]

Step 1: Choose x0 appropriately. Take D the unique ICS for
(πΣ), fix v1, . . . , vd linearly independent in intD. Since
‖M‖ = maxd

i=1 ‖Mvi‖ is a norm on Md (R), we can take as x0
one of the vi

Step 2: guarantee that there exist a uniform controllability
time T for driving (πΣ) from any point in D to any of the vi
within time T
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Dwell-time invariant control sets for general
nonlinear systems



Goal: extend control sets analysis to the dwell-time case

The definition of invariant control sets does not suit the
dwell-time case (invariance fails to see dwell-time)
Mathematically, the difficulty come from non-concatenability
of the class of admissible signals
Equivalently, the family of admissible flows is not a semigroup
Idea: recover main geometric properties by looking not at
attainable sets (built with entire trajectories issuing from a
point) but only at points which are attainable in a
concatenable manner

Dwell-time attainable set: Aτ (q) = {φ(T , q, f ) | f |[0,T ] ∈ Fτ}
with

Fτ = {f1∗· · ·∗fm | m ∈ N, fi constant on a interval of length ≥ τ}

Note: Fτ not shift invariant!



Construction

Semigroups of concatenable flows

Sτ = {φ(T , ·, f ) | f |[0,T ] ∈ Fτ}

Then Aτ (q) = Sτ (q).

Definition
D is a dwell-time invariant control set (τ -ICS) if D = Aτ (q) for
every q ∈ D.

Remark
[San Martin, 1993] already studied control sets for orbits of not
necessarily connected semigroups, in a setting which does not
directly applies here (semigroup with nonempty interior in a Lie
group G and action on some X/G)



Basic properties of dwell-time attainable and control sets

Theorem
Let M be compact, τ ≥ 0. For each q ∈ M there exists a τ -ICS Dq
contained in Aτ (q). If, moreover, F has the LARC, then intDq 6= ∅

Remark: if there exists q̄ such that q̄ ∈ Dq for every q ∈ M, then
there exists a unique τ -ICS (= Aτ (q̄))

Lemma
Let F satisfy LARC and assume that D ⊂ M is a τ -ICS. Then
(i) int(D) = D
(ii) Φ(int(D)) ⊂ int(D) for every Φ ∈ Sτ

(iii) There exists an open and dense subset C of D such that
C = Sτ (q) for all q ∈ C



Dwell-time invariant control sets and linear
switched systems with dwell-time



Example of dwell-time control set for projected linear
switched system

f1, f2 vector fields on RP1, conjugate to ẋ =
(
0 1
0 0

)
x

A′ := eτ f1(B), B′ := eτ f2(A)

D = ÂA′ ∪ B̂′B unique τ -ICS
if τ∗ is such that eτ∗f1(B) = eτ∗f2(A) then

τ ≤ τ∗ −→ D = ÂB; τ > τ∗ −→ D disconnected
C = int(ÂA′) ∪ int(B̂′B) (6= intD for τ = τ∗)



Periodization without LARC condition

Theorem (F. Boarotto, M.S., JDE, to appear)

Let S ⊂ Md (R) and τ ≥ 0. Then λτ (S) = λper
τ (S)

Idea: restrict the projected system to some orbit for the family π∗S
O([x0]) = {[x(t)] | ẋ = A(t)x , x(0) = x0, A(t) ∈ S ∪ −S}
(M,F ) = (O([x0]), π∗S)

Advantages
O([x0]) has the structure of smooth manifold (Orbit theorem)
LARC of the system restricted to M is for free

Difficulties
we should guarantee that the orbit carries all informations
about asymptotic behavior −→ reduction to irreducible case
existence of τ -ICS requires compactness of orbits
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Existence of a closed orbit

Theorem
Let B be the group generated by {etAj | t ∈ R, j = 1, . . . ,m} (any
connected Lie subgroup of GL(R, d)). Then the action

ϕ : B × Sd−1 → Sd−1, ϕ(b, x) = bx
‖bx‖ ,

induced by B on the (d − 1)-dimensional unit sphere Sd−1 ⊂ Rd

admits at least one closed orbit in Sd−1 (and the same is true for
RPd−1)

Existence (and even uniqueness) of τ -ICS is obtained and
Colonius–Kliemann’s periodization argument can be performed,
proving λτ (S) = λper

τ (S)



Conclusions and perspectives

We proved that the maximal Lyapunov exponent of linear
switched systems with dwell-time can be characterized using
only trajectories with periodic angular component (new also in
the case τ = 0 when the LARC does not hold)

this gives an alternative prove of the Gelfand formula and of
the continuity of maximal Lyapunov exponent with respect to
the family of matrices and the dwell-time [Wirth, 2005]
existence of a compact orbit for a projected linear system
could be useful for other control problems
τ -ICS to characterizes support of the invariant measure for
piecewise deterministic random process with dwell time
Ongoing work: adapt our technique to a more abstract setting
applying to other non-concatenable classes of switching signals
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